Zero-resource Dependency Parsing: Boosting Delexicalized Cross-lingual Transfer with Linguistic Knowledge - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Zero-resource Dependency Parsing: Boosting Delexicalized Cross-lingual Transfer with Linguistic Knowledge

Résumé

This paper studies cross-lingual transfer for dependency parsing, focusing on very low-resource settings where delexicalized transfer is the only fully automatic option. We show how to boost parsing performance by rewriting the source sentences so as to better match the linguistic regularities of the target language. We contrast a data-driven approach with an approach relying on linguistically motivated rules automatically extracted from the World Atlas of Language Structures. Our findings are backed up by experiments involving 40 languages. They show that both approaches greatly outperform the baseline, the knowledge-driven method yielding the best accuracies, with average improvements of +2.9 UAS, and up to +90 UAS (absolute) on some frequent PoS configurations.
Fichier principal
Vignette du fichier
C16-1012.pdf (179.29 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01592335 , version 1 (29-09-2017)

Identifiants

  • HAL Id : hal-01592335 , version 1

Citer

Lauriane Aufrant, Guillaume Wisniewski, François Yvon. Zero-resource Dependency Parsing: Boosting Delexicalized Cross-lingual Transfer with Linguistic Knowledge. COLING 2016, the 26th International Conference on Computational Linguistics, 2016, Osaka, Japan. pp.119--130. ⟨hal-01592335⟩
249 Consultations
152 Téléchargements

Partager

More