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Abstract

We consider the problem of accurately estimating the reliability of workers based
on noisy labels they provide, which is a fundamental question in crowdsourcing.
We propose a novel lower bound on the minimax estimation error which applies
to any estimation procedure. We further propose Triangular Estimation (TE), an
algorithm for estimating the reliability of workers. TE has low complexity, may be
implemented in a streaming setting when labels are provided by workers in real
time, and does not rely on an iterative procedure. We prove that TE is minimax
optimal and matches our lower bound. We conclude by assessing the performance
of TE and other state-of-the-art algorithms on both synthetic and real-world data.

1 Introduction

The performance of many machine learning techniques, and in particular data classification, strongly
depends on the quality of the labeled data used in the initial training phase. A common way to
label new datasets is through crowdsourcing: many workers are asked to label data, typically texts
or images, in exchange of some low payment. Of course, crowdsourcing is prone to errors due to
the difficulty of some classification tasks, the low payment per task and the repetitive nature of the
job. Some workers may even introduce errors on purpose. Thus it is essential to assign the same
classification task to several workers and to learn the reliability of each worker through her past
activity so as to minimize the overall error rate and to improve the quality of the labeled dataset.

Learning the reliability of each worker is a tough problem because the true label of each task, the
so-called ground truth, is unknown; it is precisely the objective of crowdsourcing to guess the true
label. Thus the reliability of each worker must be inferred from the comparison of her labels on some
set of tasks with those of other workers on the same set of tasks.

In this paper, we consider binary labels and study the problem of estimating the workers reliability
based on the answers they provide to tasks. We make two novel contributions to that problem:

(i) We derive a lower bound on the minimax estimation error which applies to any estimator of
the workers reliability. In doing so we identify "hard" instances of the problem, and show that the
minimax error depends on two factors: the reliability of the three most informative workers and the
mean reliability of all workers.

(ii) We propose TE (Triangular Estimation), a novel algorithm for estimating the reliability of each
worker based on the correlations between triplets of workers. We analyze the performance of TE and
prove that it is minimax optimal in the sense that it matches the lower bound we previously derived.
Unlike most prior work, we provide non-asymptotic performance guarantees which hold even for a
finite number of workers and tasks. As our analysis reveals, non-asymptotic performance guarantees
require to use finer concentration arguments than asymptotic ones.

TE has low complexity in terms of memory space and computation time, does not require to store
the whole data set in memory and can be easily applied in a setting in which answers to tasks arrive
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sequentially, i.e., in a streaming setting. Finally, we compare the performance of TE to state-of-the-art
algorithms through numerical experiments using both synthetic and real datasets.

2 Related Work

The first problems of data classification using independent workers appeared in the medical context,
where each label refers to the state of a patient (e.g., sick or sane) and the workers are clinicians.
[Dawid and Skene, 1979] proposed an expectation-maximization (EM) algorithm, admitting that the
accuracy of the estimate was unknown. Several versions and extensions of this algorithm have since
been proposed and tested in various settings [Hui and Walter, 1980, Smyth et al., 1995, Albert and
Dodd, 2004, Raykar et al., 2010, Liu et al., 2012].

A number of Bayesian techniques have also been proposed and applied to this problem by [Raykar
et al., 2010, Welinder and Perona, 2010, Karger et al., 2011, Liu et al., 2012, Karger et al., 2014, 2013]
and references therein. Of particular interest is the belief-propagation (BP) algorithm of [Karger et al.,
2011], which is provably order-optimal in terms of the number of workers required per task for any
given target error rate, in the limit of an infinite number of tasks and an infinite population of workers.

Another family of algorithms is based on the spectral analysis of some matrix representing the
correlations between tasks or workers. [Ghosh et al., 2011] work on the task-task matrix whose
entries correspond to the number of workers having labeled two tasks in the same manner, while
[Dalvi et al., 2013] work on the worker-worker matrix whose entries correspond to the number
of tasks labeled in the same manner by two workers. Both obtain performance guarantees by the
perturbation analysis of the top eigenvector of the corresponding expected matrix. The BP algorithm
of Karger, Oh and Shah is in fact closely related to these spectral algorithms: their message-passing
scheme is very similar to the power-iteration method applied to the task-worker matrix, as observed
in [Karger et al., 2011].

Two notable recent contributions are [Chao and Dengyong, 2015] and [Zhang et al., 2014]. The
former provides performance guarantees for two versions of EM, and derives lower bounds on the
attainable prediction error (the probability of estimating labels incorrectly). The latter provides
lower bounds on the estimation error of the workers’ reliability as well as performance guarantees
for an improved version of EM relying on spectral methods in the initialization phase. Our lower
bound cannot be compared to that of [Chao and Dengyong, 2015] because it applies to the workers’
reliability and not the prediction error; and our lower bound is tighter than that of [Zhang et al., 2014].
Our estimator shares some features of the algorithm proposed by [Zhang et al., 2014] to initialize
EM, which suggests that the EM phase itself is not essential to attain minimax optimality.

All these algorithms require the storage of all labels in memory and, to the best of our knowledge, the
only known streaming algorithm is the recursive EM algorithm of [Wang et al., 2013], for which no
performance guarantees are available.

The remainder of the paper is organized as follows. In section 3 we state the problem and introduce
our notations. The important question of identifiability is addressed in section 4. In section 5 we
present a lower bound on the minimax error rate of any estimator. In section 6 we present TE, discuss
its compexity and prove that it is minimax optimal. In section 7 we present numerical experiments on
synthetic and real-world data sets and section 8 concludes the paper. Due to space constraints, we
only provide proof outlines for our two main results in this document. Complete proofs are presented
in the supplementary material.

3 Model

Consider n workers, for some integer n ≥ 3. Each task consists in determining the answer to a binary
question. The answer to task t, the “ground-truth", is denoted by G(t) ∈ {+1,−1}. We assume that
the random variables G(1), G(2), . . . are i.i.d. and centered, so that there is no bias towards one of
the answers.

Each worker provides an answer with probability α ∈ (0, 1]. When worker i ∈ {1, ..., n} provides
an answer, this answer is correct with probability 1

2 (1 + θi), independently of the other workers, for
some parameter θi ∈ [−1, 1] that we refer to as the reliability of worker i. If θi > 0 then worker i
tends to provide correct answers; if θi < 0 then worker i tends to provide incorrect anwsers; if θi = 0
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then worker i is non-informative. We denote by θ = (θ1, . . . , θn) the reliability vector. Both α and θ
are unknown.

Let Xi(t) ∈ {−1, 0, 1} be the output of worker i for task t, where the output 0 corresponds to the
absence of an answer. We have:

Xi(t) =


G(t) w.p. α 1+θi

2 ,

−G(t) w.p. α 1−θi
2

0 w.p. 1− α.
(1)

Since the workers are independent, the random variables X1(t), ..., Xn(t) are independent given
G(t), for each task t. We denote by X(t) the corresponding vector. The goal is to estimate the
ground-truth G(t) as accurately as possible by designing an estimator Ĝ(t) that minimizes the error
probability P(Ĝ(t) 6= G(t)). The estimator Ĝ(t) is adaptive and may be a function of X(1), ..., X(t)
but not of the unknown parameters α, θ.

It is well-known that, given θ and α = 1, an optimal estimator of G(t) is the weighted majority vote
[Nitzan and Paroush, 1982, Shapley and Grofman, 1984], namely

Ĝ(t) = 1{W (t) > 0} − 1{W (t) < 0}+ Z1{W (t) = 0}, (2)

where W (t) = 1
n

∑n
i=1 wiXi(t), wi = ln( 1+θi

1−θi ) is the weight of worker i (possibly infinite), and Z
is a Bernoulli random variable of parameter 1

2 over {+1,−1} (for random tie-breaking). We prove
this result for any α ∈ (0, 1].

Proposition 1 Assuming that θ is known, the estimator (2) is an optimal estimator of G(t).

Proof. Finding an optimal estimator of G(t) amounts to finding an optimal statistical test between
hypotheses {G(t) = +1} and {G(t) = −1}, under a symmetry constraint so that type I and type II
error probability are equal. For any x ∈ {−1, 0, 1}n, let L+(x) and L−(x) be the probabilities that
X(t) = x under hypotheses {G(t) = +1} and {G(t) = −1}, respectively. We have

L+(x) = H(x)

n∏
i=1

(1 + θi)
1{xi=+1}(1− θi)1{xi=−1},

L−(x) = H(x)

n∏
i=1

(1 + θi)
1{xi=−1}(1− θi)1{xi=+1},

where ` =
∑n
i=1 |xi| is the number of answers and H(x) = 1

2`
α`(1 − α)n−`. We deduce the

log-likelihood ratio ln
(
L+(x)
L−(x)

)
=
∑n
i=1 wixi. By the Neyman-Pearson theorem, for any level

of significance, there exists a and b such that the uniformly most powerful test for that level is:
1{wTx > a} − 1{wTx < a} + Z1{wTx = a}, where Z is a Bernoulli random variable of
parameter b over {+1,−1}. By symmetry, we must have a = 0 and b = 1

2 , as announced. �

This result shows that estimating the true answer G(t) reduces to estimating the unknown parameters
α and θ, which is the focus of the paper. Note that the problem of estimating θ is important in itself,
due to the presence of "spammers" (i.e., workers with low reliability); a good estimator can be used
by the crowdsourcing platform to incentivize good workers.

4 Identifiability

Estimating α and θ from X(1), ..., X(t) is not possible unless we have identifiability, namely
there cannot exist two distinct sets of parameters α, θ and α′, θ′ under which the distribution of
X(1), ..., X(t) is the same. Let X ∈ {−1, 0, 1}n be any sample, for some parameters α ∈ (0, 1]
and θ ∈ [−1, 1]n. The parameter α is clearly identifiable since α = P(X1 6= 0). The identifiability
of θ is less obvious. Assume for instance that θi = 0 for all i ≥ 3. It follows from (1) that for any
x ∈ {−1, 0, 1}n,

P(X = x) = H(x)×

{
1 + θ1θ2 if x1x2 = 1,
1− θ1θ2 if x1x2 = −1,
1 if x1x2 = 0.
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In particular, two parameters θ, θ′ such that θ1θ2 = θ′1θ
′
2 and θi = θ′i = 0 for all i ≥ 3 cannot

be distinguished. Similarly, by symmetry, two parameters θ, θ′ such that θ′ = −θ cannot be
distinguished. Let:

Θ =

{
θ ∈ [−1, 1]n :

n∑
i=1

1{θi 6= 0} ≥ 3,

n∑
i=1

θi > 0

}
.

The first condition states that there are at least 3 informative workers, the second that the average
reliability is positive.

Proposition 2 Any parameter θ ∈ Θ is identifiable.

Proof. Any parameter θ ∈ Θ can be expressed as a function of the covariance matrix of X (section 6
below): the absolute value and the sign of θ follow from (4) and (5), respectively. �

5 Lower bound on the minimax error

The estimation of α is straightforward and we here focus on the best estimation of θ one can expect,
assuming α is known. Specifically, we derive a lower bound on the minimax error of any estimator θ̂ of
θ. Define ||θ̂−θ||∞ = maxi=1,...,n |θ̂i−θi| and for all θ ∈ [−1, 1]n,A(θ) = mink maxi,j 6=k

√
|θiθj |

and B(θ) =
∑n
i=1 θi. Observe that Θ = {θ ∈ [−1, 1]n : A(θ) > 0, B(θ) > 0}. This suggests that

the estimation of θ becomes hard when either A(θ) or B(θ) is small. Define for any a, b ∈ (0, 1),
Θa,b = {θ ∈ [−1, 1]n : A(θ) ≥ a , B(θ) ≥ b}. We have the following lower bound on the minimax
error. As the proof reveals, the parameters a and b characterize the difficulty of estimating the absolute
value and the sign of θ, respectively.

Theorem 1 (Minimax error) Consider any estimator θ̂(t) of θ.

For any ε ∈ (0,min(a, (1− a)/2, 1/4)) and δ ∈ (0, 1/4), we have

min
θ∈Θa,b

P
(
||θ̂(t)− θ||∞ ≥ ε

)
≥ δ , ∀t ≤ max(T1, T2),

with T1 = c1
1−a
α2a4ε2 ln

(
1
4δ

)
, T2 = c2

(1−a)4(n−4)
α2a2b2 ln

(
1
4δ

)
and c1, c2 > 0 two universal constants.

Outline of proof. The proof is based on an information theoretic argument. Denote by Pθ the
distribution of X under parameter θ ∈ Θ, and D(.||.) the Kullback-Leibler (KL) divergence. The
main element of proof is lemma 1, where we bound D(Pθ′ ||Pθ) for two well chosen pairs of
parameters. The pair θ, θ′ in statement (i) is hard to distinguish when a is small, hence it is hard to
estimate the absolute value of θ. The pair θ, θ′ of statement (ii) is also hard to distinguish when a or
b are small, which shows that it is difficult to estimate the sign of θ. Proving lemma 1 is involved
because of the particular form of distribution Pθ, and requires careful manipulations of the likelihood
ratio. We conclude by reduction to a binary hypothesis test between θ and θ′ using lemma 2.

Lemma 1 (i) Let a ∈ (0, 1), θ = (1, a, a, 0, . . . , 0) and θ′ = (1 − 2ε, a
1−2ε ,

a
1−2ε , 0, . . . , 0). Then:

D(Pθ′ ||Pθ) ≤ 1
c1
α2a4ε2

1−a (ii) Let n > 4, define c = b/(n− 4), and θ = (a, a,−a,−a, c, . . . , c), θ′ =

(−a,−a, a, a, c, . . . , c). Then: D(Pθ′ ||Pθ) ≤ 1
c2

α2a2b2

(n−4)(1−a)4 .

Lemma 2 [Tsybakov, 2008, Theorem 2.2] Consider any estimator θ̂(t).

For any θ, θ′ ∈ Θ with ||θ − θ′||∞ ≥ 2ε we have:

min
(
Pθ(||θ̂(t)− θ||∞ ≥ ε),Pθ′(||θ̂(t)− θ′||∞ ≥ ε)

)
≥ 1

4 exp(−tD(Pθ′ ||Pθ))
.

Relation with prior work. The lower bound derived in [Zhang et al., 2014][Theorem 3] shows that
the minimax error of any estimator θ̂ must be greater than O((αt)−

1
2 ). Our lower bound is stricter,

and shows that the minimax error is in fact greater than O(a−2α−1t−
1
2 ). Another lower bound was

derived in [Chao and Dengyong, 2015][Theorems 3.4 and 3.5], but this concerns the prediction error
rate, that is P(Ĝ 6= G), so that it cannot be easily compared to our result.

4



6 Triangular estimation

We here present our estimator. The absolute value of the reliability of each worker k is estimated
through the correlation of her answers with those of the most informative pair i, j 6= k. We refer to
this algorithm as triangular estimation (TE). The sign of the reliability of each worker is estimated in
a second step. We use the convention that sign(0) = +.

Covariance matrix. Let X ∈ {−1, 0, 1}n be any sample, for some parameters α ∈ (0, 1] and
θ ∈ Θ. We shall see that the parameter θ could be recovered exactly if the covariance matrix of X
were perfectly known. For any i 6= j, let Cij be the covariance of Xi and Xj given that XiXj 6= 0
(that is, both workers i and j provide an answer). In view of (1),

Cij =
E(XiXj)

E(|XiXj |)
= θiθj . (3)

In particular, for any distinct indices i, j, k, CikCjk = θiθjθ
2
k = Cijθ

2
k. We deduce that, for any

k = 1, . . . , n and any pair i, j 6= k such that Cij 6= 0,

θ2
k =

CikCjk
Cij

. (4)

Note that such a pair exists for each k because θ ∈ Θ. To recover the sign of θk, we use the fact that
θk
∑n
i=1 θi = θ2

k +
∑
i 6=k Cik. Since θ ∈ Θ, we get

sign(θk) = sign

θ2
k +

∑
i6=k

Cik

 . (5)

The TE algorithm consists in estimating the covariance matrix to recover θ from the above expressions.

TE algorithm. At any time t, define

∀i, j = 1, . . . , n, Ĉij =

∑t
s=1Xi(s)Xj(s)

max
(∑t

s=1 |Xi(s)Xj(s)|, 1
) . (6)

For all k = 1, . . . , n, find the most informative pair (ik, jk) ∈ arg maxi 6=j 6=k |Ĉij | and let

|θ̂k| =


√∣∣∣∣ ĈikkĈjkkĈikjk

∣∣∣∣ if |Ĉikjk(t)| > 0,

0 otherwise.

Next, define k∗ = arg maxk

∣∣∣θ̂2
k +

∑
i6=k Ĉik

∣∣∣ and let

sign(θ̂k) =

{
sign(θ̂2

k∗ +
∑
i 6=k∗ Ĉik∗) if k = k∗,

sign(θ̂k∗Ĉkk∗) otherwise,

Complexity. First note that the TE algorithm is a streaming algorithm since Ĉij(t) can be written

Ĉij =
Mij

max(Nij , 1)
with Mij =

t∑
s=1

Xi(s)Xj(s) and Nij =

t∑
s=1

|Xi(s)Xj(s)|.

Thus TE requires O(n2) memory space (to store the matrices M and N ) and has a time complexity
of O(n2ln(n)) per task: O(n2) operations to update Ĉ, O(n2ln(n)) operations to sort the entries of
|Ĉ(t)|, O(n2) operations to compute |θ̂|, O(n2) operations to compute the sign of θ̂.
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Minimax optimality. The following result shows that the proposed estimator is minimax optimal.
Namely the sample complexity of our estimator matches the lower bound up to an additive logarithmic
term ln(n) and a multiplicative constant.

Theorem 2 Let θ ∈ Θa,b and denote by θ̂(t) the estimator defined above. For any ε ∈ (0,min( b3 , 1))
and δ ∈ (0, 1), we have

P(||θ̂(t)− θ||∞ ≥ ε) ≤ δ , ∀t ≥ max(T ′1, T
′
2),

with T ′1 = c′1
1

α2a4ε2 ln
(

6n2

δ

)
, T ′2 = c′2

n
α2a2b2 ln

(
4n2

δ

)
, and c′1, c

′
2 > 0 two universal constants.

Outline of proof. Define ||Ĉ − C||∞ = maxi,j:i 6=j |Ĉij − Cij |. The TE estimator is a function of
the empirical pairwise correlations (Ĉij)i,j and the sums

∑
j 6=i Ĉij . The main difficulty is to prove

lemma 3, a concentration inequality for
∑
j 6=i Ĉij .

Lemma 3 For all i = 1, . . . , n and all ε > 0,

P
(
|
∑
j 6=i

(Ĉij − Cij)| ≥ ε
)
≤ 2 exp

(
− ε2α2t

30 max(B(θ)2, n)

)
+ 2n exp

(
− tα2

8(n− 1)

)
.

Consider i fixed. We dissociate the set of tasks answered by each worker from the actual answers
and the truth. Let U = (Uj(t))j,t be i.i.d Bernoulli random variables with E(Uj(t)) = α and
V = (Vj(t))j,t be independent random variables on {−1, 1} with E(Vj(t)) = θj . One may readily
check that (Xj(t))j,t has the same distribution as (G(t)Uj(t)Vj(t))j,t. Hence, in distribution:

∑
j 6=i

Ĉij =
∑
j 6=i

t∑
s=1

Ui(s)Uj(s)Vi(s)Vj(s)

Nj
with Nj =

t∑
s=1

Ui(s)Uj(s).

We prove lemma 3 by conditionning with respect to U . Denote by PU the conditional probability
with respect to U . Define N = minj 6=iNij . We prove that for all ε ≥ 0:

PU
(∑
j 6=i

(Ĉij − Cij) ≥ ε
)
≤ e−

ε2

σ2 with S =

t∑
s=1

(∑
j 6=i

Ui(s)Uj(s)θj

)2

and σ2 =
(n− 1)N + S

N2
.

The quantity σ is an upper bound on the conditional variance of
∑
j 6=i Ĉij , which we control by

applying Chernoff’s inequality to both N and S. We get:

P(N ≤ α2t/2) ≤ (n− 1)e−
tα2

8 and P(S ≥ 2tα2 max(Bi(θ)
2, n− 1)) ≤ e−

tα2

3(n−1) .

Removing the conditionning on U yields the result. We conclude the proof of theorem 2 by linking
the fluctuations of Ĉ to that of θ̂ in lemma 4.

Lemma 4 If (a) ||Ĉ−C||∞ ≤ ε ≤ A2(θ) min( 1
2 ,

B(θ)
64 ) and (b) maxi |

∑
j 6=i Ĉij−Cij | ≤

A(θ)B(θ)
8 ,

then ||θ̂ − θ||∞ ≤ 24ε
A2(θ) .

Relation with prior work. Our upper bound brings improvement over [Zhang et al., 2014] as
follows. Two conditions are required for the upper bound of [Zhang et al., 2014][Theorem 4] to hold:
(i) it is required that maxi |θi| < 1, and (ii) the number of workers n must grow with both δ and
t, and in fact must depend on a and b, so that n has to be large if b is smaller than

√
n. Our result

does not require condition (i) to hold. Further there are values of a and b such that condition (ii) is
never satisfied, for instance n ≥ 5, a = 1

2 , b =
√
n−4
2 and θ = (a,−a, a,−a, b

n−4 , ...,
b

n−4 ) ∈ Θa,b.
For [Zhang et al., 2014][Theorem 4] to hold, n should satisfy n ≥ c3nln(t2n/δ) with c3 a universal
constant (see discussion in the supplement) and for t or 1/δ large enough no such n exists. It is noted
that for such values of a and b, our result remains informative. Our result shows that one can obtain a
minimax optimal algorithm for crowdsourcing which does not involve any EM step.
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The analysis of [Chao and Dengyong, 2015] also imposes n to grow with t and conditions on the
minimal value of b. Specifically the first and the last condition of [Chao and Dengyong, 2015][The-
orem 3.3], require that n ≥ ln(t) and that

∑
i θ

2
i ≥ 6ln(t). Using the previous example (even for

t = 3), this translates to b ≥ 2
√
n− 4.

In fact, the value b = O(
√
n) seems to mark the transition between "easy" and "hard" instances of the

crowdsourcing problem. Indeed, when n is large and b is large with respect to
√
n, then the majority

vote outputs the truth with high probability by the Central Limit Theorem.

7 Numerical Experiments

Synthetic data. We consider three instances: (i) n = 50, t = 103, α = 0.25, θi = a if i ≤ n/2 and
0 otherwise; (ii) n = 50, t = 104, α = 0.25, θ = (1, a, a, 0, ..., 0); (iii) n = 50, t = 104, α = 0.25,
a = 0.9, θ = (a,−a, a,−a, b

n−4 , ...,
b

n−4 ).

Instance (i) is an "easy" instance where half of the workers are informative, with A(θ) = a and
B(θ) = na/2. Instance (ii) is a "hard" instance, the difficulty being to estimate the absolute value
of θ accurately by identifying the 3 informative workers. Instance (iii) is another "hard" instance,
where estimating the sign of the components of θ is difficult. In particular, one must distinguish θ
from θ′ = (−a, a,−a, a, b

n−4 , ...,
b

n−4 ), otherwise a large error occurs.

Both "hard" instances (ii) and (iii) are inspired by our derivation of the lower bound and constitute
the hardest instances in Θa,b. For each instance we average the performance of algorithms on 103

independent runs and apply a random permutation of the components of θ before each run. We
consider the following algorithms: KOS (the BP algorithm of [Karger et al., 2011]), Maj (majority
voting), Oracle (weighted majority voting with optimal weights, the optimal estimator of the ground
truth), RoE (first spectral algorithm of [Dalvi et al., 2013]), EoR (second spectral algorithm of [Dalvi
et al., 2013]), GKM (spectral algorithm of [Ghosh et al., 2011]), S-EMk (EM algorithm with spectral
initialization of [Zhang et al., 2014] with k iterations of EM) and TE (our algorithm). We do not
present the estimation error of KOS, Maj and Oracle since these algorithms only predict the ground
truth but do not estimate θ directly.

The results are shown in Tables 1 and 2, where the best results are indicated in bold. The spectral
algorithms RoE, EoR and GKM tend to be outperformed by the other algorithms. To perform well,
GKM needs θ1 to be positive and large (see [Ghosh et al., 2011]); whenever θ1 ≤ 0 or |θ1| is small,
GKN tends to make a sign mistake causing a large error. Also the analysis of RoE and EoR assumes
that the task-worker graph is a random D-regular graph (so that the worker-worker matrix has a large
spectral gap). Here this assumption is violated and the practical performance suffers noticeably, so
that this limitation is not only theoretical. KOS performs consistently well, and seems immune to sign
ambiguity, see instance (iii). Further, while the analysis of KOS also assumes that the task-worker
graph is random D-regular, its practical performance does not seem sensitive to that assumption.
The performance of S-EM is good except when sign estimation is hard (instance (iii), b = 1). This
seems due to the fact that the initialization of S-EM (see the algorithm description) is not good in this
case. Hence the limitation of b being of order

√
n is not only theoretical but practical as well. In fact

(combining our results and the ideas of [Zhang et al., 2014]), this suggests a new algorithm where
one uses EM with TE as the initial value of θ.

Further, the number of iterations of EM brings significant gains in some cases and should affect
the universal constants in front of the various error bounds (providing theoretical evidence for
this seems non trival). TE performs consistently well except for (i) a = 0.3 (which we believe
is due to the fact that t is relatively small in that instance). In particular when sign estimation is
hard TE clearly outperforms the competing algorithms. This indeed suggests two regimes for sign
estimation: b = O(1) (hard regime) and b = O(

√
n) (easy regime).

Real-world data. We next consider 6 publicly available data sets (see [Whitehill et al., 2009, Zhou
et al., 2015] and summary information in Table 3), each consisting of labels provided by workers and
the ground truth. The density is the average number of labels per worker, i.e., α in our model. The
worker degree is the average number of tasks labeled by a worker.

First, for data sets with more than 2 possible label values, we split the label values into two groups and
associate them with −1 and +1 respectively. The partition of the labels is given in Table 3. Second,
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we remove any worker who provides less than 10 labels. Our preliminary numerical experiments
(not shown here for concision) show that without this, none of the studied algorithms even match the
majority consistently. Workers with low degree create noise and (to the best of our knowledge) any
theoretical analysis of crowdsourcing algorithms assumes that the worker degree is sufficiently large.
The performance of various algorithms is reported in Table 4. No information about the workers
reliability is available so we only report the prediction error P(Ĝ 6= G). Further, one cannot compare
algorithms to the Oracle, so that the main goal is to outperform the majority.

Apart from "Bird" and "Web", none of the algorithms seem to be able to significantly outperform the
majority and are sometimes noticeably worse. For "Web" which has both the largest number of labels
and a high worker degree, there is a significant gain over the majority vote, and TE, despite its low
complexity, slightly outperforms S-EM and is competitive with KOS and GKM which both perform
best on this dataset.

Instance RoE EoR GKM S-EM1 S-EM10 TE
(i) a = 0.3 0.200 0.131 0.146 0.100 0.041 0.134
(i) a = 0.9 0.274 0.265 0.271 0.022 0.022 0.038

(ii) a = 0.55 0.551 0.459 0.479 0.045 0.044 0.050
(ii) a = 0.95 0.528 0.522 0.541 0.034 0.033 0.039
(iii) b = 1 0.253 0.222 0.256 0.533 0.389 0.061
(iii) b =

√
n 0.105 0.075 0.085 0.437 0.030 0.045

Table 1: Synthetic data: estimation error E(||θ̂ − θ||∞).

Instance Oracle Maj KOS RoE EoR GKM S-EM1 S-EM10 TE
(i) a = 0.3 0.227 0.298 0.228 0.402 0.398 0.374 0.251 0.228 0.250
(i) a = 0.9 0.004 0.046 0.004 0.217 0.218 0.202 0.004 0.004 0.004

(ii) a = 0.55 0.284 0.441 0.292 0.496 0.497 0.495 0.284 0.285 0.284
(ii) a = 0.95 0.219 0.419 0.220 0.495 0.496 0.483 0.219 0.219 0.219
(iii) b = 1 0.181 0.472 0.185 0.443 0.455 0.386 0.388 0.404 0.192
(iii) b =

√
n 0.126 0.315 0.133 0.266 0.284 0.207 0.258 0.127 0.128

Table 2: Synthetic data: prediction error P(Ĝ 6= G).

Data Set # Tasks # Workers # Labels Density Worker Degree Label Domain
Bird 108 39 4,212 1 108 {0} vs {1}
Dog 807 109 8,070 0.09 74 {0,2} vs {1,3}

Duchenne 159 64 1,221 0.12 19 {0} vs {1}
RTE 800 164 8,000 0.06 49 {0} vs {1}
Temp 462 76 4,620 0.13 61 {1} vs {2}
Web 2,653 177 15,539 0.03 88 {1,2,3} vs {4,5}

Table 3: Summary of the real-world datasets.

Data Set Maj KOS RoE EoR GKM S-EM1 S-EM10 TE
Bird 0.24 0.28 0.29 0.29 0.28 0.20 0.28 0.18
Dog 0.18 0.19 0.18 0.18 0.20 0.24 0.17 0.20

Duchenne 0.28 0.30 0.29 0.28 0.29 0.28 0.30 0.26
RTE 0.10 0.50 0.50 0.89 0.49 0.32 0.16 0.38
Temp 0.06 0.43 0.24 0.10 0.43 0.06 0.06 0.08
Web 0.14 0.02 0.13 0.14 0.02 0.04 0.06 0.03

Table 4: Real-world data: prediction error P(Ĝ 6= G).

8 Conclusion

We have derived a minimax error lower bound for the crowdsourcing problem and have proposed
TE, a low-complexity algorithm which matches this lower bound. Our results open several questions
of interest. First, while recent work has shown that one can obtain strong theoretical guarantees by
combining one step of EM with a well-chosen initialization, we have shown that, at least in the case
of binary labels, one can forgo the EM phase altogether and still obtain both minimax optimality and
good numerical performance. It would be interesting to know if this is still possible when there are
more than two possible labels, and also if one can do so using a streaming algorithm.
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