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Abstract. Kinematic and dynamic performances of parallel manipulators are usually not homo-
geneous throughout their operational workspace. This problem is usually solved by introducing
actuation redundancy, which involves force control algorithms. Another approach is the selection
of the best actuation modes along a trajectory to be followed with regard to the kinetostatic, elas-
tostatic and dynamic performances of the parallel manipulator. Accordingly, this paper introduces
a novel three degree-of-freedom planar parallel manipulator with variable actuation modes, named
NAVARO. NAVARO stands for NAntes Variable Actuation RObot and has eight actuation modes.
First, the prototype of the manipulator is presented. Then, its transmission systems are presented.
Finally, the kinematic and dynamic models of the NAVARO are developed.

1 Introduction

A drawback of serial and parallel mechanisms is the inhomogeneity of the kine-
tostatic performance within their workspace. For instance, dexterity, accuracy and
stiffness are usually bad in the neighbourhood of singularities that can appear in the
workspace of such mechanisms. As far as the parallel mechanisms are concerned,
their inverse kinematics problem (IKP) has usually many solutions, which corre-
spond to the working modesof the mechanism [4]. Nevertheless, it is diff cult to
come up with a large operational workspace free of singularity with a given work-
ing mode. Consequently, a trajectory planning may require a change of the working
mode by means of an alternative trajectory in order to avoid singular conf gurations.
In such a case, the initial trajectory would not be followed. The common approach to
solve this problem is to introduce actuation redundancy, that involves force control
algorithms [1]. Another approach is to use the concept of joint-coupling as pro-
posed by [11] or to select the actuated joint in each limb with regard to the pose of
the moving-platform, [2].

In this paper, a three degree-of-freedom planar parallel manipulator with vari-
able actuation modes, named NAVARO, is introduced. NAVARO stands for NAntes
Variable Actuation RObot and has eight actuation modes. First, the prototype of the

1
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manipulator is presented. Then, its transmission systems are presented. Finally, the
kinematic and dynamic models of the NAVARO are developed.

2 Mechanism architecture

The concept of variable actuated mechanism(VAM) was introduced in [2, 11]. In-
deed, they derived a VAM from the architecture of the 3-RPR planar parallel manip-
ulator (PPM) by actuating either the f rst revolute joint or the prismatic joint of its
limbs. This paper deals with the study of a VAM introduced in [10] and illustrated
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Fig. 1 3-RRR PPM with variable actuation

in Fig. 1. This mechanism is derived from the architecture of the 3-RRR PPM. The
f rst link of each limb of the conventional 3-RRR manipulator is replaced by paral-
lelogram AiBiDiEi to come up with the mechanism at hand. Accordingly, links AiBi

and BiCi can be driven independently, i.e., angles αi and δi are actuated and uncou-
pled, by means of an actuator and a transmission system, mounted to the base and
located in point Ai , i = 1,2,3.

It turns out that the VAM has eight actuating modesas shown in Table 1. In-
deed, the actuating mode of the mechanism depends on its actuated joints. For in-
stance, the f rst actuating mode corresponds to the 3-RRR mechanism, also called
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RRR1-RRR2-RRR3 mechanism in the scope of this paper, as the f rst revolute joints
(located at point Ai) of its limbs are actuated. Likewise, the eighth actuating mode
corresponds to the 3-RRR manipulator, also called RRR1-RRR2-RRR3 mechanism,
as the second revolute joints (located at point Bi) of its limbs are actuated.

The moving platform pose of the VAM is determined by means of the Cartesian
coordinates (x,y) of operation point P expressed in the base frame Fb and angle φ ,
namely, the angle between frames Fb and Fp. Moreover, the passive and actuated
joints do not have any stop. Points A1, A2 and A3, (C1, C2 and C3, respectively) lie at
the corners of an equilateral triangle, of which the geometric center is point O (point
P, resp.).

Table 1 The eight actuating modes of the NAVARO

Actuating mode number driven links active angles
1 RRR1-RRR2-RRR3 A1B1, A2B2, A3B3 α1, α2, α3
2 RRR1-RRR2-RRR3 A1B1, A2B2, A3E3 α1, α2, δ3
3 RRR1-RRR2-RRR3 A1B1, A2E2, A3B3 α1, δ2, α3
4 RRR1-RRR2-RRR3 A1E1, A2B2, A3B3 δ1, α2, α3
5 RRR1-RRR2-RRR3 A1B1, A2E2, A3E3 α1, δ2, δ3
6 RRR1-RRR2-RRR3 A1E1, A2E2, A3B3 δ1, δ2, α3
7 RRR1-RRR2-RRR3 A1E1, A2B2, A3E3 δ1, α2, δ3
8 RRR1-RRR2-RRR3 A1E1, A2E2, A3E3 δ1, δ2, δ3

Fig. 2 The NAVARO prototype

Figure 2 shows the prototype of the NAVARO, which has been developed at
IRCCyN1.
1 IRCCyN: Institut de Recherche en Communications et Cybernétique de Nantes
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3 Transmission system

A transmission system has been developed and mounted in each leg of the NAVARO
in order for the manipulator to be able to switch smoothly from one actuation mode
to another along a prescribed trajectory. Figure 3 illustrates a CAD modeling of the
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Fig. 3 The NAVARO transmission system

transmission system of the NAVARO. This system can be seen as a double clutch
system and contains: (i) a motor; (ii) a gearhead, (iii) a motor shaft, (iv) a main shaft
(in cyan), (v) a base (in yellow), (vi) a housing (in purple) and (vii) two clutches (in
brown). As a matter of fact, the two clutches 1 and 2 are electromagnetic brakes.

Each transmission system has four actuation schemes that are def ned thereafter:

1. None of clutches 1 and 2 are active: The main shaft is free to move with respect
to the housing and the base. In that case, none of the f rst two revolute joints of the
corresponding legs are actuated, namely, angles αi and δi are passive, i = 1,2,3.

2. Clutch 1 is active while Clutch 2 is not: The main shaft is f xed with respect to
the base, i.e., the link AiBi is driven thanks to the rotation of the motor shaft. In
that case, angle αi is active and angle δi is passive, i = 1,2,3.

3. Clutch 2 is active while Clutch 1 is not: The main shaft is attached to the hous-
ing, but is free to move with respect to the base. In that case, angle αi is passive
and angle δi is active, i = 1,2,3.
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4. Both clutches 1 and 2: The blue shaft is attached to both the base and the hous-
ing. It means that the housing cannot move and link AiEi is f xed. In that case,
link CiDi performs a circular translation with respect to point Ai , i = 1,2,3. This
actuation scheme amounts to an actuated Π joint2.

Only the second and third actuation schemes of each transmission system are
used in the NAVARO prototype in order to keep the three degrees of freedom motion
of the moving-platform and to avoid any actuation redundancy and under-actuation.
However, it is noteworthy that the NAVARO behaves like a f ve-bar mechanism
when the fourth actuation scheme of the transmission system is used in one leg, the
second or the third actuation scheme is used in one of the other two legs two and the
f rst actuation scheme is used in the third leg.

4 Kinematic analysis of the NAVARO

4.1 Kinematic modeling

The velocity ṗ of point P can be obtained in three different forms, depending on
which leg is traversed, namely,

ṗ = α̇1E(c1 −a1)+ δ̇1E(c1 −b1)+ φ̇E(p−c1) (1)
ṗ = α̇2E(c2 −a2)+ δ̇2E(c2 −b2)+ φ̇E(p−c2) (2)
ṗ = α̇3E(c3 −a3)+ δ̇3E(c3 −b3)+ φ̇E(p−c3) (3)

with matrix E def ned as
E =

[

0 −1
1 0

]

ai , bi and ci are the position vectors of points Ai , Bi and Ci , respectively. α̇i , δ̇i and
φ̇ are the rates of angles αi , δi and φ depicted in Fig. 1, i = 1,2,3.

The kinematic model of the VAM under study can be obtained from Eqs.(1)-(c)
by eliminating the idle joint rates. However, the latter depend on the actuating mode
of the mechanism. For instance, δ̇1, δ̇2 and δ̇3 are idle with the f rst actuating mode
and the corresponding kinematic model is obtained by dot-multiplying Eqs.(1)-(c)
with (ci − bi)

T , i = 1,2,3. Likewise, δ̇1, δ̇2 and α̇3 are idle with the second actu-
ating mode and the corresponding kinematic model is obtained by dot-multiplying
Eqs.(1)-(b) with (ci −bi)

T , i = 1,2, and Eq.(3) with (c3 −a3)
T .

The kinematic model of the VAM can now be cast in vector form, namely,

At = Bq̇ with t = [ṗ φ̇ ]T and q̇ = [q̇1 q̇2 q̇3]
T (4)

2 A Π joint is also called parallelogram joint [3]
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with q̇ thus being the vector of actuated joint rates. q̇i = α̇i when link AiBi is driven
and q̇i = δ̇i when link AiEi is driven, i = 1,2,3. A and B are respectively, the direct
and the inverse Jacobian matrices of the mechanism, def ned as

A =





(c1 −h1)
T −(c1 −h1)

TE(p−c1)
(c2 −h2)

T −(c2 −h2)
TE(p−c2)

(c3 −h3)
T −(c3 −h3)

TE(p−c3)



 (5)

B = diag
[

(ci −bi)
TE(bi −ai)

]

, i = 1,2,3 (6)

where hi = bi when link AiBi is driven and hi = ai when link BiCi is driven, i =
1,2,3.

When A is non singular, we obtain the relation

t = Jpq̇ with Jp = A−1B (7)

Likewise, we obtain
q̇ = K p t (8)

when B is non singular with K p denoting the inverse of Jp.

4.2 Singularity analysis

The singular conf gurations associated with the direct-kinematic matrix of PPMs
are well known [9]. For the 3-RRR PPM, such conf gurations are reached whenever
lines (B1C1), (B2C2) and (B3C3) intersect (possibly at inf nity). For the 3-RRR PPM,
such conf gurations are reached whenever lines (A1C1), (A2C2) and (A3C3) inter-
sect. Consequently, the singular conf gurations associated with the direct-kinematic
matrix of the NAVARO are reached whenever lines (H1C1), (H2C2) and (H3C3)
intersect where Hi stands for Bi (Ai , resp.) when link AiBi (BiCi , resp.) is driven,
i = 1,2,3.

From Eq.(6), the singular conf gurations associated with the inverse-kinematics
of the NAVARO are reached whenever points Ai , Bi , and Ci are aligned.

5 Dynamic modeling of the NAVARO

The inverse dynamic model of a robot provides its joint torques and forces as a func-
tion of the joint positions and its time derivatives. The direct dynamic model gives
the joint accelerations as a function of joint positions, velocities and torques. Dif-
ferent approaches such as virtual work principle, Lagrange formalism and Newton
Euler equations have been adopted in the literature [9]. Here the method developed
in [6] is used to derive the dynamic model of the NAVARO. In [6], the dynamic
models of the legs are obtained with classical methods used for serial robots, while
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the dynamic model of the platform is obtained with Newton-Euler equations. Then,
they are projected onto the actuated joint axes by means of Jacobian matrices. It
is noteworthy that the legs of the NAVARO contain some closed loop chains con-
trary to the legs of the parallel manipulators analyzed in [6]. As a consequence,
the methodology presented in [6] used to express the dynamic modeling of parallel
manipulators is improved in this paper in order to be suitable for the dynamic mod-
eling of the NAVARO. One diff culty lies in the choice of the joint to be cut to come
up with an appropriate tree structure of the NAVARO for its dynamic modeling as
explained thereafter.

5.1 Inverse dynamic model

To project the dynamics of the legs onto the active joint space, the Jacobian between
the two spaces is used. The projection of the platform dynamics is performed by
multiplying the expression with the transpose of the kinematic Jacobian matrix:

Γ = JT
pFp+

m

∑
i=1

(

∂ q̇i

∂ q̇a

)T

H i (9)

where Jp is the kinematic Jacobian matrix of the robot def ned by Eq. (7), Fp con-
tains the total forces and moments applied on the platform, q̇a is the vector of active
joint velocities and H i is the inverse dynamic model of the ith leg. The following
relationship holds:

(

∂ q̇i

∂ q̇a

)

= J−1
i JviJp (10)

Matrix Ji is the Jacobian matrix of leg i (i = 1, . . . ,m, being m the number of legs),
Jvi is the matrix that maps the velocity vi of the ith leg into the moving platform
twist tp:

vi = Ji q̇i (11)

vi = Jvitp (12)

As the active joint variables are independent, Eq. (9) is rewritten as:

Γ = Ha+JT
p

(

Fp+
m

∑
i=1

JT
viJ

−T
i (:, pi)H

p
i

)

(13)

where Ha is the vector of active torques of the legs and index pi of matrix J−T
i refers

to the passive joint variable number.
Each leg of the NAVARO contains a parallelogram closed loop and their dynam-

ics should be f rst computed. Accordingly, the loop is opened and its equivalent
tree structure is analyzed. The open loop is described using the Modif ed Denavit
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Fig. 4 Geometric model of the equivalent tree structure of the leg of the NAVARO

Hartenberg parameters [7] as illustrated in Fig. 4, where the cut joint is located at
point Ei and highlighted by the red dotted line. The parameters are given in Table 2.

j a( j) σ j γ j b j α j d j ϑ j r j

1 0 0 0 0 0 0 ϑ1 0
2 1 0 0 0 0 L1 ϑ2 0
3 0 0 0 0 0 0 ϑ3 0
4 3 0 0 0 0 L4 ϑ4 0

Table 2 Modif ed Denavit-Hartenberg parameters of the equivalent tree structure of one leg of the
NAVARO

The dynamic model of the equivalent tree structure is def ned as:

Γtr,i = Atr,i q̈i +htr,i =









Γi1
Γi2
Γi3
Γi4









(14)

with

q̈i =









q̈i1
q̈i2
q̈i3
q̈i4









(15)
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Once the dynamic model of the open loop is computed, it is projected onto the
closed loop in order to obtain the torques H i of the ith leg:

H i = PTΓtr,i =

(

∂qi

∂qai

)T

Γtr,i =

[

Hi1
Hi2

]

(16)

The joint angle vector is expressed as:

qi =









qi1
qi2
qi3
qi4









=









ϑ1
ϑ2
ϑ3
ϑ4









(17)

The passive joint angles ϑ3 and ϑ4 are def ned as a function of angles ϑ1 and ϑ2
as follows:

ϑ3 =−π +ϑ1 +ϑ2
ϑ4 = π −ϑ2

(18)

Therefore, the projection matrix P is def ned as:

P=

(

∂qi

∂qai

)

=









1 0
0 1
1 1
0 −1









(19)

The platform dynamics is calculated following the Newton-Euler equations and
is def ned for the general case as:

Fp = Jp

[

v̇P−g
ω̇ p

]

+

[

ω p × (ω p × MSp)
ω p × (I p ω p)

]

(20)

where MSp is the vector of f rst moments of the platform around the origin of the
platform frame:

MSp = [MXp MYp MZp]
T (21)

Jp is the spatial inertia matrix of the platform:

Jp =

[

Mp I 3 −M̂Sp

M̂Sp I p

]

(22)

I p is the inertia matrix of the platform:

I p =





XXp XYp XZp

YXp YYp YZp

ZXp ZYp ZZp



 (23)

M̂Sp is the skew matrix associated with the vector MSp:
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M̂Sp =





0 −MZp MYp

MZp 0 −MXp

−MYp MXp 0



 (24)

Since the moving-platform of the NAVARO performs a planar motion, vec-
tor MSp takes the form:

MSp = [MXp MYp 0]T (25)

and

I p =





0 0 0
0 0 0
0 0 ZZp



 (26)

Therefore, Eq. (9) becomes:

Γ = JT
r STFp+

m

∑
i=1

(

J−1
i JviSJr

)T
H i (27)

5.2 Direct dynamic model

The direct dynamic model (DDyM) gives the platform Cartesian accelerations as a
function of the Cartesian position and velocity of the platform and the motorized
joint torques. In [6] it is shown that the direct dynamic model can be computed with
the following general form:

ṫr = A−1
robot

(

J−T
r Γ −hrobot

)

(28)

where Arobot is the total inertia matrix of the robot with respect to the Cartesian
space, hrobot is a term that includes the Coriolis, centrifugal and gravity forces.

The inverse dynamic model of the ith leg is formulated as:

H i(qi , q̇i , q̈i) = A i q̈i +hi(qi , q̇i) (29)

Upon differentiation of Eqs. (11) and (12) we obtain:

v̇i = Ji q̈i + J̇i q̇i (30)

v̇i = J̇vitp+Jvi ṫp (31)

The joint accelerations in Eq. (29) are then substituted with:

q̈i = J−1
i

(

J̇vitp+Jvi ṫp− J̇i q̇i
)

(32)

For the NaVARo the leg inertia matrix A it and the Coriolis, centrifugal and grav-
ity torques hit were f rst computed for the equivalent tree structure with SYMORO+
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[8], then projected onto closed loop by means of the projection matrix P def ned by
Eq. (19) to obtain A i and hi :

A i = PTA it P (33)
hi = PThit (34)

Having all these elements, the robot platform acceleration is computed with Eq. (28).

5.3 Validation of the dynamic model

Both inverse and direct dynamic models of the NAVARO were implemented in Mat-
lab. A model was realized in Simulink to simulate the behaviour of the dynamic
model of the NAVARO in response to a test trajectory. The actuation mode is speci-
f ed in the def nition of the trajectory in order to select the appropriate robot Jacobian
during the computation of both inverse and direct dynamic models.
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Fig. 5 Path of the test trajectory in the Cartesian space

Figure 5 illustrates the path of the test trajectory in the Cartesian space. Figure 6
shows the velocity and acceleration prof les of the test trajectory Figures 7 provides
the required motor torques computed with the dynamic model of the NAVARO
written in Matlab to follow the test trajectory with the 1st actuation mode of the
NAVARO. Figure 8 depicts the position and linear acceleration errors of the moving
platform along the test trajectory. The acceleration errors are of order 10−16. The
position errors are instead of order 10−4. Considering that there are possible inte-
gration errors, those errors are acceptable. Finally, those results were also compared
with those obtained with MapleSIM software and the correlation turned to be good.
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Fig. 6 Velocity and acceleration prof les of the test trajectory
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Fig. 7 Required motor torques to follow the test trajectory with the 1st actuation mode

6 Conclusions

In this paper, a three degree-of-freedom planar parallel manipulator with variable
actuation modes, named NAVARO, was introduced. NAVARO stands for NAntes
Variable Actuation RObot and has eight actuation modes. First, the prototype of
the manipulator was presented. Then, its transmission systems were described. The
kinematic and dynamic models of the NAVARO have also been developed. It is note-
worthy that the legs of the NAVARO contain some closed loop chains contrary to
the legs of the parallel manipulators analyzed in [6]. As a consequence, the method-
ology presented in [6] used to express the dynamic modeling of parallel manipula-
tors has been improved to be suitable for the dynamic modeling of the NAVARO.
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Fig. 8 Position and linear acceleration errors of the moving platform along the test trajectory

The development of an algorithm to deal with the actuation mode changing of the
NAVARO and optimal path placement will be part of the future work. The kinematic
and dynamic models will be also validated experimentally.
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