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Abstract—Long-term place recognition for vehicles or robots in
outdoor environment is still a tackling issue: numerous changes
occur in appearance due to illumination variations or weather
phenomena for instance, when using visual sensors. Few methods
from the literature try to manage different visual sources while
it could favor data interoperability across variable sensors.

In this paper, we emphasis our works on cases where there
is a need to associate data from different imaging sources
(optics, sensors size and even spectral ranges). We developed
a method with a first camera which composes the visual memory.
Afterwards, we consider another camera which partially covers
the same journey. Our goal is to associate live images to the
prior visual memory thanks to visual features invariant to
sensors changes, with the help of a probabilistic approach for
the implementation part.

I. INTRODUCTION

Instead of visual sensors, recent prototypes in vehicular
automation field reached milestones with strong use of LIDAR
scanners to perceive their surrounding environment, to create
a dynamic 3D reconstruction [1] and for localization [2].
Nevertheless, imaging sensors have widespread applications
thanks to cheaper cameras, embeddability ease and plurality
of informations provided by them. Like a human eye, ideal
system design involves a camera as a single sensor for varied
processing and tasks.

SLAM (Simultaneous Localization And Mapping) techniques
consist of composing a map with sensors’ data of the surround-
ing environment (whenever it is LIDAR or visual sensors) while
the robot is evolving in its environment and needs localization
in the map. In this way, place recognition (or visual localization)
task permits the robot to simplify its map and eventually to
minimize some drift. This task, also known as loop closure
remains a tricky issue if a camera is used alone. Perceptual-
aliasing in outdoor environments easily tricks even human
perception. Indeed, when you are looking for long-term visual
memory, changes from the surrounding environment could be
considerable.

Outdoor environments suffer from various kind of changes:
illumination, weather and seasonal variations and consequences
on vegetation, but also changes due to human hands. Most
of the time, images from a first experience, called memory or
visual memory, are compared with live acquisition. A metric

is defined on chosen features of interest and the best score
determines if current position and place in the memory snapshot
are the same. As this scheme generally yield errors and false
matchings, methods have been improved to filter results and
gain robustness, notably thanks to temporal consistency [3].

Our main contribution concerns a global image description
for outdoor localisation, robust enough to sensors characteristics
changes as well as perception changes of the environment. This
image signature is a part of an overall application we have
made with a particle filter implementation.

In section II, we sum up related works and methods from
both robotics and image retrieval framework which have
inspired this contribution. Section III gives details on the
method we developed. Section IV recaps experiments we made
so far with this approach, section V and section VI draw up
conclusion and potential future works.

II. RELATED WORKS AND MOTIVATION

A. Image retrieval framework

Classical visual only approaches for localization deal with
the same outline than the image retrieval framework: extraction
(or sampling) of the features of interest in an image, choosing
the most discriminant data, which should be invariant to
changes (illumination for example), and condensing it for
fast comparison. A recent survey on vision-based mapping
and localization methods [4] divides approaches according
to four image retrieval categories as well, making use of
global descriptors, local features, “bag-of-words schemes” or
combined approaches.

Most of the recent image retrieval advances are bound to mid-
level features techniques as a unified overview that make use of
local image descriptors like image patches or feature keypoints
(SIFT or SURF for example [5]). For the most part, mid-level
techniques algorithms place emphasis on grabbing significant
and distinctive pieces from the huge amount of information
contained in images: for instance, a common approach as in
[6] consists in building up a codebook of the most relevant
vis-terms included in a corpus. Later, methods evaluate images
by quantifying visual words with this codebook [7].

Mid-level techniques are globally efficient, but their com-
plexity can be a burden for fast computation needs. Several



recently emerging methods rely straight on raw data from the
camera. Visual sensors are particularly faced to high dynamic
appearance changes in outdoor. This changes are inherent to
the illumination of the scene (sun visibility, shadows, etc). That
is why [8] works place emphasis on a transform on raw images
called illumination invariant transform.

Another source of problems raises from the diversity of
sensors which lead to various images of the real scene. Different
visual sensors have been used for the SLAM task in the
literature. For instance, [9] developed a method close to
monoSLAM but with an infrared monocular camera. Some
works deal with multimodality thanks to visual servoing like
[10]. Some others rather start from standard descriptors used
in computer vision and made them more robust to multimodal
matching after further modifications [11].

B. Probabilistic filtering

For a few years, localization and SLAM became more and
more efficient and robust thanks to probabilistic approaches
applied to the estimated state of the system. [3] is an
example involving LIDAR sensors and SLAM techniques
using probabilistic approaches. We concentrate our work with
Probabilistic filtering, namely particles filtering implemented
from general Bayes filter formalism as described in [12].

III. PROPOSED METHOD

Globally, our method can be separated into two main steps
as summed up in fig. 1: firstly, we compose the visual memory.
Secondly, we localize on-line with another camera as the only
input.

A. The memory: Visual map creation

A visual map is created from data provided by a first run
with our instrumented vehicle. It has a differential GPS and a
roof-mounted video camera looking in front of the car. The
GPS receiver allows us to precisely associate each image with
the vehicle position at the same moment. We call this video
sequence the memory. This memory could be compared to
a metrical map with distinctive positions (or places) where
we have a recorded view. We extract from each frame of the
memory an image signature, that is to say a distinctive feature
of the whole image. The way we extract images signatures
for memory and online sequence is exactly the same. We
will further compare signatures from the memory with live
signatures.

B. Images signatures computation

1) How to slice images: We chose to describe and compare
images with global descriptors aggregating local patches
descriptions. We downsample images and then divide them
according to a regular grid (grid sampling). Resulting patches
size is around thirty pixels for most of the papers. If we
associate different kind of sensors, we need to be sure that
data in patches care approximately the same information from
the physical world. Contrary to methods from the state of the
art which define an arbitrary grid, we propose here to use a
grid linked to the geometry of the optic.
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Figure 1: Global diagram of the method

We consider the well-known pinhole model [13] with fx
and fz focal length in terms of pixels for x and y axis, (u, v)
coordinates of the principal point in pixels, X = [x, y, z, 1]T

homogeneous coordinates of a 3D-point of the environment
relative to the camera and x̃ its projection to image coordinates.
We define then a sphere centered on the optical center of the
pinhole model as schematized in the fig. 2.
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Figure 2: Image slicing with geometric constraints

We name α the opening angle.
Projections of directions spaced out by α on −→x and −→y

axis give us the patches bound coordinates according to the
following formula (we note ws the width of the image sensor
in pixels, hs its height):
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Figure 3: Slicing applied to different sensors
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x̃m,n values are rounded to get image patches with plain
pixels. This way, we get several image patches side by
side. Dimensions of the patches bounds should be fixed
carefully: large size would indeed weaken consequences of
little viewpoint changes (as explained in [14]), that is why
we determined the best angle α on our dataset in a range
from 0◦ to 10◦ (see section IV-A). It is clear that patches
dimensions, once projected on sensor plane, are bigger at the
periphery of the image than at its centre (an example is given
in fig. 3 with α = 1◦). As shown in fig. 3, depending on
characteristics of optics, we don’t have necessarily the same
number of subdivisions in our images.

2) Modified histogram of gradient: From each sliced tile,
we compute a eight bins Histogram Of Gradient (HOG) [15].
For that, we use the gradient routine implemented in OpenCV
library. We compute angles of the gradients for each pixel and
aggregate them in each tile according to eight directions as
usual HOG features (seen as 8-dimensions vectors). The main
reason for using HOG descriptor is its quite robust invariance
to modality change [11].

We add a process step inspired by [11] and represented in
fig. 4: empirical analysis easily suggest that some objects or
material appears mainly black in visible spectra whereas they
are bright

in infrared spectra and vice versa. As a consequence, gradient
orientations are sometimes inverted across different spectral
ranges. To make Histograms of Oriented Gradient invariant to
gradient way, we divide 8-bins histograms by two and sum up
them together (fig. 4).

+

HOG feature
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Figure 4: Traditional HOG feature & way-invariant HOG

3) HOG features pooling: Resulting 4-bins histograms are
normalized in accordance with the number of pixels included
in the subregion and then stored together in a 3-dimensional
array to obtain an image signature.

C. Live sequence

We refer to live sequence or on-line experience a new run.
This journey may happen several days or months later so
that environment has severe changes. The only one input
considered is image stream from another camera: optics and
sensor size may change, even spectral range. We compute
images signatures with the same opening angle parameter
in our grid sampling method and according to new sensor
calibration characteristics.

D. Comparing images signatures

In order to compare two different images, we compute the
previously described signature for each one and use cosine
similarity to compute a matching score. Cosine similarity is a
common similarity measurement used in information retrieval,
particularly in text mining [16]. Cosine similarity has been used
by [14] for visual place recognition and [17] for multimodal
stereo correspondence. Given two image signatures σa and σb,
computing matching score is given by the following formula:

score(σa, σb) = cos(θ) =
σa ·σb
‖σa‖‖σb‖

(2)

The cosine similarity by definition is always defined in the
range [0, 1]. In the case we have image signatures of different
sizes, we try all the possibilities on the bigger one from left
to right and up to down in the field of view and keep the best
score. Considering σa and σb, with respectively (m,n) and
(k, l) sizes, k ≤ m and l ≤ n:

E. Temporal consistency

As explained previously, we consider that following frames
cannot represent places far away from each other: image
sequences have a temporal consistency. This hypothesis allows
us to consider the system as a Hidden Markov Model and to
adapt a particle filter to our method. We implemented a particle
filter as described in [12]. State transitions are estimated thanks
to a traditional visual odometry method and measurement
update is made with signature comparison.

1) State space: The particle filter evaluates position of the
vehicle: its coordinates on a 2D-map and its heading. An
additional parameter represents the scale factor of the motion
computed by the odometry algorithm [18].

2) State transition estimation: We use 600 particles for the
application. Each particle represents a weighted possible state
of the vehicle. States are updated with the visual odometry
computation. Gaussian noise with 0.5◦ standard deviation is
applied on heading values. As odometry measure returns a unit
vector at each step,

another Gaussian noise with 5 meters standard deviation is
applied on scale value to encompass variations of car’s speed.

IV. EXPERIMENTAL RESULTS

We divided our experimentation following two axis: first we
searched for an optimal opening angle α value. Secondly, we
made experiments to check if our feature is distinctive enough
on real data and sufficiently invariant to spectral range changes.



A. Optimal opening angle for patches slicing
We acquired a first dataset in order to check if the purposed

global feature is itself sufficiently discriminant and well-
conditioned at the same time to associate data from camera
radically different. This dataset condenses a journey across
both urban areas and highway and has been done with three
cameras: two identical visible cameras with a 30 cm baseline
and a third, between the two previous ones, a SWIR (Short
Wavelength Infrared) camera. A sample of visible and SWIR
images has been given in fig. 3. Each sequence is composed
of 200 images.

We synchronized our three cameras with a trigger. We then
took several video sequences and compute similarity matrix
between sequences from both visible cameras. This experiment
permits to verify if a small variation of the point of view infers
on the similarity measure. Computation on the first record is
displayed in fig. 5. Higher scores remain on similarity matrix
diagonal, chosen feature is discriminant enough and ensures
very few false matching. Precision-Recall curves for visible to
visible matching according to α value are given in fig. 6.

Figure 5: Similarity matrix of two synchronized visible
sequences

Figure 6: Precision-Recall curve for visible to visible associa-
tion

We applied the same checking to a pair of visible and SWIR
cameras (fig. 7 and fig. 8). This task is much more harder

as expected but similarity measure seems nevertheless a good
assumption prior. Subsequently, we try on our datasets several
values for tiling the images. Tested values go from 1◦ to 10◦

for the opening angle. We added in fig. 8 a comparison with
a Bag-of-Words retrieval method using SIFT feature and a
codebook of 1000 visual words.

A slicing defined by a 2◦ opening angle revealed to be the
best compromise for both visible/visible and visible/SWIR as-
sociation. With such parameters, the computation of association
between both sequences lasts 1 minutes and 30 seconds on
a desktop computer equipped with an Intel core i5 processor
and 8Gio of ram.

Figure 7: Similarity matrix of visible and SWIR sequences
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Figure 8: Precision-Recall curve for SWIR to visible association

B. Tests on our dataset with visual odometry

In this part, we apply our whole method with particle filter
on our own dataset. First run with GPS registration has been
done with a 1624× 1234 pixels size camera (fig. 9b). Second
run has been made on evening several weeks later with another
camera (752 × 480 pixels) (fig. 9a). On the fig. 10, we give
positions of the images in memory, estimated position of the



(a) Memory sequence (b) Live sequence

Figure 9: Live and memory sequences samples

vehicle by averaging particles position and an example of a
particles cloud computed during a step of our algorithm.

We notice that the live estimated positions based only on
vision sensors are generally close to the ground truth given by
the GPS data of the map. Sometimes, some successive faulty
odometry estimations can make the estimated path diverging
from the ground truth (like the bottom right path in fig. 10)
but are compensated several steps further thanks to a coherent
image retrieval matching.

Figure 10: Visual localization test with particle filter

V. CONCLUSION

We developed in this paper a global descriptor for visual
localization. This approach use geometric parameters given
by usual calibration matrix in order to compare data provided
by different cameras (optics, sensor size). We then compare
live signatures and signatures in memory, balancing the scores
thanks to a probabilistic filter.

The specificity of our work relies on its multi-sensors
approach. Our main contribution consists of using two different
cameras for mapping task on one hand and localization task on
the other hand. We moreover use cameras having far different
spectral range sensitivity: visible and SWIR spectra. Such
technical choices aim at bringing interoperability between
highly different sensors with a view to future mass market
systems sharing the same visual map.

VI. FUTURE WORKS

We hope to develop further this approach by testing other and
more complex mid-level encoding techniques as a first step, as

well as improving our probabilistic model for the filtering step.
Our choice will probably focus on particle filters more efficient
on scale factor computation. Another avenue would be to define
and generate a more evolved database structure, to implement
graph models modeling a more realistic neighborhood of a
place with several other nearest places. Furthermore, we would
like to tackle deeply the issue concerning high perceptual
changes.
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