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Abstract— The development of bulk magnets based on REBCO 
type superconductors that can generate up to 17 T requires the 
implementation of a magnetization system, sometimes pulsed. 
Therefore, at least one coil around the High Temperature Super-
conducting (HTS) bulk is required. There are numerous formulas 
to calculate electromagnetic quantities of an axisymmetric coil in 
the air. In this paper, we proposed an analytical approach in order 
to assess the magnetic vector potential and to compute the induct-
ance of a coil having a rectangular cross-section and concentric 
with a magnetic circuit including an air-gap. On a proposed geom-
etry, analytical results are compared with those obtained by using 
Finite Element Analysis (FEA) achieved with COMSOL Mul-
tiphysics software. The obtained analytical expressions give accu-
rate results with an error less than 1% when 50 harmonic terms 
are used in the Fourier series expansion. 
  

Index Terms— Electromagnets, Inductance, Modeling, Pulse 
measurements, Solenoids. 

I.  INTRODUCTION 
N electrical engineering as in physics, superconductors 

are widely used to obtain very strong magnetic fields. Su-
perconducting bulk magnets made with (RE)BCO type super-
conductors are being considered to undergo pulsed magnetiza-
tion and to reach very high magnetic flux density up to 17 T 
[1]. It is very important to estimate and evaluate the magnetic 
field components that strongly depends on the geometry of the 
used inductor, in the final aim to optimize the experimental 
configuration. In the design stage of the inductor needed for 
magnetizing the High Temperature Superconducting (HTS) 
bulks, modeling and simulation are highly recommended to 
perform necessary calculations of the different electromagnet-
ic characteristics of the studied system, as the inductance of 
the coil. Sophisticated commercial software give very accurate 
results by considering the nonlinearity of materials involved in 
the studied problem. However, this method is computer con-
suming and poorly flexible to adjust with the problem design. 

Analytical models have been proposed since a long time for 
computing the magnetic field distribution of ironless circular 
coils [2]–[10] and more recently for a axisymmetric coil with 
an iron core of finite length [11]. Although these methods give 
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accurate results, they are not suitable to study circular coils 
placed in a magnetic circuit containing a large air-gap. 

In the present work, we propose to use analytical methods 
to achieve that task by the resolution of Laplace’s and Pois-
son’s equations. Such methods lead to meaningful solutions 
with very helpful physical insights at the design stage. They 
are useful tools during the optimization of the design since 
continuous derivatives are obtained from the analytical solu-
tion. It allows us to calculate the magnetic vector potential A 
in a non-closed magnetic circuit with an air-gap concentric 
with the coil. The air-gap can later be the location of an HTS 
bulk to be magnetized. The obtained analytical expression of 
the magnetic vector potential could later be used to calculate 
induced currents in HTS bulks based on the well-known 
“Brandt’s method” developed in 1998 for disks and cylinders 
in an axial magnetic field [12], [13]. 

An axisymmetric problem has to be considered here, allow-
ing some simplifications and considerations to obtain field 
components over the different regions of interest. Four regions 
have to be considered, three free space regions (air) and one 
region with the coil conductor. Both Dirichlet and Neumann 
conditions are considered on the problem boundaries. In each 
region, the analytical solution is obtained as combination of 
Bessel and Struve functions, where coefficients are deter-
mined by the use of interface conditions between successive 
regions. Then, the distribution of magnetic vector potential 
and magnetic flux density are calculated with help of 
MATLAB matrix inversion tool to determine the desired coef-
ficients. Besides, a finite elements model is achieved with 
COMSOL Multiphysics software for the same definition of 
the problem. Analytical and FEA results are also compared 
and discussed in what follows. 

II. PROBLEM FORMULATION AND ASSUMPTIONS 
The geometry of the studied problem is shown in Fig. 1. 

The regions I, II and IV correspond to a free space filled with 
air, the region II corresponds to a circular coil of N turns with 
rectangular cross section with inner radius R2, outer radius R3 
and length L = (Z4 – Z1). We consider a uniform current densi-
ty J passing through the coil cross section in the θ-direction. 
The coil is centered on the air-gap of length e = (Z3 – Z2) of 
the non-closed ferromagnetic circuit, located in the lower part 
as shown in Fig. 1. The whole system is limited in the axial di-
rection by z = 0 and z = Z5, where the outer boundaries of the 
magnetic circuit must be chosen sufficiently far away from the 
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calculation zone. The homogeneous Dirichlet boundary condi-
tions are considered in regions I, II and III. However, homo-
geneous Neumann boundary conditions are used in regions IV. 

Another approximation is employed in the modeling of this 
problem by assuming infinite permeability of the ferromagnet-
ic circuit µ → ∞. This implies that the magnetic field is not 
calculated inside the ferromagnetic circuit. The interface con-
ditions are then used to obtain the tangential component of 
magnetic field to be null. 

The problem being axisymmetric, cylindrical coordinates 
are the most appropriated to the formulation of the magnetic 
vector potential, where only the θ-component exists and it de-
pends only on the r and z coordinates. 

The expressions of magnetic vector potential are obtained 
with resolving a Poisson’s equation in the coil region and a 
Laplace’s equation in the other regions, as follows: 
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By using the separation of variables method [11], [14], we 
consider the general solution of (1) in Regions I to IV. 

Considering homogenous Dirichlet boundary conditions at 
z = 0 and z = Z5 in Regions I, II and III and homogenous 
Neumann boundary conditions at z = Z2 and z = Z3 in Re-
gion IV we have: 
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Moreover, the tangential component of the magnetic field is 
null at r = R4 
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and the vector potential tends to zero when 0r =  

( )0, 0= =IVA r z   (4) 

III. ANALYTICAL EXPRESSION OF THE MAGNETIC VECTOR 
POTENTIAL 

Considering the boundary conditions (2), (3) and (4), the 
general solution of (1) can be expressed as: 
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where n and k are positive integers, αn = nπ / Z5 and βk = 
kπ / (Z5 – Z2) are the eigenvalues of the problem, I1 and K1 are 
respectively the modified Bessel functions of the first and sec-
ond kind of order 1, and L1 is the modified Struve function of 
order 1. 
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A0 is an integration constant due to the Neumann boundary 
conditions in Region IV. It can be determined by applying the 
condition of continuity of the magnetic vector potential at the 
interface between Region III and Region IV. 
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By integration in respect to the z variable of (10) over the 
interval [Z2,Z3] , we obtain: 
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,  ,  ,  ,    nd,  aI I II II III III IV
n n n n n n na b a b a b a  are the integration con-

stants. The relations between those integration constants are 
determined by applying the interface conditions between the 
different regions. 

IV. ANALYTICAL EXPRESSION OF THE MAGNETIC VECTOR 
POTENTIAL 

The interface conditions must satisfy the continuity of the 
radial component of the flux density and the continuity of the 
axial component of the magnetic field. The radial and axial 
flux density can be deduced from the magnetic vector poten-
tial by: 

( )1and = −∂ = ∂r z zB A B r rA
r

  (12) 

The interface conditions between Region I and II at r = R3 
and region II and III at r = R2 lead to: 
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Fig. 1. Geometry of the studied problem. L is the length of the coil while e is the 
length of the air-gap of the magnetic circuit. Boundary with ∂n A = 0 represents a 
boundary with to a ferromagnetic material, while boundaries with A = 0 corre-
spond to a magnetic isolation. 
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At the interface between Region III and IV, a specific condi-
tions concerning the axial component of the magnetic field at 
r = R2, piecewise defined, are applied around this interface be-
cause of the presence of the air-gap in the ferromagnetic cir-
cuit: 
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The continuity of the radial component of the flux density 
yields to: 

( ) ( ) [ ]1 1 2 3, , , ,= = = ∈IV IIIA r R z A r R z z Z Z   (16) 

The coefficients of the regions I to IV are related to (12), 
(13), (14), (15), (16), and using the Fourier series method, and 
rewriting equations in matrix and vectors format: 
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Thus, we have to solve a system of six linear equations with 
six unknowns. By rewriting above equations in matrix and 
vectors format, a numerical solution can be found by using 
mathematical software, e.g. matrix inversion using MATLAB 

tool. It should be noted here that a numerical matrix inversion 
is required for the calculation of the unknown coefficients 
which could be used even in symbolic form. 

V. INDUCTANCE EXPRESSION 
The inductance of the coil is related to the total stored mag-

netic energy: 
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Assuming that the current density is uniformly distributed 
over the whole cross section of the coil: 
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where, N and I are respectively the number of turns in the coil 
and the electrical current in the wire. The magnetic vector po-
tential is the one defined in the Region II of the problem.  

Substituting (6) and (23) into (22) and integrating in respect 
to the r, θ and z variables, the obtained analytical expression 
of the inductance is given by: 
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where  U(r), V(r) and W(r) were defined in reference 
[11]. 

VI. ANALYTICAL RESULTS AND COMPARISON WITH FINITE 
ELEMENT SIMULATIONS 

Table I contains the values of the geometric parameters 
used in our problem. The outer boundaries in the axial direc-
tion are chosen such that their values do not affect the ob-
tained results. The analytical solutions in all the regions have 
been computed with a finite number of harmonic terms equal 

TABLE I 
GEOMETRIC PARAMETERS 

 

Symbol  Quantity Value 

R1 Lower edge of the domain in the radial direction 0.030 m  
R2 Inner radius of the coil 0.080 m 
R3 Outer radius of the coil 0.120 m 
R4 Upper edge of the domain in the radial direction 0.150 m 
Z1 Inner boundary of the coil 0.200 m 
Z2 Inner boundary of the air-gap 0.225 m 
Z3 Outer boundary of the air-gap 0.275 m 
Z4 Outer boundary of the coil 0.300 m 

Z5 
Outer boundary of the domain in the axial direc-
tion 

0.500 m 

L Axial length of the coil 0.100 m 
e Axial length of the air-gap 0.050 m 
N Number of turns of the coil 1000 
J Current density in the coil 5 A/mm² 

Nmax Number of harmonic terms in Regions I to IV 50 
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to 50. 
In order to validate our analytical results, we have to com-

pare them with those obtained by using Finite Element Meth-
od (FEM) led on COMSOL Multiphysics software. The mesh 
size and the requested precision are chosen so that the quanti-
ties derived from the FEM calculation serve as a reference. 
Obviously, the same geometric parameters as those defined in 
Table I are used. Homogeneous Dirichlet and Neumann 
boundaries conditions are also considered in FEM simulations 
as with the analytical model. 

Fig. 2 shows the distribution of magnetic vector potential of 
the defined problem when the air-gap is centered with the coil. 
The radial and the axial components of the magnetic flux den-
sity along the z-axis in Region III at r = (R1+R2)/2 are plotted 
and compared with the numerical results in Fig. 3(a). Fig. 3(b) 
also shows Br and Bz along the z-axis but in the air-gap, at 
r = R1/2. 

From Fig. 3 we can clearly observe that the results obtained 
by the analytical method are very closer to those obtained by 
the FEM software. A small discrepancy between the analytical 
and numerical results still exists. The maximal discrepancy is 
lower than 3% for the Bz component and around 10% for Br. 
Theses discrepancies can be explained by the limitations of the 
analytic development, in particular the numerical errors linked 
to the matrix inversion which generates errors during the eval-
uation of the coefficients. Indeed, the use of modified Bessel 
functions leads to badly conditioned matrix. 

Finally, Fig. 4 shows the self-inductance of the coil using 
(24) with an air-gap length varying from 0.01 m to 0.05 m. A 
comparison is made between the numerical values obtained 
with COMSOL and analytical results for different number of 
harmonic terms from 1 to 50. Obviously, the inductance de-
creases with the increase of the air-gap length. The higher the 
number of harmonic terms, the closer is the solution to the ref-
erence value obtained numerically. The maximal error is of 
39.37%, 11.47%, 6.35%, 2.92%, 1.52% and 0.75% for a num-
ber of harmonic terms of 1, 5, 10, 20, 30, 40, and 50 respec-
tively. We can conclude that the proposed formula is correct 
and efficient. 

VII. CONCLUSION 
In this paper, we have developed analytical formulas com-

plementary to those proposed in [11] to calculate the induct-
ance of a coil in an open magnetic circuit. We have shown that 
analytical methods provide very good match with numerical 
ones. An analytical expression to compute the inductance of a 
coil having a rectangular cross-section and concentric with an 
iron core including an air-gap is given. This value might be 
useful during studies concerning the magnetization by PFM of 
HTS bulks. The proposed analytical expressions of the mag-
netic vector potential could later be used to calculate induced 
currents in HTS bulks based on the well-known “Brandt’s 
method” developed in 1998 for disks and cylinders in an axial 
magnetic field. 
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Fig. 4. Self-inductance of the coil using (24) with an air-gap length varying 
from 0.01 m to 0.05 m. Comparison between the numerical values obtained 
with COMSOL and analytical results for different number of harmonic terms 
from 1 to 50. 

 
Fig. 2. Distribution of the magnetic vector potential around the air-gap. 

 

Fig. 
3. Radial and axial components of the magnetic flux density Br and Bz along 
the z-axis, (a) in the Region III at r = (R1+R2)/2 and (b) in the air-gap at 
r = R1/2. 
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