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Abstract—This paper approaches the topic of robust control
for DC-DC power converters. A low-power single-ended primary-
inductor converter (SEPIC) has been chosen as a case study,
for which the output voltage regulation problem in presence
of parameter uncertainties is stated in the H∞ formalism as
a disturbance-rejection problem. This approach is assessed by
numerical simulations in MATLAB R© against a classical integral
state-feedback control from the point of view of robustness in
stability and in performance, when two parameters – input
voltage and load resistance – vary, but are bounded within known
ranges. Comparison shows that H∞ control design, provided
that it handles more degrees of freedom, can offer more detailed
information about robustness ranges, but this advantage has to
be weighed against its complexity compared to state-feedback
control. Choice of some either classical or robust control solution
depends upon requirements and constraints of each application.

I. INTRODUCTION

Power electronic converters are switching devices used for
controlling the electric energy flows within power structures,
generally aiming at conditioning the power flows with respect
to a certain application. Nowadays context of power and
energy applications – in continuous growth and development
such as to respond to increasing energy needs – requires
ubiquity of power converters as flexible actuators able to
ensure some desired performance - stability, very fast response,
robustness – under strong constraints.

Power converters may accomplish various basic tasks; in
particular, DC-DC converters are fed with DC voltage and
they output DC voltage with different value and possibly
different polarity than the input voltage. The main control
goal in DC-DC converters may vary upon their role, but the
general control scope is to regulate/track either the output or
the input converter voltage (with respect to the power flow),
while meeting a set of imposed performance requirements.
The control structure may be more or less complex, as the
primary goal may generate subgoals defined when other issues
are revealed during modelling (e.g., stability or robustness
aspects).

The topic of robust control of DC-DC converters has previ-
ously been studied. DC-DC converters are nonlinear systems
and a common control approach has been to disregard the
nonlinearities and consider a small-signal model valid around
an operating point.

It has been shown that the direct voltage control of SEPIC
reveals a fourth-order non-minimum-phase system [4]; indirect
voltage control based on a two-loop structure with an inductor
current inner control loop is a common method to deal with
this issue [1]. Linear controllers are usually employed to this
end, but their intrinsic robustness may be challenged under
parameter variations and lead to unexpected behaviour in the
presence of uncertainties; this is why robustness of various
control laws is an interesting issue.

Different methods to robustify control structures for DC-
DC power converters have been proposed, among which one
can cite those based on shaping the frequency response. A
proportional-integral (PI) controller for a SEPIC is designed
by loop shaping in [5], whereas in [6], a robust PID controller
for a buck converter is proposed using an H∞ approach. A
controller is designed in [7] by use of H∞ control theory,
in which the nonlinear characteristic of the system has been
modeled as uncertainties and the obtained controller has
superior performance when compared with an LQR controller.
Robust output voltage control is obtained for a high-gain DC-
DC converter in [8] by the use of a sliding-mode controller.
Sliding-mode control is particularly adapted for power con-
verters, whose dynamics are switching at high frequency ([9],
[10]).

This paper investigates the pertinence of an H∞ controller
designed by the use of weighting functions as a way to robus-
tify the closed-loop performance of a single-ended primary-
inductor converter (SEPIC) in the presence of uncertainties,
namely those coming from input voltage variations and those
given by load resistance variations.

The control problem is stated as the output voltage regu-
lation and is cast into the H∞ formalism as a disturbance-
rejection problem. Results of this approach are assesed by
numerical simulation against those of a classical linear state-
feedback control with integral action.

This paper is organized as follows. Section II, which is
dedicated to modelling aspects, is followed by state-feedback
control design in Section III and then by H∞ control design
in Section IV. Section V discusses some simulation results,
whereas Section VI allows to compare the two approaches
from the point of view of sensitivity and robustness to param-
eter variations (input voltage and load resistance). Section VII
concludes this paper.
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Figure 1. Circuit diagram of the SEPIC converter.

II. SEPIC MODELLING

A SEPIC converter is a DC-DC converter driven by the
binary switching function u, giving it two configurations.
It is capable of providing an output voltage vC2 both
larger and smaller than the input voltage E [1]. Fig. 1
gives the circuit diagram of a low-power SEPIC converter.
The values of the circuit components are the following:
input voltage E = 4.5 V (can vary between 3 and 5.7 V),
output voltage setpoint v∗C2 = 3.3 V, L1 = L2 = 4.6µH,
C1 = 10µF, C2 = 200µF, load resistance R = 1.3 Ω
(can vary between 1 and 2 Ω), switching frequency fsw =
330 kHz.

Two models of this converter are used in this paper: the
averaged nonlinear model and the small-signal linear model.
The design of the control laws are based on the small-signal
model whereas the averaged model, if not otherwise stated, is
used for simulations.

The averaged model was obtained by considering the dif-
ferential equations of the circuit in Fig. 1.


L1

˙iL1 = −(1− u) · (vC1 + vC2) + E

L2
˙iL2 = u · vC1 − (1− u) · vC2

C1 ˙vC1 = (1− u) · iL1 − u · iL2

C2 ˙vC2 = (1− u) · (iL1 + iL2)− vC2

R ,

(1)

where vC1 and vC2 denote the voltages over the capacitances
C1 and C2, iL1 and iL2 the currents through the inductors
L1 and L2, E the input voltage and R the load resistance.
Equation 1 represents the switched model of the SEPIC; in
this model the input variable is the switching signal u, which
can take values 0 or 1. The averaged model is obtained by
replacing the switching function u by its average α, called
duty cycle [1]. Equation 2 will be referred to as the nonlinear
model throughout the paper.


L1

˙iL1 = −(1− α) · (vC1 + vC2) + E

L2
˙iL2 = α · vC1 − (1− α) · vC2

C1 ˙vC1 = (1− α) · iL1 − α · iL2

C2 ˙vC2 = (1− α) · (iL1 + iL2)− vC2

R

(2)

The small-signal model is obtained by considering the
variations from the equilibrium as state variables. This model
will be referred to as the linear model throughout this paper.

The equilibrium point is obtained by calculating the values
of iL1, iL2, vC1 and vC2 when their respective derivatives
are zero. The subscript e is introduced to denote a value
at equilibrium and the ~-notation is introduced to denote
a variation from equilibrium. Based on (2), the following
values are obtained, where αe is the average duty cycle at
equilibrium, obtained from (2) by setting vC2 at its reference
value v∗C2 = 3.3 V. This gives αe = 0.4231

iL1e =

(
αe

1− αe

)2

· Ee

R
, iL2e =

αe

1− αe
· Ee

R
,

vC1e = Ee, vC2e =
αe

1− αe
· Ee. (3)

For all variables in the system the following hold: α = αe+α̃,
E = Ee+Ẽ, R = Re+R̃, iL1 = iL1e+ ĩL1, iL2 = iL2e+ ĩL2,
vC1 = vC1e + ṽC1 and vC2 = vC2e + ṽC2.

Here Ee = 4.5 V and Re = 1.3 Ω. By use of (2) and (3) and
by linearizing the equations, the following system is obtained:



L1
˙̃
iL1 = −(1− αe)ṽC1 − (1− αe)ṽC2

+(vC1e + vC2e)α̃+ Ẽ

L2
˙̃
iL2 = αeṽC1 − (1− αe)ṽC2 + (vC1e + vC2e)α̃

C1
˙̃vC1 = (1− αe)ĩL1 − αeĩL2 − (iL1e + iL2e)α̃

C2
˙̃vC2 = (1− αe)ĩL1 + (1− αe)ĩL2

−(1/Re)ṽC2 − (iL1e + iL2e)α̃+ vC2e

C2R2
e
R̃

(4)

Equation 4 can be written in the following state-space
representation:

ẋ = A · x + B · u, (5)

where x =
[
ĩL1 ĩL2 ṽC1 ṽC2

]T
is the small-signal state

vector and u =
[
α̃ Ẽ R̃

]T
is the input vector, out of which

α̃ is the control input and parameter variations, Ẽ and R̃ are
here modelled as disturbances. The matrices A are B are given
in the Appendix.

III. STATE-FEEDBACK CONTROL DESIGN

Here a state-feedback control with integral action able
to improve tracking properties and disturbance rejection is
considered. This leads to the following state being added to
the state-space representation: ż = v∗C2 − vC2 = v∗C2 − Cx.
The state-space representation of the extended system can then
be written as:

(
ẋ
ż

)
=

[
A 0
−C 0

](
x
z

)
+

[
B
0

]
· u+

[
0
1

]
· v∗C2

y =
[
C 0

]
·
(
x
z

)
(6)

The controller was designed by imposing two of the closed-
loop poles as a double pole (τs + 1)2 such that to ensure
a desired closed-loop settling time (relation tr = 4.75τ has
been used). The three remaining poles were chosen to be



eight times faster, thereby allowing the system to be primarily
determined by the double-pole polynomial. The desired set-
tling time was here chosen to be five times faster than the
slowest dynamics of the open-loop system, which gives an
imposed settling time of 0.31 ms. This gives the feedback gain
L = [0.4976 −0.2166 0.1776 0.1694 −4.0669].

IV. H∞ CONTROL DESIGN

A. Specifications

H∞ control method consists of shaping the desired charac-
teristics of the closed-loop system by using suitably shaped
templates for the desired closed-loop frequency responses.
Templates are specified by means of weighting functions on
the various input-output channels.

The sensitivity functions are defined as follows:

S =
I

I +GK
, T = I − S, KS = K · S,

SE = GE · S, SR = GR · S, (7)

where G, GE and GR are the transfer functions from the
control input α̃ and disturbances Ẽ and R̃ to the output ṽC2.
The transfer function K is the designed controller.

As regards the template imposed for function S, the rise
time of the closed-loop system can be estimated by [2]

tr ≈
2.3

ωT
, (8)

where ωT is the bandwidth of the complementary sensitivity
function T , which is defined as the frequency where ||T (jω)||
crosses −3 dB from above [2]. Under the assumption that
the closed-loop system has no oscillations, the approximation
ωS = ωT is made, where ωS is the bandwidth of the sensitivity
function and is defined as the frequency where ||S(jω)||
crosses −3 dB from below. The rise time is assumed to be
approximately equal to the settling time. The desired closed-
loop settling time is here chosen to be ten times faster than
that of the open-loop system, which gives a desired settling
time of 0.155 ms.
MS is the maximum peak of S (||S||∞) and is related to the

robustness margin of the system. A choice of MS = 2 in the
weighting function for S guarantees a gain margin GM ≥ 2
and phase margin PM ≥ 29.0◦ [2].

The weighting function for S is chosen as

We(s) =
s/MS + ωS

s+ ωSε
, (9)

where the parameter ε is chosen as 1/100 to limit the max-
imum steady-state error. The weighting function for KS is
chosen in a similar manner by specifying a maximum gain
Mu = 1 (to limit actuator saturation), a roll-off frequency
ωbc = 400 rad/s (to start attenuating noise with a frequency
higher than 400 rad/s) and a maximum amplification of noise
ε1 = 0.5. The weighting function for KS is:

Wu(s) =
s+ ωbc/Mu

ε1s+ ωbcε
(10)

Figure 2. The generalized plant P and the controller K in the P-K form

Simulations of the closed-loop system have shown high-
frequency oscillations in the control input α, which could
prove unfeasible, even with high-frequency PWM signals.
Thus, a second H∞ controller is designed with the following
modified specifications for S: ε = 1/1000 to limit the steady-
state error to 1/1000, while ωS and MS remained unchanged.
The specifications for KS were chosen as: Mu = 0.0738 (to
limit the maximum peak of the control input in response to a
reference variation), ε1 = 0.01 (to limit the amplification of
noise in high frequencies) and ωbc = 300 rad/s (the frequency
where 1/Wu crosses 0 dB from above, chosen to attenuate
high-frequency noise).

B. Controller Design

Recall that the control goal is to regulate the output voltage
at a reference value, denoted here as v∗C2, in spite of parameter
variations, modelled as disturbances.

The definition of the control problem to be solved in the
H∞ framework is shown in Fig 2. Here r = v∗C2 is the
reference input, y = ṽC2 the measured output and e1 and e2
the controlled outputs. The internal structure of the generalized
plant is shown within the dashed lines. The H∞ control
problem to be solved is to find a controller K such that

∣∣∣∣∣∣∣∣ WeS −WeGES −WeGRS
WuKS −WuKGES −WuKGRS

∣∣∣∣∣∣∣∣
∞
≤ γ, (11)

where γ ≤ 1 means that the templates, as specified by the
weighting functions, are satisfied. The transfer functions G,
GE and GR were defined in the beginning of this section.
The design of the generalized plant and the H∞ synthesis
were carried out in MATLAB R© Robust Control Toolbox. The
value of γ obtained for the first controller is 0.8920, meaning
the templates are satisfied with some margin.

However, the specifications for the second controller were
not met and a value of 21.6495 was obtained for γ. This
controller will be called controller 2 throughout the remainder
of this paper, whereas the other controller will be referred to
as controller 1.
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V. SIMULATION RESULTS

This section is dedicated to a comparative numerical-
simulation analysis of the two robust controllers against the
integral state-feedback control.

Fig. 3 shows the step response and disturbance rejections
of the state-feedback controller and the two H∞ controllers.
The first H∞ controller has the fastest rise time, whereas the
state-feedback controller and the second H∞ controller are
the slowest. The first H∞ controller has the best disturbance
rejection, followed by the state-feedback controller and the
second H∞ controller. However, this very good performance
is achieved with quite abrupt variations of the average duty
cycle, which is to avoid, even if magnitudes remain within
limits (here, between 0 and 1).

On the other hand, the second H∞ controller has the
smoothest control input.

VI. SENSITIVITY AND ROBUSTNESS ANALYSIS

In order to analyze the performance of the controllers, the
sensitivity functions defined in Section IV were used. The tools
provided by µ-analysis were used to evaluate robust stability
and performance.

A. State-Feedback Controller

Fig. 4 and Fig. 5 show the sensitivity functions for the
state-feedback controller. The peak of ||S|| is below 2, which
implies some robust stability margin. The unitary gain at
||T (0)|| indicates good tracking properties. The rejection of
disturbances with no steady-state error is seen in SE and SR.
The structured singular value, denoted µ, is used to analyze

the stability of the closed-loop system within the uncertainty
ranges of R and E. A value of µ < 1 means that the closed-
loop system remains stable within the uncertainty range. Fig. 6
shows that the system is robustly stable. Simulations have
shown that this also holds true for the nonlinear system.
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Figure 4. Sensitivity functions for the closed-loop system with state-feedback
controller a) Sensitivity function S b) Complementary Sensitivity function T
c) Sensitivity function KS
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Figure 5. Sensitivity functions for the closed-loop system with state-feedback
controller a) Sensitivity functions SE from disturbance input Ẽ to output y
b) a) Sensitivity functions SR from disturbance input R̃ to output y

The performance of the state-feedback controller was also
evaluated by varying the values of the input voltage E and load
resistance R. The results showed that the desired performance,
namely the settling time, is not guaranteed to remain the
same within the specified uncertainty range. Thus, one can
say that the state-feedback integral control does not ensure
robust performance.

B. H∞ Controller

The sensitivity functions were used to analyze the character-
istics of the system. Fig. 7 and 8 show the sensitivity functions
for the two H∞ controllers together with the templates for
controller 2. The decreased gain of KS at high frequencies
implies an attenuation of high-frequency oscillations in the
control input. However, the lower bandwidth of the second
controller indicates a slower rise time. The second controller’s
amplification of disturbances can be seen as a gain above 0 dB
in SE and SR.

The second H∞ controller is a better candidate for a possi-
ble practical implementation as its control input presents some
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Figure 7. Sensitivity functions for the closed-loop system with the two H∞
controllers a) Sensitivity function S b) Complementary Sensitivity function
T c) Sensitivity function KS

smoother variations, more likely to be achieved in practice.
Thus, the robust stability and performance of the closed-loop
system with this second H∞ controller were evaluated. The
results of the µ-analysis for stability and performance are
presented in Fig. 9. These results suggest that the controller
is robustly stable. However, this is only valid for the linear
system. Simulations performed with the nonlinear system have
shown that the closed-loop system is not stable for all values
within the specified uncertainty range. Based on the simulation
results, it was found that the nonlinear closed-loop system is
stable for values E ∈ [3.3, 5.7] V, R ∈ [1, 2] Ω. Fig. 10 shows
that the parameter domain of variation is split into two regions
from both robust-stability and robust-performance viewpoints.

The results of the µ-analysis for robust performance show
that the desired performance, as specified by the controller’s
γ-value, is not obtained for the whole uncertainty range.
Fig. 10b) allows to identify the region where the gain of the
closed-loop system remains below the value of γ, that is, the
closed-loop system is robust in performance. Fig. 11 shows
simulation results illustrating the case of an unstable closed-
loop system, which confirms results of analysis.
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Figure 8. Sensitivity functions for the closed-loop system with the two H∞
controllers a) Sensitivity functions SE from disturbance input Ẽ to output y
b) Sensitivity functions SR from disturbance input R̃ to output y
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VII. CONCLUSIONS

This paper has approached the topic of robust control for
DC-DC power converters. H∞ formalism has been chosen as
framework for stating the output voltage regulation problem in
presence of parameter uncertainties as a disturbance-rejection
problem; the single-ended primary-inductor converter (SEPIC)
has been presented as a case study. Design, analysis and
numerical simulations in MATLAB R©/Robust Control Toolbox
have allowed assessment of this approach against a classical
integral state-feedback control from the point of view of ro-
bustness in stability and in performance, when two parameters
– input voltage and load resistance – vary, but are bounded
within known ranges. Both these approaches consider the
linearized model around a certain, desired, steady-state point;
but in simulation the nonlinear averaged model has been used
for both. Good results concerning robust stability have been
obtained for the classical control; however, robust performance
has not been guaranteed with this control for the whole param-
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Figure 11. Simulation of the closed-loop system with the second H∞
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eter variation domain. Robust control formalism is able to offer
more detailed information with this respect. Thus, by using the
µ-analysis – followed by confirmation by numerical simulation
- one can identify precisely the parameter domain within which
the closed-loop system remains stable and keeps the same
performance quality. Indeed, H∞ provides more degrees of
freedom, but this advantage has to be weighed against its
complexity compared to state-feedback control. Depending on
application complexity, requirements and constraints one or
the other might be the preferred choice.

APPENDIX A

Matrices A and B of the small-signal model.

A =


0 0
0 0

(1− αe)/C1 −αe/C1

(1− αe)/C2 (1− αe)/C2

−(1− αe)/L1 −(1− αe)/L1

αe/L2 −(1− αe)/L2

0 0
0 −1/(RC2)



B =


(vC1e + vC2e)/L1 1/L1 0
(vC1e + vC2e)/L2 0 0
−(iL1e + iL2e)/C1 0 0
−(iL1e + iL2e)/C2 0 vC2e/(C2R

2
e)


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