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Abstract. We present a novel extension of watershed cuts to hyper-
graphs, allowing the clustering of data represented as an hypergraph,
in the context of data sciences. Contrarily to the methods in the litera-
ture, instances of data are not represented as nodes, but as edges of the
hypergraph. The properties associated with each instance are used to
define nodes and feature vectors associated to the edges. This rich rep-
resentation is unexplored and leads to a data clustering algorithm that
considers the induced topology and data similarity concomitantly. We
illustrate the capabilities of our method considering a dataset of movies,
demonstrating that knowledge from mathematical morphology can be
used beyond image processing, for the visual analytics of network data.
More results, the data, and the source code used in this work are available
at https://github.com/015988/hypershed.
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1 Introduction

Data clustering is one of the most fundamental operations for the exploration of
large amounts of information, allowing the identification of similarities and the
highlight of differences, reducing the amount of cognitive effort required to gain
gist information using visual analytics. Therefore, several methods for clustering
data exist in the literature, including methods using graph clustering.

Our interest lies on network data, defined as data that includes relationships
between its portions, usually modelled as digital structures, enabling the rep-
resentation of more detailed nuances. Indeed, when the relationships are not
derived from similarities in the data, but represent a different facet of the infor-
mation, a clustering method needs to consider both to obtain meaningful results.

Interestingly, this is the exact context in which image segmentation methods
are developed, considering both the information on the pixels and the neighbor-
ing relationship between them. In particular, the watershed algorithm is fast,
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easy to implement, and was recently extended to several digital structures, in-
cluding graphs. However, to improve the flexibility for data representation, we
adopted hypergraphs as base digital structure, and we introduce a trivial ex-
tension of the watershed algorithm for hypergraphs. However, our method aims
to cluster the edges of the hypergraph, not its nodes. This slight, but crucial,
difference is more suitable to represent data relationships where one data point,
represented as an edge, is related to several entities, represented as nodes.

In summary, the main contributions of this work are:

– An extension of the watershed algorithm to hypergraphs.
– A novel framework to represent and cluster data represented as an hyper-

graph.
– An application of the watershed algorithm outside of image processing.

2 Related work

Since clustering is a crucial step for data sciences, several methods have been
proposed [12]. Traditionally, the data itself is composed of points, and the ob-
jective is to identify clusters of similar points, considering some metric. Some
methods build a similarity graph, where the data points are represented as nodes
and the similarity as the weights on the edges [1]. This approach then leverages
graph clustering, where the objective is to separate the graph structure into
strongly connected clusters [21,10]. However, seldom additional data is consid-
ered [25], and the clusters reflect only the topology induced by the similarity
function. When available, this application dependent data may lead to a finer,
more accurate, clustering result.

Of course, hypergraphs can also be considered, when the relationships in the
data cannot be accurately expressed using only pairwise links [14,13]. Several
different clustering methods have been proposed, including random walks [9],
spectral clustering [24], game theory [4], among others.

However, data clustering using a topology that is not derived from data
similarity is not nearly as explored [22], at least not with this interpretation.
Indeed, image segmentation is an equivalent problem, where both the data and
its relationships need to be concomitantly considered; the objective is to identify
portions of pixels (data) that are similar and connected (linked).

While a myriad of methods for image segmentation have been proposed in
the literature, including the use hypergraphs for image representation [3,9], the
watershed algorithm [17,23,18], and the family of derived methods [19,20,2,6], is
one of the most used, because of its simplicity and robust results. Moreover, the
algorithm was extended to digital structures as well [16,8,5,7].

Despite the adequacy of the watershed algorithm for the clustering of network
data, its use is not properly explored outside of image processing. This is the
exact context of this work, where we explore the watershed algorithm for the
visual analytics of network data. Visual analytics methods are generally used
to systematically explore unknown datasets, combining the perception of an
operator with the numerical capabilities of a computer.
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Moreover, our method can be implemented without constructing a matricial
representation of the digital structure, increasing its scalability and allowing the
processing of massive datasets, while maintaining the low computational cost of
watershed cuts.

3 Watershed on hypergraphs

Our objective is to partition the edges of an hypergraph into groups such that
the edges in each group have similar data associated with them and a connected
through one or more nodes. Between the several possible definitions for the wa-
tershed operator, we follow the framework of watershed-cuts [8], adapted where
necessary to hypergraphs, including the semantic difference of clustering the
edges instead of the nodes.

3.1 Hypergraphs

We define an hypergraph as H = (V,E,D), where V is a finite set of vertices, E
is the set of edges such that ∀e ∈ E, e ⊆ V , and D is a function that associates
data to the edges of the hypergraph, in the form of a representative feature
vector : D : E→Rm, with m ∈ N+. While we assume that the feature vector is an
array of numbers, any information can be considered, as long as a distance metric
between two instances can be defined. Two of the possible visual representations
of this structure are illustrated in Figure 1, considering a small hypergraph
with six edges and five nodes. Each edge is associated to a two dimensional
real vector that characterizes the data point. This definition is different of the
common practice, where data points are represented as nodes and the edges have
associated weights.

a b d

c e

e1: {a,b,c} D: [ 3, 3]

e2: {b} D: [ 8, 8]

e3: {c,d,e} D: [-5, 5]

e4: {d,e} D: [ 3,-3]

e5: {b,d} D: [ 7,-7]

e6: {a,c} D: [-3, 3]
e

b

d

a

c

e1 e2 e3 e4 e5 e6

Fig. 1. Graphical representations of an hypergraph with data associated to its edges.

Let H be an hypergraph. Two distinct edges are neighbors if they share a
vertex, that is, N(ei, ej)↔ ((ei ∩ ej) 6= ∅), for any ei, ej ∈ E. The set of neighbors
of an edge e is defined as N(e) = {u ∈ E | (e ∩ u 6= ∅) ∧ (e 6= u)}. For instance,
in the example depicted in Figure 1, edges e1 and e3 are neighbors, since both
include node c, but e1 and e4 are not.
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We define a path π as an ordered sequence of distinct edges of H, π =
〈e0, e1, . . . , e`〉 such that any two consecutive edges are neighbors. For instance,
considering the hypergraph in Figure 1, 〈e1, e2, e5〉 is a valid path, where 〈e1, e4, e6〉
is not. If ` = 0, π is a trivial path π = 〈e0〉. If there is a path between any two
edges of H, the hypergraph is connected.

We define the distance between edges ei and ej as d(ei, ej), where d is a
distance metric between the feature vectors, which can be any distance metric
suitable for the considered problem. This distance is analogous to the gradi-
ent information in the traditional watershed [18], representing the height to be
surmounted by the water in the relief map of the data.

A descending path is a path π in which the distance between consecutive
edges do not increase, d(ei−1, ei) ≥ d(ei, ei+1), for any i ∈ [1, `− 1]. Intuitively,
a steepest descent path is a descending path where the distance values decrease
the most at each step. Therefore, each consecutive edge corresponds to smallest
possible distance from the previous edge, d(ei, ei+1) = min{d(ei, u), u ∈ N(ei)},
for any i ∈ [0, `− 1]. To simplify the notation, we define a function to represent
this minimal distance as d	(e) = min{d(e, u), u ∈ N(e)}, therefore, in a path of
steepest descent, d(ei, ei+1) = d	(ei), for any i ∈ [0, `− 1].

Definition 1. Watershed clustering. Let H = (V,E,D) be an hypergraph
and Π = {π0, π1, . . . , π|E|} be a collection of steepest descent paths, such that
every edge of H is the first edge of one path, that is, πi = 〈ei, . . . 〉, for any
i ∈ [0, |E|]. Then a watershed clustering of the edges of H is a function Ψ : E→N
that attributes labels to the edges according to the last edge of the path, that is
Ψ(ei) = Ψ(ej)↔∃πi, πj ∈ Π, ez ∈ E | (πi = 〈ei, . . . , ez〉) ∧ (πj = 〈ej , . . . , ez〉).

3.2 Relationship to watershed cuts

While definition 1 characterizes watershed clustering on hypergraphs, it does not
provide a way of obtaining one. To this end, we directly leverage the watershed
cuts algorithm, applied on a graph generated from the considered hypergraph.

We create a weighted-edge graph G, using information from the hypergraph
H. Since we aim to cluster the edges of the hypergraph, each edge is represented
by a node of G, and edges are placed representing the corresponding neighbors,
the edge weights are given by the distance between the edges (feature vectors),
using an arbitrary distance metric. An example of this procedure for the hyper-
graph depicted in Figure 1 is illustrated in Figure 2, using the cosine between
the feature vector as the distance. In the resulting clustered hypergraph, each
edge belongs to exactly one cluster, but each node can be contained by edges of
several clusters, since it can be contained by edges on different clusters. Indeed,
in the result illustrated on the last panel of Figure 2 all nodes belong to edges
in two distinct clusters. This information is not as easily obtained on the graph
constructed from the edges, since the nodes are not explicitly represented.

A node with edges in two or more clusters can be seen as the equivalent of
the watershed lines in the classic image processing framework, acting as a barrier
between them. For data analysis this aspect can be interesting, because it elicits
patterns of behavior.
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Fig. 2. Hypergraph from Figure 1, the corresponding weighted edge graph with the
result of watershed cuts, and the clustered hypergraph. The distance used for the edge
weights is the cosine between the vectors.

Property 1. A watershed cut of the nodes of the graph G is a watershed cluster-
ing of the edges of the hypergraph H.

This property is self evident, because there is a bijection between the edges of
the hypergraph H and the nodes of the graph G, the neighborhood relationships
are preserved, as well as the distances.

3.3 Algorithm for watershed on hypergraphs

While we used the close relationship between watershed on hypergraphs and
watershed cuts in graphs to provide an easy way to compute the clustering, to
explicitly construct another structure is inefficient, particularly when consider-
ing large amounts of data. To avoid this reconstruction, we adapt the original
watershed-cuts algorithm [8] to hypergraphs.

Algorithm 1 Watershed on hypergraphs

function watershed(H)
for all e ∈ E do Ψ(e)← NO LABEL

nb labs← 0
for all e ∈ E such that Ψ(e) = NO LABEL do

[L, lab]← stream(H,Ψ, e)
if lab=-1 then

nb labs← nb labs+ 1
for all y ∈ L do Ψ(y)← nb labs

else
for all y ∈ L do Ψ(y)← lab

return Ψ

The two functions introduced in Algorithms 1 and 2 are identical to the
original watershed cuts algorithm [8], edges are considered instead of nodes and
the neighborhood relation is changed; we refer to the original work for an in
depth analysis of the algorithm and its clustering performance.
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Algorithm 2 Auxiliary function to identify streams

function stream(H,Ψ, e)
L← {e}
L′ ← {e}
while ∃y ∈ L′ do

L′ ← L′ \ y
breadth first← True
while breadth first ∧ (∃z ∈ N(y) | (z 6∈ L) ∧ (d(y, z) = d	(y))) do

if Ψ(z) 6= NO LABEL then
return [L, Ψ(z)]

else
if d	(z) < d	(y) then

L← L ∪ {z}
L′ ← {z}
breadth first← False

else
L← L ∪ {z}
L′ ← L′ ∪ {z}

return [L,−1]

Implementation considerations. While the algorithm is identical to watershed
cuts, there are implementation details that are more relevant when consider-
ing hypergraphs. For instance, the weights of each edge of the weighted graph
are usually precomputed; the algorithm can simply access these values, without
any increase in the computational time. Since our algorithm does not explicitly
construct the graph, the distances are calculated on-demand, as the algorithm
explores the hypergraph. Moreover, the adopted metric can be computationally
expensive, so repeated computations of the distance between two edges should
be avoided. This can be easily accomplished using memoization, which can use
less memory than the explicit computation of the distance between all edges.

If deterministic results are desired, the method needs to have a stable sorting
method, where ties in the distance values are broken in the same way. In any
case, all possible results are valid clusters, satisfying Definition 1.

4 Illustration of the method

To illustrate the behavior of our method on real data, we considered informa-
tion from the The Movie Database (www.themoviedb.org), using a breadth-first
search, alternating movies and actors, starting on Lord of the Rings: The fellow-
ship of the ring. Each movie is represented as an edge and the involved actors
as nodes. By construction, this hypergraph is connected. The feature vectors
are derived from they keywords and genres associated to each movie; the dis-
tance metric used was the cosine between the two feature vectors. Actors are
represented as nodes and movies as edges, including the whole cast.
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Therefore, both the characteristics of the movies and the relationships be-
tween movies and actors are expressed in the structure, allowing the differenti-
ation between identical movies with different actors. For instance, it might not
be desirable to aggregate Peter Jackson’s Lord of the Rings trilogy with Ralph
Bakshi’s 1978 movie, despite the fact that the feature vectors of both should be
remarkably similar. This distinction is a direct result of including the topology
into the clustering process, and this effect can be avoided by using a clustering
method that ignores the topology.

Further, the objective of this section is only to illustrate the behavior of the
method, demonstrating that it can be used for network data exploration. Since
our method is effectively a translation of watershed cuts into hypergraphs, we
refer the reader to the works by Cousty et al. [8,7] for a performance comparison
against other segmentation methods.

In this example, we considered a dataset with 100 movies and 1,487 actors.
Our implementation of the method was done in Python and is freely available
at https://github.com/015988/hypershed. The processing time was approx-
imately 0.1 second on a regular i7 computer. For reference, the processing time
for a dataset with 5,000 movies and 39,029 actors took 50 seconds. Our cluster-
ing result is illustrated in Figure 3. However, due to size constraints, we depict
only the 87 actors related to two or more clusters.

Between the 17 resulting clusters, the blue cluster on the leftmost part of the
figure groups movies from the Tolkien universe, including, however, two movies
classified as documentaries: The watchmaker’s apprentice and Slacker uprising,
which can be considered as significantly different when compared to the other
movies in the cluster. While similar between themselves, these two movies did
not form a separate cluster because they are not neighbors, there is no overlap in
the casting. However, both are neighbors of the movies in the Lord of the Rings
trilogy, in the former, John Rhys-Davies is the narrator, while in the latter Viggo
Mortensen is part of the cast. Similarly, Dracula, starred by Christopher Lee, is
also included in this cluster.

Similarly, the movies from the Pirates of the Caribbean franchise were grouped
together in the brown cluster, as well as two movies from the Indiana Jones and
James Bond franchises, in the two gray clusters. Most of the movies from the
X-Men universe were grouped in the light green cluster, with two movies, The
Wolverine and X-Men: Apocalypse separated into another cluster, most likely
because the feature vectors of these two movies are very similar, creating a new
minimum. Moreover, the feature vectors of some of the movies are very small,
some movies in this dataset contain only one genre and no keywords, compro-
mising the representability of the distances between the movies.

The plot on the bottom left of Figure 3 illustrates a T-SNE [15] projection
of the feature vectors associated with the movies. This method consider each
feature vector as a point in a high dimensional space and aims to find a two
dimensional embedding of the vectors that preserves the distances between the
points in the original high dimensional space. The color of the circles correspond
to the clusters of the top part of the figure. This plot ignores the topological
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Fig. 3. Clustering result for TMDB dataset with 100 movies/edges. Top: Initial clus-
tering. Bottom left: T-SNE projection of the feature vectors of the movies from its
natural high dimensional space into R2, with the colors corresponding to the clusters.
Bottom middle: Force layout on the equivalent graph. Bottom right: Clustering of the
initial clusters.
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connections induced by the actors, illustrating that, while there is some corre-
spondence between the watershed clustering and the projection of the points,
there is no clear separation of the clusters when only the feature vectors are con-
sidered. Therefore, the topology of the hypergraph is tremendously significant
to the watershed results, as expected.

Moreover, the plot on the bottom middle of Figure 3 illustrates an unweighted
graph which topology is equivalent to the neighborhood relationships between
the edges of the hypergraph, as defined in Section 3.2. The graph is depicted
using a force layout [11], with the colors also corresponding to the clusters in the
top part of Figure 3. This layout aims to group heavily connected nodes, and
clearly depicts several different groupings, interconnected by the blue nodes in
the middle. These blue nodes correspond to the The Lord of the Rings movies,
including the seed movie used to generate the dataset, which explains this topol-
ogy. As expected, the clustering result is more similar, due to the influence of
the induced topology, but not quite equivalent to the strongly connected nodes
of the graph, because the feature vectors are also considered.

By representing each cluster as an edge, the clustering can be recursively
applied, as illustrated on the bottom right of Figure 3, where each edge represents
a cluster of the top visualization, in the same order. The feature vector of these
new edges is defined as the average of the feature vectors of its composing edges.
The colors represent the three new clusters. The orange cluster in this clustering
corresponds to the groups containing movies of the X-Men franchise, the blue
group corresponds to, in general, fantasy movies and the light blue cluster to
action movies and dramas. Interestingly, Sir Ian McKellen is the only actor
in this small dataset to have movies on all three clusters, illustrating his well
known versatility. Similarly, the nodes that are not depicted in these figures,
nodes whose edges belong to a single cluster, could be used to identify “niche”
actors, considering a more comprehensive dataset.

5 Discussion and Conclusions

In this work, we presented a novel way to represent and cluster network data,
using hypergraphs to represent relationships between portions of the data.

While data clustering with and without the topology may seem similar on an
abstract level, these are two very different problems, and methods that consider
the topology cannot be directly compared to the classic methods that consider
only the data points. Similarly, neither can be directly compared to network
clustering methods that do not consider data associated with the elements. The
same argument applies to most clustering score methods as well. The included
results aim only to illustrate the use of watershed cuts on hypergraphs as a tool
for visual analytics on network data.

We adopted hypergraphs because they are a natural extension of graphs,
increasing the applicability of the method. Moreover, edges and clusters are
more conceptually similar, both can be interpreted as sets of nodes, leading to
naturally hierarchical structure, when the method is recurrently applied. We did
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not explore this option beyond what is illustrated in Figure 3 because the visual
analytics interface needed to properly represent these results is challenging and
beyond the scope of this work; a potentially interesting future work.

Our work leverages the advantages of the watershed algorithm, but it also
includes its disadvantages as well, including over segmentation, as illustrated by
the two separate clusters containing X-Men movies in Figure 3. Further, not all
edges on the same cluster are necessarily similar, the watershed can group edges
in a chain of similarity, where two sequential edges are similar, but edges far apart
in the chain are not, which can be counterintuitive for data sciences. However,
we believe that this effect would be less pronounced on massive, more connected,
datasets, with plenty of data points to properly compose each cluster. In this
context, the number of clusters would be massive as well, and an our hierarchical
approach could present a viable alternative for the visual exploration of such
data.

While our proposed method can be considered, quite correctly, as a simple
reinterpretation of watershed cuts into a new digital structure, these subtle se-
mantic differences are novel and unexplored in the literature, leading to crucially
different results. Further, they allow the application of this method for data sci-
ences, illustrating that the knowledge from image processing can be transported
to this context, which was the inspiration for this work.
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