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STABILITY THEORY FOR DIFFERENCE APPROXIMATIONS
OF EULER KORTEWEG EQUATIONS

AND APPLICATION TO THIN FILM FLOWS∗

PASCAL NOBLE† AND JEAN-PAUL VILA‡

Abstract. We study the stability of various difference approximations of the Euler Korteweg
equations. This system of evolutionary PDEs is a classical isentropic Euler system perturbed by a
dispersive (third order) term. The Euler equations are discretized with a classical scheme (e.g. Roe,
Rusanov or Lax Friedrichs scheme) whereas the dispersive term is discretized with centered finite
differences. We first prove that a certain amount of numerical viscosity is needed for a difference
scheme to be stable in the Von Neumann sense. Then we consider the entropy stability of difference
approximations. For that purpose, we introduce an additional unknown, the gradient of a function
of the density. The Euler Korteweg system is transformed into a hyperbolic system perturbed by a
second order skew symmetric term. We prove entropy stability of Lax Friedrichs type schemes under
a suitable Courant-Friedrichs-Levy condition. In addition, we propose a spatial discretization of the
Euler Korteweg system seen as a Hamiltonian system of evolution PDEs. This spatial discretization
preserves the Hamiltonian structure and thus is naturally entropy conservative. We validate our
approach numerically on a shallow water system with surface tension which models thin films.

Key words. conservation laws; hamiltonian PDEs; entropy inequality; capillarity; Euler Ko-
rteweg equations; difference scheme; entropy conservative, thin films

AMS subject classifications. 65M06, 65M12

1. Introduction. This paper is motivated by the numerical simulation of the
so-called Euler Korteweg system, which arises in the modeling of capillary fluids.
These comprise liquid-vapor mixtures (for instance highly pressurized and hot water
in nuclear reactors cooling system) [JTB], superfluids (Helium near absolute zero)
[HAC], or even regular fluids at sufficiently small scales (think of ripples on shallow
water or other thin films) [LG]. In one space dimension, the most general form of the
Euler Korteweg system we consider is

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x
(
ρu2 + P (ρ)

)
= ∂x

(
ρκ(ρ)∂xxρ+ (ρκ′(ρ)− κ(ρ))

(∂xρ)2

2

)
,

(1.1)

where ρ denotes the fluid density, u the fluid velocity, P (ρ) the fluid pressure and
κ(ρ) > 0 the capillary coefficient. We assume that P ′(ρ) > 0 for all ρ > 0 so
that the Euler system is always hyperbolic. In quantum hydrodynamics, the capillary
coefficient is chosen so that ρκ(ρ) = constant [CDS] whereas for classical applications,
like thin film flows, it is often chosen to be constant [BDK]. The Euler Korteweg
system (1.1) falls in the class of abstract Hamiltonian systems of evolutionary PDEs
when it is written with variables ρ, u

∂tU = J (EH[U ]) , (1.2)

with U = (ρ, u)T , J = ∂xJ,

J =

(
0 −1
−1 0

)
, H[U ] =

ρu2

2
+ F (ρ) + κ(ρ)

(∂xρ)2

2
=
ρu2

2
+ E(ρ, ∂xρ),
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2 ENTROPY STABLE SCHEMES FOR CAPILLARY FLUIDS

and E denotes the Euler operator

EH[U ] =

 u2

2
+ EρE(ρ, ∂xρ)

ρu

 , EρE(ρ, ∂xρ) = F ′(ρ) + κ′(ρ)
(∂xρ)2

2
− ∂x(κ(ρ)∂xρ).

The pressure P is related to F through the relation ρF ′(ρ) − F (ρ) = P (ρ). Due
to the invariance of the equations with respect to spatial and time translations, the
system (1.2) admits, via Noether’s theorem, two additional conservation laws which
are nothing but the conservation of momentum (the second equation of (1.1)) and the
conservation of energy:

∂t

(
1

2
ρu2 + E(ρ, ∂xρ)

)
+ ∂x

(
1

2
ρu3 + ρuEρE(ρ, ∂xρ) + κ(ρ)∂x(ρu)∂xρ

)
= 0. (1.3)

As a consequence, if the system (1.1) is set on the real line or with periodic boundary
conditions, the “entropy” H is conserved. Therefore, it is desirable from a numerical
point of view that a difference approximation of (1.1) or (1.2) preserves the energy
or, at least, dissipates energy. In the first case, the difference approximation is an
“entropy conservative” scheme and in the later case, it is an “entropy stable” scheme.

There are two possible strategies to tackle this problem. The first one consists in
considering (1.1) as a dispersive perturbation of the classical isentropic Euler equa-
tions. This is the point of view adopted e.g. in [LMR]. Here the authors construct
fully discrete entropy conservative scheme for systems of conservation laws (hyperbolic
or hyperbolic-elliptic) endowed with an entropy-entropy flux pair. These difference
approximations are second and third order accurate and can in turn be used to con-
struct a numerical method for the computation of weak solutions containing non-
classical regularization-sensitive shock waves. In particular, the authors considered
dissipative/dispersive regularizations that are linear in the entropy variables

∂tu(vε) + ∂xf(u(vε)) = εB2∂xxv
ε + ε2B3∂xxxv

ε, 0 < ε� 1

with Bi constant symmetric matrices, B2 being positive definite. Thus the dispersive
terms do not contribute in the energy equation:

∂t

∫
D
U(uε) ≤ 0

where D = R or D = R/LZ (L > 0) and U is the entropy associated to the system of
conservation laws

∂tu+ ∂xf(u) = 0.

This situation contrasts with the one met in the Euler Korteweg system where the
dispersive terms have a contribution in the energy balance

∂t

∫
D

1

2
ρu2 + F (ρ) + κ(ρ)

(∂xρ)2

2
dx = 0.

As a consequence, an entropy conservative or entropy stable scheme for the isentropic
Euler equations coupled with a centered approximation of dispersive terms may not
provide an entropy conservative nor entropy stable scheme for the Euler Korteweg
system. This issue was considered in [CL] where Euler Korteweg equations are written
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in Lagrangian coordinates of mass. By introducing an extended formulation of the
system, the authors derived a family of high order and entropy conservative semi-
discrete schemes. With these high order approximations schemes in hand, the authors
then computed kinetic relations for Van der Waals fluids. In [HR], an alternative
reduction of order of the Euler Korteweg system in Lagrangian coordinates of mass
is introduced to derive a semi-discrete entropy conservative scheme based on local
Galerkin discontinuous methods. Though, the Lagrangian coordinates of mass can
not be used in dimension d with d ≥ 2 and one has to consider an alternative extended
formulation in Eulerian coordinates: this latter point of view will be expanded here,
based on the extended formulation found in [BDD, BDDd].

In section 2, we consider the stability of various difference approximations of Euler
Korteweg equations in the Von Neumann sense. We shall prove that even at that
linear level, the Godunov scheme (explicit and implicit in time) is always unstable.
In this direction, we checked the stability of Lax Friedrichs type schemes: we show
that it is stable in the Von Neumann sense under a suitable Courant-Friedrichs-Levy
(CFL) condition for explicit forward Euler (resp. Runge Kutta) time discretization for
first order (resp. second order) difference schemes. This analysis provides necessary
conditions of stability for the simulations of the fully nonlinear system. Finally we
show that the backward Euler and Crank Nicolson time discretization is always stable
for Lax Friedrichs type schemes.

In section 3, we move to the entropy (nonlinear) stability problem. It is a hard
problem to obtain directly entropy stability from nonlinear difference approximation of
Euler Korteweg equations since discrete integration by parts and time discretization
do not commute. Here, we introduce an additional variable w =

√
κ(ρ)∂xρ/

√
ρ

and derive a conservation law for w. In this new formulation, the capillary term
appears as an anti dissipative term in the system for (u,w) and one can prove the
well posedness of the Euler Korteweg system [BDD]. Moreover, the derivation of the
energy estimate follows the same line as a classical energy estimate in the isentropic
Euler equations. In that setting, we show that difference approximations made of
a Lax Friedrichs type (entropy stable) scheme for the hyperbolic part and centered
difference for the anti-diffusive part are entropy stable under a suitable CFL condition
for explicit forward Euler time discretization and always stable for implicit backward
Euler time discretization. We also introduce an alternative method to obtain directly
an entropy conservative scheme. For that purpose, we write the Euler Korteweg
system as a Hamiltonian system of PDEs: by discretizing directly the Hamiltonian,
we obtain a semi discrete scheme that is also Hamiltonian and entropy is trivially
preserved. Then, one is left with the problem of time discretization. The explicit
forward Euler is always unstable and one has to consider implicit time discretization
to obtain an entropy stable scheme.

Finally, in section 4, we carry out numerical simulations of shallow water equa-
tions with surface tension which is a particular case of the Euler Korteweg equations.
We first consider thin film flow over a flat bottom and neglect source terms so as to
compare entropy stability of difference approximations for shallow water in original
form and for its new formulation counterpart. The numerical simulations clearly show
that the discretization of the extended formulation of shallow water equations has bet-
ter entropy stability properties. Then, we consider the difference approximation of the
shallow water equations written as a Hamiltonian system of evolutionary PDEs. The
numerical simulation of this Hamiltonian system shows that the dynamical behavior
is completely changed in comparison to entropy stable schemes. Indeed, this Hamil-
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tonian difference approximation has no numerical viscosity, so that one can observe
the formation of so called “dispersive shock waves” [E, EGK, EGS]. Here, the classic
hyperbolic shocks are regularized by dispersive effects and an oscillatory zone appear
and grows with time. We conclude this section with numerical simulation of a Liu
and Gollub experiment [LG] modeled by a consistent shallow water model with source
term derived in [NV]. The numerical simulation show very good agreement with the
experiments in [LG].

2. Von Neumann stability of difference schemes. In this section, we study
the Von Neumann stability of various difference approximations. We consider two
classes of spatial discretisations, namely Godunov and Lax Friedrichs schemes for
the first order part of the equations whereas the dispersive term is discretized with
classical centered difference approximations. We also consider second order accu-
rate schemes, namely MUSCL scheme with a Lax Friedrichs type flux for spatial
discretization together with Runge Kutta (second order accurate) or Crank Nicolson
time discretization.

2.1. Stability of first order accurate schemes. In this section, we prove
that Godunov space discretization are always unstable whereas Lax Friedrichs type
scheme are stable under CFL conditions.

2.1.1. Formulation of the stability problem. In order to study the Von
Neumann stability, we first linearize the Euler Korteweg equations about a constant
state (ρ, q) = (ρ̄, ρ̄ū):

∂tv +A∂xv = B∂xxxv, A =

(
0 1

c̄2 − ū2 2ū

)
, B =

(
0 0
σ̄ 0

)
(2.1)

with v = (ρ, q)T , σ̄ = ρ̄κ(ρ̄) and c̄ =
√
P ′(ρ̄). We discretize space and denote vj(t)

the approximate value of v(t, jδx), j ∈ Z and δx > 0. We also introduce the Fourier
transform of a sequence v ∈ l2(Z):

v̂(θ) =
∑
k∈Z

eikθvk, ‖v‖l2(Z) = ‖v̂‖L2
per(0,2π)

.

In what follows, we consider Godunov, Lax Friedrichs and Rusanov discretization of
the first order part whereas the capillary term is discretized with centered difference.
These schemes have the common formulation

dvj
dt

+
A

2δx
(vj+1 − vj−1) =

Q

2δt
(vj+1 − 2vj + vj−1)

+
B

2δx3
(vj+2 − 2vj+1 + 2vj−1 − vj−2) , (2.2)

with Q = Id for Lax Friedrichs scheme, Q = (1/2)Id for the modified Lax Friedrichs
scheme, Q = (δt/δx)ρ(A) for Rusanov (ρ(A) = max{|λ|, λ ∈ Sp(A)}), Q = (δt/δx)|A|
for Godunov scheme with

|A| = 1

2c̄

(
|ū− c̄|(ū+ c̄)− |ū+ c̄|(ū− c̄) |ū+ c̄| − |ū− c̄|,

(c̄2 − ū2) (|ū+ c̄| − |ū− c̄|) |ū+ c̄|(ū+ c̄)− |ū− c̄|(ū− c̄)

)
We apply the Fourier Transform to (2.2): v̂ satisfies the differential system:

dv̂

dt
= i

2 sin(θ/2) cos(θ/2)

δx
Av̂ − δx2

2δt

(
2 sin(θ/2)

δx

)2

Qv̂ + i cos(θ/2)

(
2 sin(θ/2)

δx

)3

Bv̂.
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We introduce the Fourier variable ξ = 2 sin(θ/2)/δx so that v̂ satisfies

dv̂

dt
=

(√
1− (ξδx)2

4

(
iξA+ iξ3B

)
− ξ2

(
δx2

2δt

)
Q

)
v̂ := iξM(ξ, δx)v̂, (2.3)

with matrix M(ξ, δx) defined as

M(ξ, δx) = ζ
(
A+ ξ2B

)
+ iξ

δx2

2δt
Q, ζ =

√
1− (ξδx)2

4
.

In what follows, we consider the stability of the forward Euler, backward Euler and
Θ scheme time discretization of (2.3): it reads, respectively, for all n ≥ 0

v̂n+1 = (Id + iξδtM(ξ, δx)) v̂n, (FE),

v̂n+1 = (Id− iξδtM(ξ, δx))
−1
v̂n, (BE),

v̂n+1 = (Id− iΘξδtM(ξ, δx))
−1

(Id + i(1−Θ)ξδtM(ξ, δx)) v̂n, (ΘS).

We denote Λ±(ξ, δx) = R±(ξ, δx) + iI±(ξ, δx) the eigenvalues of M(ξ, δx). The proof
of the following proposition is straightforward and left to the reader:

Proposition 2.1. A necessary condition for the (FE), (BE) and (ΘS) time
discretizations to be stable is

ξI±(ξ, δx) ≥ 0, ∀ξ ∈
[
− 2

δx
,

2

δx

]
. (2.4)

This condition is sufficient for (BE) scheme and (ΘS) scheme for all Θ ≥ 1/2. The
(ΘS) and (FE) scheme (which corresponds to the 0S scheme) are stable under the
condition:

δt ≤ 2ξ I±(ξ, δx)

(1− 2Θ)ξ2(R2
±(ξ, δx) + I2±(ξ, δx))

, ∀ξ ∈
[
− 2

δx
,

2

δx

]
. (2.5)

Remark. Note that for δx → 0, the condition ξI±(ξ, 0) ≥ 0 for all ξ ∈ R is nothing
but the dissipativity of the operator Mv := −A∂xv + (δx2Q/(2δt))∂xxv +B∂xxxv.

2.1.2. Stability/Instability of first order schemes. We are now in a posi-
tion to prove the instability of Godunov/Roe type scheme. In this section, we will
have to consider various Courant-Friedrichs-Lewy conditions (denoted CFL condition)
so that we introduce λj = δt/δxj for j = 1, 2, 3.

Proposition 2.2. Assume Q = λ1|A| (Roe/Godunov scheme), then for ξδx > 0
fixed and as |ξ| → ∞, one has

ξI±(ξ, δx) ∼ ±ξ|ξ|
(√

σ̄2ζ4 + 2σ̄ζ
√

1− ζ2|A|12 − σ̄ζ2
)
.

As a consequence, the Godunov/Roe space discretization is always unstable regardless
to the (FE), (BE) and (ΘS) time discretizations.

Remark The previous proposition also proves that the PDE

∂tv +A∂xv =
δx

2
|A|∂xxv +B∂xxxv
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is ill-posed in L2(R), it is therefore hopeless to find a stable scheme for Godunov/Roe
spatial discretizations. This is the main difference between the scalar case where the
numerical viscosity induces dissipation and the system case where numerical viscosity
interacts with surface tension and may lead to instability/ill-posedness.

Proof. Set ζ =

√
1− ξ2δx2

4
and qij = δx|A|ij/2, then the eigenvalues Λ±(δx, ξ)

of M(ξ, δx) are written as

Λ±(ξ, δx) = ζū+ iξ
q11 + q22

2
±
√

∆,

∆ = ζ2(c̄2 + σ̄ξ2)− ξ2
(

(q11 − q22)2

4
+ q12q21

)
+iξζ

(
ū(q22 − q11) + q21 + q12(c̄2 − ū2) + σ̄q12ξ

2
)
.

As δx→ 0, one expands Λ±(ξ, δx) as

Λ±(ξ, δx) = ±
√
σ̄ζ

√
ζ + i

√
1− ζ2|A|12|ξ|+O(1).

Then, one finds

ξI±(ξ, δx) = ±ξ|ξ|
(√

σ̄2ζ4 + 2σ̄ζ
√

1− ζ2|A|12 − σ̄ζ2
)

+O(ξ).

This completes the proof of the instability of Godunov/Roe space discretization

Let us now consider the stability of Lax Friedrichs type schemes. We will assume that
Q = λ1q Id with q = 1/λ1 for the Lax Friedrichs scheme, q = 1/(2λ1) for the modified
one and q = ρ(A) for the Rusanov scheme. It is an easy computation to show that

Λ±(ξ, δx) = ζ(ū±
√
c̄2 + σ̄ξ2) + i

ξδx

2
q, ζ =

√
1− ξ2δx2

4
.

Proposition 2.3. Assume Q = λ1qId, then the (BE) and (ΘS) time discretiza-
tion are unconditionally stable for all Θ ≥ 1/2. If Θ < 1/2, the (ΘS) scheme is stable
under the condition.(1− s)

(
ū±

√
c̄2 +

4σ̄s

δx2

)2

+ sq2

 λ1
q
≤ 2

1− 2Θ
, ∀s ∈ [0, 1] .

One can derive a, simpler, sufficient condition of stability: indeed, it is easily seen
that the above condition is satisfied if

max

(|ū|+√c̄2 +
4σ̄

δx2

)2

, q2

 λ1
q
≤ 2

1− 2Θ

Corollary 2.4. The Lax Friedrichs scheme q = 1/λ1 is stable if

(|ū|+ |c̄|)λ1 + 2
√
σ̄λ2 ≤

√
2

(1− 2Θ)
.
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The modified Lax Friedrichs scheme q = 1/(2λ1) is stable if

(|ū|+ |c̄|)λ1 + 2
√
σ̄λ2 ≤

√
1

(1− 2Θ)
.

The Rusanov scheme q = ρ(A) is stable if

max

((
|ū|δx+

√
c̄2δx2 + 4σ̄

)2
λ3, ρ(A)2λ1

)
≤ 2ρ(A)

1− 2Θ
.

One can show formally that the (CFL) condition δt = O(δx2) for Lax Friedrichs

scheme is sharp. The wave speeds of (2.1) are s(ξ) = ū ±
√
c̄2 + σ̄ξ2. Hence, in the

limit |ξ| → ∞, one has s(ξ) ≤ C̄|ξ|. Heuristically, it is necessary for a numerical
scheme to be stable that the domain of dependence of the numerical solution contains
the domain of dependence of the exact solution. This condition reads s(ξ) δt/δx < 1.
On a spatial grid with stepsize δx, one has s(ξ) ≤ C̄/δx since the largest wavenumber
is O(1/δx). As a consequence, one obtains a (formal) CFL condition C̄δt/δx2 < 1
which is precisely the CFL condition for the Lax Friedrichs scheme. The (CFL) found
for the Rusanov scheme shows that this condition is not sufficient.

Note that if Θ = 1/2 (Crank Nicolson scheme), one can choose Q = 0 and
consequently a spatial centered scheme. This corresponds to the numerical schemes
used for the practical simulation of thin film flows down an inclined plane in the
presence of surface tension [KRSV].

2.2. Second order accurate schemes. Hereafter, we consider second order
accurate schemes. For the time discretization, we consider the (second order) Runge
Kutta and the Crank Nicolson methods. We discretize (2.1) in space by using a
MUSCL scheme [Col, VL] for the first order differential operator without nonlinear
monotony correction of the slope (it does not operate in the smooth monotone area
of the solution), and centered approximation of third order differential terms:

dvj
dt

=
A (vj+2 − 6vj+1 + 6vj−1 − vj−2)

8δx

+
Q

2δt

(−vj+2 + 4vj+1 − 6vj + 4vj−1 − vj−2)

8

+
B

2δx3
(vj+2 − 2vj+1 + 2vj−1 − vj−2) (2.6)

with j ∈ Z. In Fourier variables, the equation (2.6) now reads

dv̂

dt
= iξM(ξ, δx)v̂, M(ξ, δx) = ζ

(
(1 +

ξ2δx2

4
)A+ ξ2B

)
+ iξ

(
ξ2δx4

16δt
Q

)
. (2.7)

In what follows, we only consider second order accurate time discretization. First,
the second order accurate Runge Kutta time discretization reads

v̂n+1 =

(
Id + iξδtM(ξ, δx)− ξ2δt2

2
M(ξ, δx)2

)
v̂n. (2.8)

Assume Q = λ1qId: the eigenvalues Λ±(ξ, δx) are given by

Λ±(ξ, δx) = ζ(2− ζ2)

(
ū±

√
c̄2 +

σ̄

2− ζ2
ξ2
)

+ iq
ξδx

4
(1− ζ2).
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Then, the Runge Kutta scheme is stable if and only if∣∣∣∣1 + iξδtΛ±(ξ, δx)− ξ2δt2

2
Λ±(ξ, δx)2

∣∣∣∣ ≤ 1

The proof of the following proposition is straightforward
Proposition 2.5. The second order accurate scheme with MUSCL type dis-

cretization in space and Runge Kutta time discretization is stable if and only if
0 < qλ1 ≤ 2 and, for all s = 1− ζ2 ∈ [0, 1](

|ū|+
√
c̄2 +

s

1 + s

4σ̄

δx2

)2

λ21 ≤
qλ1s(2− qλ1s2) + 2

√
2qλ1 − (qλ1)2s2

4(1 + s)(1− s)
(2.9)

From this proposition, we deduce the following simplified (CFL) conditions:
Corollary 2.6. The classical Lax Friedrichs scheme with MUSCL space and

Runge Kutta time discretization is stable in the Von Neumann sense if

λ1

(
ū+

√
c̄2 +

2σ̄

δx2

)
≤ 1

When δx is sufficiently small one finds the following condition:

δt

δx
7
3

≤

(√
(ū+ c̄)

σ̄

) 2
3

7
7
6

√
3

24
+O (δx) +O

(√
λ1

)
for the Rusanov scheme with MUSCL space discretization

Note that we get an improved (CFL) condition δt = O(δx7/3) for the Rusanov scheme
that is almost sharp in comparison to first order accurate schemes. We finish this sec-
tion by checking the stability of the Crank Nicolson scheme (Θ-scheme with Θ = 1/2).

Proposition 2.7. The difference approximation with Crank Nicolson type time
discretization and second order accurate in space (MUSCL with Lax Friedrichs fluxes)
is stable for all Q ≥ 0.

Proof. In Fourier variables, the Crank Nicolson scheme for 2.6 reads

v̂n+1 =

(
1− iξδt

2
M(ξ, δx)

)−1(
1 +

iξδt

2
M(ξ, δx)

)
v̂n.

It is stable if and only if∣∣∣∣1 +
iξδt

2
Λ±(ξ, δx)

∣∣∣∣ ≤ ∣∣∣∣1− iξδt

2
Λ±(ξ, δx)

∣∣∣∣ .
It is easily seen that this condition is equivalent to =(ξΛ±(ξ, δx)) ≥ 0 which obviously
holds true for any q ≥ 0, and this concludes the proof of the proposition.

3. Entropy stability of difference approximations. In this section, we study
the entropy stability of difference approximations for Euler Korteweg equations (1.1).
In order to simplify the discussion, we assume that (1.1) is set on a bounded interval
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[0, L] with periodic boundary conditions. Recall that (ρ, u) solution of (1.1) satisfies
the energy estimate

∂t

∫
D
ρ
u2

2
+ F (ρ) + κ(ρ)

(∂xρ)2

2
dx = 0, (3.1)

with D = R/LZ. The surface tension plays a significant role in the energy estimate
and the previous section illustrates that it is a non trivial task to obtain a numerical
scheme which conserves or, at least, dissipates the energy, even at the linearized level.

In this section, we introduce a new unknown w =
√
κ(ρ)∂xρ/

√
ρ and derive

an evolutionary equation for w. The system of evolutionary PDEs for (ρ, ρu, ρw) is
made of a first order hyperbolic part perturbed by a second order anti dissipative
term. This latter term is discretized by centered finite differences. We show that any
entropy dissipative schemes for the hyperbolic part (in the sense defined by Tadmor
in [T]), provides an entropy dissipative scheme for the “augmented” Euler Korteweg
system.

In addition, we introduce an alternative discretization of (1.1) by writing this
system as a Hamiltonian system of PDEs. By discretizing the Hamiltonian and writing
the associated Hamiltonian system of ODEs, we find a consistent semi discrete scheme
that is naturally entropy conservative.

3.1. Extended formulation of the Euler Korteweg system. We start from
the system (1.1). Following [BDD], we introduce w =

√
κ(ρ)∂xρ/

√
ρ. One finds

∂tρ+ ∂x(ρu) = 0, (3.2)

∂t(ρu) + ∂x(ρu2 + P (ρ)) = ∂x (µ(ρ)∂xw) , (3.3)

∂t(ρw) + ∂x(ρuw) = −∂x (µ(ρ)∂xu) , (3.4)

with µ(ρ) = ρ3/2
√
κ(ρ). One obtains equation (3.4) first by multiplying (3.2)

by
√
ρκ(ρ) and then by deriving this equation with respect to x. By setting v =

(ρ, ρu, ρw)T and f(v) = (ρu, ρu2 + P (ρ), ρuw)T , the system (3.2-3.4) now reads

∂tv + ∂xf(v) = ∂x (B(ρ)∂x z) , (3.5)

where B(ρ) denotes the skew-symmetric matrix

B(ρ) =

 0 0 0
0 0 µ(ρ)
0 −µ(ρ) 0

 ,

and z = ∇vU(v) with U(v) = ρ
u2 + w2

2
+ F (ρ). Note that we performed in fact a

reduction of order of the Euler Korteweg system: the extended system only contains
second order derivatives with respect to x. It is important to note that the operator
B(ρ) is skew symmetric with respect to z which are nothing but the entropy variables.
This strategy is rather different from the one found in [YS] and [HR] for generalized
Korteweg de Vries equations and p system with surface tension: in these papers, the
equations are written as a first order system of ODEs with respect to x and a local
discontinuous Galerkin method is used to discretize equations. Though the analysis
is rather delicate to get entropy stable schemes and it is only proved at the semi
discretized level. We prove here that our strategy extends rather easily to the fully
discrete problem and involves only classical schemes for the first order part.
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The first order part of (3.5) (B = 0) admits an entropy-entropy flux pair (U,G0)
with G0(v) = u (U(v) + P (ρ)) whereas the extended system (3.5) admits an additional
conservation law

∂tU(v)+∂xG(v, ∂xu, ∂xw) = 0, G(v, ∂xu, ∂xw) = G0(v)−µ(ρ)(u∂xw−w∂xu). (3.6)

We consider difference approximations of (3.5) in the conservative form

d

dt
vj(t) +

fj+ 1
2
− fj− 1

2

δx
=

1

δx2

(
B(ρj+ 1

2
) (zj+1 − zj)−B(ρj− 1

2
) (zj − zj−1)

)
. (3.7)

Following the terminology of [T], we enquire when the difference schemes (3.7) are
entropy stable in the sense that there exists a numerical flux Gj+ 1

2
, that is consistent

with the full flux G, so that

d

dt
U(vj(t)) +

Gj+ 1
2
− Gj− 1

2

δx
≤ 0. (3.8)

The difference approximation (3.7) is entropy conservative if

d

dt
U(vj(t)) +

Gj+ 1
2
− Gj− 1

2

δx
= 0. (3.9)

Note that any entropy-stable scheme satisfies the entropy inequality of the original
system (1.1) in a weaker sense since wj(t) is an approximation of

√
κ(ρ)∂xρ/

√
ρ at

point xj = j δx. In the last part of the section, we will use the Hamiltonian structure
of (1.1) to obtain a semi-discrete entropy conservative scheme. In what follows, we
prove the following proposition.

Proposition 3.1. Let us consider the finite difference scheme

d

dt
vj(t) +

fj+ 1
2
− fj− 1

2

δx
= 0, (3.10)

which is a semi discretization of (3.5) with B = 0 and is entropy stable. That is, there
exists a numerical flux G0,j+ 1

2
which is consistent with G0 so that

d

dt
U(vj(t)) +

G0,j+ 1
2
− G0,j− 1

2

δx
≤ 0.

Then the difference scheme (3.7) is entropy stable.

Proof. The difference approximation (3.10) is entropy stable: there exists a nu-
merical entropy flux G0

j+ 1
2

which is consistent with G0 so that

∇vU(vj)
T
fj+ 1

2
− fj− 1

2

δx
=
G0,j+ 1

2
− G0,j− 1

2

δx
+Rj ,

with Rj ≥ 0 (see [T] for more details). We multiply (3.7) by ∇vU(vj)
T :

d

dt
U(vj) +

G0,j+ 1
2
− G0,j− 1

2

δx
+Rj

=
∇vU(vj)

T

δx2

(
B(ρj+ 1

2
)
(
zj+1 − zj

)
−B(ρj− 1

2
)
(
zj − zj−1

))
:= Kj ,
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We focus on the capillary term Kj : it is written as

δx2Kj = uj

(
µj+ 1

2
(wj+1 − wj)− µj− 1

2
(wj − wj−1)

)
−wj

(
µj+ 1

2
(uj+1 − uj)− µj− 1

2
(uj − uj−1)

)
= µj+ 1

2
(ujwj+1 − uj+1wj)− µj− 1

2
(uj−1wj − ujwj−1) .

Now, we introduce the entropy flux Gj+ 1
2
:

Gj+ 1
2

= G0,j+ 1
2
− µj+ 1

2

ujwj+1 − uj+1wj
δx

.

This numerical entropy flux is clearly consistent with the continuous one given by

G(v, ∂xu, ∂xw) = G0(v)− µ(ρ) (u∂xw − w∂xu) .

Moreover, we have the following semi discrete entropy estimate

d

dt
U(vj) +

(
Gj+ 1

2
− Gj− 1

2

)
δx

= −Rj ≤ 0.

This completes the proof of the proposition.

By applying proposition 3.1, one finds that many of the classical three points (first
order) schemes (Rusanov, Lax Friedrichs and Harten-Lax-van Leer schemes) provide
natural entropy stable schemes for the augmented system (3.2-3.4). The Roe and
Godunov schemes are stable as well for the semi discretized problem and stable for
the fully discretized scheme with Backward Euler time discretization. We checked
the Von Neumann stability of the Forward Euler time discretization together with
Roe/Godunov space discretization: one can prove that it is unstable in the Von
Neumann sense. For application purposes, we check the entropy stability of fully
discrete schemes associated to Lax Friedrichs type space discretizations..

3.2. Entropy stability of fully-discrete schemes. In this section, we con-
sider the entropy stability of fully discrete schemes. We restrict our discussion to first
order Forward/Backward Euler schemes which read, respectively:

vn+1
j − vnj + λ1

(
fn+1
j+ 1

2

− fn+1
j− 1

2

)
= λ2

(
B(ρn+1

j+ 1
2

)
(
zn+1
j+1 − z

n+1
j

)
−B(ρn+1

j− 1
2

)
(
zn+1
j − zn+1

j−1
))
. (3.11)

vn+1
j − vnj + λ1

(
fnj+ 1

2
− fnj− 1

2

)
= λ2

(
B(ρnj+ 1

2
)
(
znj+1 − znj

)
−B(ρnj− 1

2
)
(
znj − znj−1

))
. (3.12)

We first prove the entropy stability of the implicit backward Euler time discretization.

Proposition 3.2. Assume that the semi discretized scheme

d

dt
vj(t) +

fj+ 1
2
− fj− 1

2

dx
= 0, (3.13)
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is an entropy stable approximation of (3.5) with B = 0. That is, there exists an
entropy flux G0,j+ 1

2
which is consistent with G0 so that

d

dt
U(vj(t)) +

G0,j+ 1
2
− G0,j− 1

2

δx
≤ 0.

Then the scheme (3.11) is entropy stable. The following discrete entropy inequality is
satisfied

U(vn+1
j )− U(vnj ) +

δt

δx
(Gnj+ 1

2
− Gnj− 1

2
) ≤ 0,∀j ∈ Z, ∀n ∈ N. (3.14)

with Gn
j+ 1

2

defined as

Gnj+ 1
2

= G0,j+ 1
2
(vn+1)− µn+1

j+ 1
2

un+1
j wn+1

j+1 − u
n+1
j+1w

n+1
j

δx
.

Proof. Since ρF ′′(ρ) = P ′(ρ) > 0, the entropy U is a convex function of v as long
as ρ > 0. Then, one has

U(vn+1
j ) ≤ U(vnj ) +∇vU(vn+1

j )T (vn+1
j − vnj ). (3.15)

The semi-discrete scheme (3.13) is entropy stable so that (see [T] for more details)

Uv(v
n+1
j )T (fn+1

j+ 1
2

− fn+1
j− 1

2

) = G0,j+ 1
2
(vn+1)− G0,j− 1

2
(vn+1) + δxRnj ,

for some Rnj ≥ 0. Moreover, one has

Uv(v
n+1
j )T

(
B(ρn+1

j+ 1
2

)
(
zn+1
j+1 − z

n+1
j

)
−B(ρn+1

j− 1
2

)
(
zn+1
j − zn+1

j−1
))

= µn+1
j+ 1

2

(
un+1
j wn+1

j+1 − u
n+1
j+1w

n+1
j

)
− µn+1

j− 1
2

(
un+1
j−1w

n+1
j − un+1

j wn+1
j−1

)
. (3.16)

Now we introduce the entropy flux Gn
j+ 1

2

:

Gnj+ 1
2

= G0,j+ 1
2
(vn+1)− µn+1

j+ 1
2

un+1
j wn+1

j+1 − u
n+1
j+1w

n+1
j

δx

Then, by inserting (3.11) into (3.15) and using the definition of Gn
j+ 1

2

, one obtains

U(vn+1
j )− U(vnj ) + λ1(Gnj+ 1

2
− Gnj− 1

2
) ≤ −λ1Rnj ≤ 0.

This completes the proof of the proposition.

Next, we consider the entropy stability of the explicit scheme (3.12). We restrict our
attention to the schemes with numerical fluxes in the form which admit the viscosity
form

fj+ 1
2

=
f(vj+1) + f(vj)

2
− 1

2
Qj+ 1

2
(zj+1 − zj). (3.17)

The matrix Qj+ 1
2

is a symmetric matrix whereas z = ∇vU(v) represent the entropy
variables. It is easily seen that z2 = u and z3 = w. Here the conservative variables v
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are considered as functions of the entropy variables: in particular vj = v(zj). In this
setting, there exists a viscosity matrix Q∗

j+ 1
2

so that the scheme

dv∗j
dt

+
f∗
j+ 1

2

− f∗
j− 1

2

δx
= 0, (3.18)

is exactly entropy conservative. More precisely, by setting

Q∗j+ 1
2

=

∫ 1/2

−1/2
2ξ∇zg

(
zj+1 + zj

2
+ ξ(zj+1 − zj)

)
dξ, g(z) = f(v(z)),

one proves that there exists a numerical flux G∗
0,j+ 1

2

consistent with G0 so that

d

dt
U(v∗j (t)) +

G∗
0,j+ 1

2

− G∗
0,j− 1

2

δx
= 0.

The classical Lax Friedrichs and Rusanov scheme are particular cases of (3.17). In-
deed, these schemes have the particular form

fj+ 1
2

=
f(vj+1) + f(vj)

2
− 1

2
pj+ 1

2
(vj+1 − vj), (3.19)

with pj+ 1
2
≥ 0. The flux (3.19) is a particular case of (3.17) by setting

Qj+ 1
2

= pj+ 1
2

∫ 1

0

∇zv(zj + ξ(zj+1 − zj))dξ

with Qj+ 1
2

= QT
j+ 1

2

. Following [T], (Corollary 5.1 p. 472-473), one can compare any

conservative scheme

dvj
dt

+
fj+ 1

2
− fj− 1

2

δx
= 0,

the flux fj+ 1
2

being defined by (3.17), with the entropy conservative scheme (3.18)
through the relation:

〈∇vU(vj), fj+ 1
2
− fj− 1

2
〉 = G0,j+ 1

2
− G0,j− 1

2

+
1

4

(
〈(zj+1 − zj), Dj+ 1

2
(zj+1 − zj)〉+ 〈(zj − zj−1), Dj− 1

2
(zj − zj−1)〉

)
, (3.20)

with Dj+ 1
2

= Qj+ 1
2
−Q∗

j+ 1
2

and G0,j+ 1
2

is a consistent entropy flux given by

G0,j+ 1
2

=

〈
zj + zj+1

2
; fj+ 1

2

〉
− 1

2
(ψ(zj) + ψ(zj+1)) , ψ(z) = 〈z, g(z)〉 −G0(v(z)).

We prove the following proposition.

Proposition 3.3. The finite difference scheme

vn+1
j − vnj + λ1(fnj+ 1

2
− fnj− 1

2
) = λ2

(
Bnj+ 1

2
(znj+1 − znj )−Bnj− 1

2
(znj − znj−1)

)
,

fnj+ 1
2

=
f(vnj+1) + f(vnj )

2
− 1

2
Qnj+ 1

2
(znj+1 − znj )

(3.21)
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is entropy stable, i.e. there exists a numerical entropy flux Gn
j+ 1

2

so that

U(vn+1
j )− U(vnj ) + λ1(Gnj+ 1

2
− Gnj− 1

2
) ≤ 0,

under the following CFL condition

Mn
j

(
λ1N

n
j+ 1

2
+ λ2‖Bnj+ 1

2
‖
)2
≤ λ1 min(Sp(Dn

j+ 1
2
)),

with Mn
j , N

n
j+ 1

2

defined as

Mn
j = sup

ξ∈(0,1)
‖∇2

vU(vnj + ξ(vn+1
j − vnj ))‖,

Nn
j+ 1

2
=

∫ 1

0

‖∇zg
(
znj + ξ(znj+1 − znj )

)
‖dξ + ‖Qnj+ 1

2
‖.

Proof. We first apply the Taylor Lagrange formula to U :

U(vn+1
j ) = U(vnj ) +∇vU(vnj )T (vn+1

j − vnj )

+

∫ 1

0

(1− ξ)(vn+1
j − vnj )T∇2

vU(vnj + ξ(vn+1
j − vnj ))(vn+1

j − vnj )dξ.

Then, by using (3.20) and a relation similar to (3.16), one finds

U(vn+1
j )− U(vnj ) + λ1

(
Gnj+ 1

2
− Gnj− 1

2

)
=∫ 1

0

(1− ξ)(vn+1
j − vnj )T∇2

vU(vnj + ξ(vn+1
j − vnj ))(vn+1

j − vnj )dξ

−λ1
4

(
(znj+1 − znj )TDn

j+ 1
2
(znj+1 − znj ) + (znj − znj−1)TDn

j− 1
2
(znj − znj−1)

)
. (3.22)

with

Gnj+ 1
2

= Gn0,j+ 1
2
− µnj+ 1

2

unjw
n
j+1 − unj+1w

n
j

δx
.

The first term in the right hand side of (3.22) is positive and corresponds to entropy
production due to the forward explicit Euler time discretization whereas the second
term corresponds to entropy dissipation due to the spatial discretization. Next, we
estimate the entropy production: in order to simplify notations, we set

Inj =

∫ 1

0

(1− ξ)(vn+1
j − vnj )T∇2

vU(vnj + ξ(vn+1
j − vnj ))(vn+1

j − vnj )dξ.

One has

Inj ≤
1

2
sup

ξ∈(0,1)
‖∇2

vU(vnj + ξ(vn+1
j − vnj ))‖‖vnj+1 − vnj ‖2 :=

1

2
Mn
j ‖vnj+1 − vnj ‖2.

Next, we estimate ‖vn+1
j − vnj ‖ by using (3.21): one finds

‖vn+1
j − vnj ‖ ≤ λ1‖fnj+ 1

2
− fnj− 1

2
‖+ λ2

(
‖Bnj+ 1

2
‖ ‖znj+1 − znj ‖+ ‖Bnj− 1

2
‖‖znj − znj−1‖

)
.
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On the other hand, one has

fnj+ 1
2
− fnj− 1

2
=

(∫ 1

0

∇zg
(
znj + ξ(znj+1 − znj )

)
dξ −Qnj+ 1

2

)
(znj+1 − znj )

+

(∫ 1

0

∇zg
(
znj + ξ(znj − znj−1)

)
dξ +Qnj− 1

2

)
(znj − znj−1).

Then, by setting Nn
j+ 1

2

=
∫ 1

0
‖∇zg

(
znj + ξ(znj+1 − znj )

)
‖dξ + ‖Qn

j+ 1
2

‖, one obtains

‖fnj+ 1
2
− fnj− 1

2
‖ ≤ Nn

j+ 1
2
‖znj+1 − znj ‖+Nn

j− 1
2
‖znj − znj−1‖.

As a result, one finds that

Inj ≤Mn
j

(
λ1N

n
j+ 1

2
+ λ2‖Bnj+ 1

2
‖
)2
‖znj+1 − znj ‖2

+Mn
j

(
λ1N

n
j− 1

2
+ λ2‖Bnj− 1

2
‖
)2
‖znj − znj−1‖2. (3.23)

Next, we set Γn
j+ 1

2

= min
(
Sp(Dn

j+1)
)
. Furthermore, we assume that

Mn
j (λ1N

n
j+ 1

2
+ λ2‖Bnj+ 1

2
‖)2 ≤ λ1Γnj+ 1

2
. (3.24)

Then, by using (3.24) together with (3.23) and (3.22), one obtains entropy stability
for the explicit forward Euler time discretization

U(vn+1
j )− U(vnj ) + λ1(Gnj+ 1

2
− Gnj− 1

2
) ≤ 0.

This completes the proof of the proposition.

Let us consider Lax Friedrichs schemes: by applying proposition 3.3, we prove

Corollary 3.4. Assume there exists K > 0 so that K−1 ≤ Mn
j ≤ K for all

j, n and pn
j+ 1

2

= p̃n
j+ 1

2

+ max
(
|Sp(∇vf(vnj+1))|, |Sp(∇vf(vnj ))|

)
. The Lax Friedrichs

scheme, p̃n
j+ 1

2

= (2λ1)−1, is entropy stable if K(λ1M1(K) + λ2M2(K))2 ≤ 1/2, for

some constants Mj(K), j = 1, 2. The Rusanov type scheme, p̃n
j+ 1

2

= ρ > 0, is entropy

stable under the CFL condition K(λ1M1(K) + λ2M2(K))2 ≤ ρλ1.

Remark: The previous result states that the classical Lax Friedrichs scheme is entropy
stable if δt = O(δx2) whereas the Rusanov scheme is entropy stable only if δt = O(δx3)
which are the Von Neumann stability criterion found in section 2.

3.3. A semi-discrete entropy conservative scheme. In this section, we use
the Hamiltonian structure of the Euler Korteweg equations to construct an entropy
conservative scheme. For that purpose, we will write a semi discretized form of the
Euler Korteweg system which respects its Hamiltonian structure so that the entropy
is automatically satisfied. We consider the Euler Korteweg equations with periodic
boundary conditions and, for (%, u) = (ρi, ui)i=1,··· ,N , we introduce the discrete Hamil-
tonian

H(%,u) =

N∑
i=1

ρi
u2i
2

+ F (ρi) +
1

2
κ(ρi)

(
ρi+1 − ρi

δx

)2

. (3.25)
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We also introduce the symmetric matrix J

J =

(
0 −IN
−IN 0

)
,

and the difference operator D, defined in the space of N -periodic sequences in RN as

Dui =
ui+1 − ui−1

2δx
(the associated matrix D ∈ MN (R) is skew symmetric). Then,

we introduce the Hamiltonian system

d

dt

(
%
u

)
= J

(
D∇%H(%,u)
D∇uH(%, u)

)
. (3.26)

It is clearly a consistent and first order discretization of the original system (1.2). Due
to the loss of translation invariance, the momentum is not exactly preserved. Though,
we do not expect formation of discontinuities and in return we expect convergence
of the momentum. Anyway, by construction, one has H(%, u)(t) = H(%,u)(0). This
scheme does not exhibit any numerical viscosity which makes possible the numerical
simulation of dispersive shock waves [E, EGK]. Moreover one can go one step further
and derive naturally higher order entropy conservative scheme like in [CL], a task far
from being trivial in the frame proposed in [T]. Indeed, one easily improves the order
of accuracy of 3.26 by considering a higher order approximation of the Hamiltonian
and a higher order difference operator.
As a consequence, one is left with the problem of finding a time discretization that
preserves the Hamiltonian structure. It is easily seen that an explicit forward Euler
time integration is unstable whereas the backward implicit Euler time integration is
entropy stable. In the linearized case, the Crank Nicolson scheme preserves exactly
the Hamiltonian. It would be interesting to consider various symplectic integration
schemes in time and in particular, consider various symplectic splitting strategies as it
is now classical for the nonlinear Schrodinger equation seen as an Hamiltonian PDE.

Note that the hamiltonian difference scheme derived here is based on centered
difference and it is well known that for hyperbolic conservation laws, this could be a
source of numerical instabilities or spurious oscillatory modes. Though, the scheme
considered here also provide a control on the gradient of the density and thus on
oscillatory modes in addition of being more stable.

4. Numerical Simulations.

4.1. Entropy stability: original vs new formulation. Before carrying out
a numerical simulation of an experiment by Liu and Gollub [LG] with the full shallow
water system (4.3), we have considered the more simple situation of a fluid over an
horizontal plane without friction at the bottom. The shallow water system reads

∂th+ ∂x(hu) = 0, ∂t(hu) + ∂x(hu2 + g
h2

2
) = κh∂xxxh, (4.1)

where g = 9.8m.s−2 and κ = σ/ρ. The fluid under consideration in [LG] is an aqueous
solution of glycerin with density ρ = 1.134 g.cm−3 and capillarity σ = 67 dyn.cm−1.
By setting w =

√
κ∂xh/

√
h, one finds the extended form of (4.1),

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + g
h2

2
) =
√
κ∂x(h3/2∂xw),

∂t(hw) + ∂x(huw) = −
√
κ∂x(h3/2∂xu).

(4.2)
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We first tested the entropy stability of (second order accurate) difference approxima-
tions for the shallow water equations (4.1) and for its extended counterpart (4.2). We
have tested Lax Friedrichs, Rusanov and HLL fluxes together with second order ac-
curate schemes (2nd order Runges Kutta for time discretization and MUSCL spatial
discretization) for the hyperbolic part of the equations whereas the surface tension
terms are discretized with centered difference. We work on a finite interval of length
X = 80cm with periodic boundary conditions. At time t = 0, the fluid velocity
u = 0 and the fluid height is given by h|t=0 = hN

(
1 + 0.3 exp(−2000(x− 0.4)2)

)
with

hN = 1mm (the characteristic fluid height in experiments by Liu and Gollub). In
order to capture correctly the capillary ripples, we have chosen δx = 0.25mm and
δt = 120δx2. In figure 4.1, we draw the profile of the surface of the fluid at time
T = 1s.

Fig. 4.1. Profile of the surface of the fluid at time T = 1

In figure 4.2, we have drawn the relative entropy U
U |t=0

as a function of time: the

picture clearly indicates that the difference approximation of the extended formulation
has better entropy stability properties than the difference approximation of (4.1).

Fig. 4.2. Entropy as a function of time: Comparison of the various discretizations of (4.1).

A natural question arises about the new formulation: indeed one may ask whether
the relation hw = 2

3

√
κ∂x(h3/2) is satisfied for all time. If not, it does not make sense
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to compare the performance with respect to entropy stability since it would represent
two distinct quantities. In figure 4.3, we draw the relative error at time T = 1 and
defined as

errj =
|(hw)j −

√
κ
h
3/2
j+1−h

3/2
j−1

3δx |
‖hw‖

, j = 1, . . . , N.

The numerical simulations show very good agreement, especially for the less dissipa-
tive scheme, Rusanov, than for Lax Friedrichs scheme. We have also implemented
an alternative scheme where the relation hw = 2

3

√
κ∂x(h3/2) is enforced at each time

step: we have not noticed any change in the numerical solution.
The CFL condition found for Rusanov scheme is of the form δt = O(δx7/3) that is

rather close to the “optimal” heuristic CFL condition δt = O(δx2). Therefore, we can
conclude that a difference approximation of the extended formulation of (4.1) with a
Rusanov flux and second order accurate both in time and space is a natural candidate
to perform numerical simulations of falling films experiments by Liu and Gollub [LG].

Fig. 4.3. Consistency of the new formulation: relative error between the new variable hw and
2
3

√
κ∂x(h3/2). The Rusanov scheme and the Harten Lax Van Leer scheme have comparable consis-

tency properties. In this regard, the Lax Friedrichs scheme is less efficient to preserve consistency

4.2. Hamiltonian discretization and dispersive shock waves. In what fol-
lows, we have tested the difference hamiltonian approximation of (4.1). The initial
conditions are the same than in the previous section. In order to be entropy stable it
is necessary to employ an implicit method: we have used here an implicit backward
Euler time discretization. Due to the nonlinearity of the problem, the Crank Nicol-
son, second order accurate, time discretization does not guarantee entropy stability.
Therefore, we did not try to compare with other schemes tested in the previous section.
An important remark is that now there is no numerical viscosity. As a consequence,
the dynamical behavior is completely changed as shown in figure 4.4 in comparison
to what is found in the presence of numerical viscosity (figure 4.1).

In order to see whether it is a numerical artifact, we checked the entropy stability
of the difference hamiltonian approximation: the entropy remains clearly bounded
with time. Indeed, these oscillations are not a numerical artifact and can be explained
(formally) by the theory of dispersive shock waves. Here, the classical hyperbolic
shocks are smoothed by disperses effects: the oscillatory zone grows up in time and
the oscillations are described by the Whitham modulations equations. This picture
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Fig. 4.4. Fluid height profile at time T=0.66: the oscillatory zone is increasing with time,
characteristic of a dispersive shock wave

is not valid anymore in the presence of a slight amount of viscosity: there are still
some oscillations but the width of the oscillatory zone stops growing after some time:
see [J] and [EGK] for a detailed analysis respectively in the case of the Korteweg de
Vries/Burgers equation and in the case of the Kaup system perturbed by a viscous
term. Here the physical viscosity is replaced by numerical viscosity.

Fig. 4.5. Entropy as a function of time. The behavior is rather similar to difference approx-
imations in original variables: the entropy first increases then decreases with time: the “holes” in
the decreasing part of the curve correspond to times when the bumps interact

4.3. Simulation of a Liu-Gollub experiment. In this section, we show a
numerical simulation for a shallow water model derived for thin film flows down an
inclined plane. The model is written as (see [BN] for more details)

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x
(
hu2 + P (h)

)
=

2

9εRe
(h− u

h
) +

ε

We
h∂xxxh+

6ε

Re
∂xx(hu),

(4.3)

with P (h) is a pressure term given by P (h) =
h2

2F 2
+

2h5

25
. The non dimensional Re,

F 2, We and ε are, respectively the Reynolds, Froude and Weber numbers and the
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aspect ratio. Once Re is fixed, we define hN , uN , F
2 and We as

hN =

(
2Reν2

g sin θ

)1

3
, uN = ν

Re

hN
, F 2 =

2

9
Re tan(θ), We =

ρλu2N
σ

with λ a characteristic wavelength of the flow, σ represents the surface tension of the
fluid, ν its viscosity and ρ its density. Since the capillary ripples found in [LG] are
of order 1cm, we choose λ = 0.01. The characteristic time scale is TN = λ/uN . In
[LG], the Reynolds number in the experiment is Re = 29 whereas g = 9.8, ρ = 1134,
θ = 6.4o, σ = 6.7× 10−2 and ν = 6.28× 10−6. Then, one finds

hN ≈ 1.28× 10−3, uN ≈ 9.49× 10−2, TN ≈ 0.105, F 2 ≈ 0.723, We ≈ 1.52.

Note that the viscous term (6ε/Re)∂xx(hu) is only heuristic so that the model is
not a second order accurate model (with respect to the aspect ratio ε = hN/λ).The
frequency of the perturbation at the inlet is f = 1.5Hz. At time t = 0, the fluid
height and velocity are constant h = 1 and u = 1. Following the conclusions of our
study, we have chosen to carry out numerical simulations with a fully second order
accurate scheme of the extended formulation of (4.3) and used a Rusanov flux for the
first order part. Our numerical results (figure 4.6) show a good agreement with the
experiment by Liu and Gollub [LG].
Up to now, the choice of boundary conditions for the Euler Korteweg equations on a
finite interval is an open problem so that we have chosen rather arbitrary boundary
conditions. Furthermore, since the difference scheme contains numerical/physical
viscosity, we have considered a set of 5 boundary conditions. First, at the inlet,
we chose: h|x=0 = 1 + 0.03 sin(2π f TN t), hu|x=0 = 1, ∂xh|x=0 = 0. In contrast to
[KRSV], we have chosen free boundary conditions at the outlet:

∂xh|x=L = ∂x(hu)|x=L = 0

instead of “hyperbolic type” boundary conditions where h and hu are convected with
an artificial velocity Vout > 0. As pointed out in [KRSV] the choice of the boundary
conditions at the outlet does not seem to influence the dynamic within the channel
(no reflection waves).

5. Concluding remarks. In this paper, we considered the stability of various
difference approximations of the Euler Korteweg equations with applications to shal-
low water equations with surface tension. A first class of difference approximations is
built by considering the Euler Korteweg system as the classic isentropic compressible
Euler equations perturbed by a disperse term. This latter term is discretized with
centered finite differences and various classical scheme for the convection part are
considered. It is proved that a certain amount of numerical viscosity is needed to
obtain difference schemes that are stable in the von Neumann sense (under suitable
CFL conditions).

In order to get entropy stability, we considered an extended formulation of the
Euler Korteweg equations and proved entropy stability of Lax Friedrichs type schemes
whereas Roe/Godunov schemes are always unstable with forward Euler explicit dis-
cretization. We have shown numerically that the extended formulation of the Euler
Korteweg system has better stability properties than the original one. We also carry
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Fig. 4.6. Simulation of Liu Gollub experiment [LG]: the Reynolds number is Re = 29 and
the inclination is θ = 6.4o. The frequency at the inlet if f = 1.5Hz. On top: a picture of the
complete experiment, from the inlet to the outlet (2m). On below: a zoom over one spatial period
when roll-wave profiles are stabilized

out a numerical simulation of a shallow water system which models an experiment by
Liu and Gollub to observe roll-waves [LG].

By considering the Euler Korteweg system as a Hamiltonian system of evolution
PDEs, we introduced a semi-discretized difference approximations which preserves
the Hamiltonian structure. This scheme has no numerical viscosity so that it is
particularly useful to study purely dispersive Euler Korteweg system: in particular,
one can find numerically the dispersive shock waves [E] of the Euler Korteweg system.

Several questions remain open. First, we carried out a numerical simulation of
an experiment of Liu and Gollub [LG] by choosing arbitrary boundary conditions.
In fact, the choice of suitable boundary conditions for the Euler Korteweg system
on a finite interval in order to prove well posedness is still an open problem. A first
attempt in this direction is found in [A] where the well posedness of the linearized
Euler Korteweg equations is proved on a half space under a generalized Lopatinskii
condition.

Furthermore, we restricted our attention to one dimensional problem. For thin
film flows, this restricts the study to primary instabilities: in order to analyze sec-
ondary instabilities found, one has consider 2d problems. In that setting, an extended
formulation is still available [BDDd] so that we expect our analysis extends easily,
at least to cartesian meshes. An other interesting question is the extension of this
analysis to other mixed hyperbolic/dispersive equations like the Boussinesq equations
or the Serre/Green-Naghdi equations. Up to now, the strategy adopted to deal with
these system is time splitting without proof of stability (though numerical results are
rather satisfying).

Finally an other open interesting question concerns the time integration of the
hamiltonian semi-discrete approximation: here, we have used a backward Euler time
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integration so as to be entropy stable but it does not preserve the hamiltonian (nor a
perturbation of it). Instead, one should consider symplectic time integration scheme,
in particular but using various splitting. This kind of method are particularly of
interest in order to study the nonlinear stability of various traveling waves solutions
of the purely dispersive equations.
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