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MODELLING BINARY ALLOY SOLIDIFICATION BY A

RANDOM PROJECTION METHOD

SABRINA CARPY AND HÉLÈNE MATHIS

Abstract. This paper adresses the numerical modelling of the solidification
of a binary alloy which obeys a liquidus-solidus phase diagram. In order to

capture the moving melting front, we introduce a Lagrange projection scheme

based a random sampling projection. Using a finite volume formulation, we
define accurate numerical fluxes for the temperature and concentration fields

which guarantee the sharp treatment of the boundary conditions at the mov-

ing front, especially the jump of the concentration according to the liquidus-
solidus diagram. We provide some numerical illustrations which assess the

good behaviour of the method : maximum principle, stability under CLF con-

dition, numerical convergence toward self-similar solutions, ability to handle
two melting fronts.
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1. Introduction

In the last decades considerable research has been devoted to the simulation of
liquid-solid phase change, which is of major importance in several industrial ap-
plications, for instance in metallurgical engineering [1, 5, 23], but also in the com-
prehension of complex natural phenomena, for example the melting of icy moons
orbiting giant planets [17, 13, 21]. Such problems are characterized by a mov-
ing interface separating the liquid and the solid phases. When the material is
pure, the interface is at a constant melting temperature and its motion is defined
by a Rankine–Hugoniot type jump relation of the heat fluxes at the melting free
boundary [1, 22]. This configuration, known as the two-phase Stefan problem, has
been the subject of a huge literature, from modelling and analysis to numerics, see
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[9, 15, 16, 18] and [19] for ar review. When a solute is present in the material,
the phase transition is then driven by a coupled heat and mass transfer process. It
induces a jump in concentration at the melting front while the temperature remains
continuous. The interface is at the melting temperature which is no longer constant
but depends on the concentration of the solute on the both sides of the melting
free boundary. The temperature is defined by the so-called liquidus–solidus phase
diagram, that is the equilibrium phase diagram of the mixture which prescribes the
temperature of the interface as a function of the concentrations of the solute in the
liquid and the solid phases that can coexist at thermodynamical equilibrium. Far
from the melting front, the problem is modelled by phasic heat and mass diffusion
equations given by the Fourier and the Fick laws. This formulation, often called
the Rubinstein’s model, has been studied, among other references, in the works
of Rubinstein [16], Alexiades, Solomon and Wilson [26, 1], Voller and co-authors
[23, 24, 25], Visintin [22]. When appropriate initial and boundary conditions are
considered, the one-dimensional model admits an analytical self-similar solution as
soon as the liquidus-solidus diagram has a linear shape [1]. We refer also to [19] for
a condensed summary of the properties and self-similar solutions of the Rubinstein
and Stefan-like models. While enriching the model by cross effect terms between
heat and mass diffusion, it is possible to exhibit properties of parabolicity and max-
imum principle. In [22], Visintin points out the importance of these cross effects
terms which allow to prove the existence of weak solutions in several space dimen-
sion. Note that, in the latter two references, the authors assume the occurence of a
mushy region, leading to a diffuse interface between the liquid and the solid phases,
and, in turn to a continuum concentration field. However, the applications we have
in mind come from the study of the hydrospheres of icy moons of the solar system.
Hence the characteristic length scale of the melting front is much smaller than the
characteristic length scale of the domain. Therefore it imposes a sharp description
of the melting boundary where the concentration is discontinuous across the solid-
ification front whereas the temperature remains continuous. For that purpose, we
will focus on the original sharp moving front model proposed by Rubinstein [16]
and provide a sharp numerical treatment of the boundary constraints imposed at
the interface.

As far as numerics is concerned, several methods have been proposed, initially
defined for Stefan-type problems and adapted to the coupling with mass diffusion.
The most popular methods are implicit in the sense that they do not rely on an
explicit representation of the interface. Some of these methods rely on diffuse inter-
face approximation and the appearance of a mushy region. For sake of completeness
we give also some insights of diffuse methods even if we focus on sharp interface
methods.

The enthalpy method consists in the evaluation of the latent heat to track the
moving front. The evolution of the latent heat is governed by the enthalpy (or
energy) conservation law and the enthalpy function is defined as a piecewise linear
function of the temperature. The jump of enthalpy at the front is due to the heat
released or absorbed during the solidification process. The works of Voller and
coauthors give a good understanding of the method, see for instance [23, 24, 25].
Based on a finite difference formulation, the method turns to be well-suited for dif-
fuse interface model and/or micro-scale description of the interface, but require high
order approximations to deal with sharp interface model [24]. Another well-known
approach, called phase-field method, consists in a reformulation of the problem:
the domain is parametrized by a phase field function which is a fixed constant in
each phase and varies smoothly within 0 and 1 in the diffuse interface region. The
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thickness of the interface is an artificial parameter of the problem and it is manda-
tory to provide both a phase-field model and a numerical scheme which converge
to the sharp model interface as the thickness parameter goes to zero. The question
of convergence is adressed for instance in [5] (see also [11] for the numerical as-
pects). The drawback of the method is that the discretization parameter has to be
much smaller than the thickness parameter leading to a CPU consuming method
to recover a sharp interface discretization.

The level set method are very popular for the tracking of sharp interface. It relies
on the definition of a level set function whose zero indicates the front position. This
function satisfies an additional transport equation, and the diversity of the methods
relies on the definition of this velocity. It also requires several regularization steps
which lead to a complex algorithm. There exists a large literature on this topic, see
for instance [9] and related works in the case of the two-phase Stefan problem, and
more recently, [20] for the Rubinstein’s model. Note that these references propose
finite differences approximation on cartesian grids. An extension of the method is
possible on unstructured meshes, see for instance [4, 10] for recent developments in
this direction.

We propose in this paper to adapt a Lagrange-projection method with random
sampling projection for the Stefan-like problems. The technique has been initially
developed for hyperbolic problems which exhibit sharp discontinuities: in [7] for
nonconservative hyperbolic problems for compressible materials, in [8] for traffic
flow models, in [2] for compressible fluid-particule interaction or in [3, 14] for the
simulation of two-fluid flows. In the Lagrangian step, the mesh cells adjacent to the
phase boundary are modified by its deplacement. On both sides of the boundary,
the diffusion equations of the temperature and the concentration are solved by an
explicit in time finite volume scheme within each phase. In order to come back to
the original mesh, we make use of a random sampling for projecting the moving
front at an interface of the original mesh. This technique avoids dealing with moving
mesh and, since it is similar to Glimm scheme method [12], it possesses statistically
conservation properties (see [14]).

The outline of the paper is as follow. Section 2 begins by an introduction to
the equilibrium thermodynamics of the binary alloy. Then we state the governing
equations of the melting problem and recall some properties of the model (existence
of weak solutions, similarity solution in 1D, parabolicity, maximum principle). In
Section 3 we present the Lagrange-remap method. We first depict the Lagrangian
step and the explicit finite volume scheme. Due to the constraints imposed at the
moving front, a special attention will be paid to the design of accurate numerical
fluxes for the temperature and the concentration fields in the Lagrangian step.
At the moving front, the Stefan condition imposes that the interface velocity is
proportional to the jump of gradient of temperature, so that the numerical fluxes
for the temperature field at the moving front must express this lake of conservation.
Conversely the diffusion of the concentration is conservative across the moving front,
leading to a jump of the concentration according to the liquidus-solidus diagram.
We prove that the Lagrangian step is stable under CFL conditions and ensures the
maximum principle. We emphasize that the numerical fluxes for the concentration
field at the moving front are consistent with the equilibrium phase diagram and do
not require the use of linear liquidus and solidus curves but are adapted to general
non-eutectic diagrams. The Section ends with a detailed algorithm of the random
projection step. Section 4 is devoted to numerical illustrations. Our method is
compared to a level set approach on a classical two-phase Stefan test case. Then
we compared our method to an exact solution of the Rubinstein’s model when the
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liquidus-solidus curves are linear. The Section ends with a non-standard test case
with two moving melting fronts obeying different liquidus-solidus diagrams.

2. A sharp interface binary mixture model

This Section concerns the modelling of a mixture of two components A and B,
that are soluble in each other, submitted to solidification or melting. We introduce a
model of one free moving boundary problem. Taking into account the concentration
of the component B in the solvent A, the model boils down to a Stefan-like problem
with thermodynamical constraints at the moving interface. We first describe the
equilibrium thermodynamics of a binary alloy by means of liquidus-solidus diagram.
Then we introduce Stefan-like model. Rewritting the model with a singular source
term allows to get rid of the free moving formulation and consider several interfaces.

c

SOLID

LIQUID

T (c)

cs cl

liquidus fl(c)

solidus fs(c)

Tm

.TA

.

10

TB

Figure 1. Phase diagram of the binary mixture

2.1. Equilibrium thermodynamics of a binary alloy. Consider a mixture of
two components A and B that are soluble in each other. We assume that the
components are intermixed on the atomic length-scale and that the mixture has a
constant density ρ. Let T be the temperature of the mixture and c ∈ [0, 1] be the
concentration of the component B in the solvent A. The mixture can be either in
its solid phase (with index s) or its liquid phase (with index l). The components A
and B are characterized by their melting temperature TA and TB respectively. An
interesting feature of this physical problem is that the concentration c admits a jump
from one phase to the other while the temperature remains continuous. One can
give a good representation of this phenomenon using an equilibrium phase diagram
in the (c, T ) plane as the one sketched in Figure 1. The upper curve, called the
liquidus line, corresponds to the freezing temperature of the liquid phase depending
on the concentration c and is given by the function fl : c ∈ [0, 1] 7→ T ∈ [TA, TB ].
The lower curve is the solidus line defined by the function fs : c ∈ [0, 1] 7→ T ∈
[TA, TB ] and represents the melting temperature of the solid phase depending on
the concentration. In the sequel we adopt the following assumptions.

Assumptions 2.1. The functions fk : c ∈ [0, 1] 7→ T ∈ [TA, TB ], k = l, s, are such
that

• fs(0) = fl(0) = TA and fs(1) = fl(1) = TB,
• fs and fl are strictly increasing or decreasing functions of the concentration,
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• there exists no concentration c̄ ∈]0, 1[ such that fs(c̄) = fl(c̄), i.e. we
restrict ourselves to noneutectic composite.

These assumptions are useful for theoretical and numerical considerations and
will be discussed in Section 3.1.

At the temperature TB < Tm < TA the liquidus curve (resp. solidus curve)
intersects the line T = Tm at the point cl (resp. cs). Hence at thermodynamical
equilibrium the interface has to be at the equilibrium temperature Tm to exhibit the
concentrations cl in the liquid phase and cs in the solid phase. The concentration
is thus a piecewise constant function with a jump between cl and cs at the melting
front.

Note that in numerous paper the authors define the zone between the liquidus
and the solidus lines as a mushy region. The reader will find comments on the
occurence of a mushy region in [1], see also [25, 24] for numerical purposes. This
interpretation leads to a diffuse interface model description. However, for the ap-
plications we have in mind, we will focus on the sharp moving interface problem
without appearance of any mushy region.

2.2. A sharp moving interface model. We focus here on a one moving boundary
problem. Assume the binary alloy occupies an one-dimensional open domain Ω =
[0,+∞[, separated into a solid and a liquid zones. Without loss of generality, we set
the solid zone in the left side of the domain, that is Ωs(t) := {(t, x)|t > 0, x < s(t)}
and the liquid zone in the right part with Ωl(t) := {(t, x)|t > 0, s(t) < x}. The
point separating the solid and the liquid phases determines the position s(t) of the
interface in time, initially located in s(0) = s0, which evolves in space and time
with velocity ṡ(t). We assume that (0) = s0 6= 0.

The model consists in diffusion equations on the temperature T and on the
concentration c which are deduced from the energy conservation and the Fourier’s
law together with the mass conservation principle and the Fick’s law. The model
reads

ρ∂t(cp,sT )(t, x)− ∂x(Ks∂xT )(t, x) = 0, for (t, x) ∈ Ωs(t), (1)

∂tc(t, x)− ∂x(Ds∂xc)(t, x) = 0, for (t, x) ∈ Ωs(t), (2)

ρ∂t(cp,lT )(t, x)− ∂x(Kl∂xT )(t, x) = 0, for (t, x) ∈ Ωl(t), (3)

∂tc(t, x)− ∂x(Dl∂xc)(t, x) = 0, for (t, x) ∈ Ωl(t), (4)

ρLṡ(t) = Ks∂xT (t, s(t)−)−Kl∂xT (t, s(t)+), (5)

ṡ(t)(c(t, s(t))+ − c(t, s(t)−)) = Ds∂xc(t, s(t)
−)−Dl∂xc(t, s(t)

+), (6)

T (t, s(t)) = Tm(t) = fs(c(t, s(t)
−)) = fl(c(t, s(t)

+)), (7)

where s(t)− denotes the left limit x → s(t) with x < s(t) (i.e. in the solid phase)
and s(t)+ is the right limit x → s(t) with x > s(t) (i.e. in the liquid phase).
Equations (1)-(4) are the phasic diffusion equations where ρ is the constant density
of the mixture, cp,k is the specific heat of the phase k = l, s [Jkg−1K−1], Kk is
the thermal conductivity [Wm−1K−1], Dk is the mass diffusivity [m2s−1]. The
equation (5) is the so-called Stefan condition which defines the front velocity as the
jump of heat flux at the interface, with L the latent heat of solidification [Jkg−1].
We assume the parameters L,Kk, Cp,k and Dk to be positive constants in each
phase k = l, s and do not depend on the temperature nor on the concentration.
The interface equation (6) expresses the jump of concentration at the interface
while equation (7) imposes the continuity of the temperature at the interface which
is given by the liquidus-solidus equilibrium.
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The model is endowed with the following initial conditions

s(0) = s0 6= 0, c(0, x) = ci(x) ∈ [0, 1], for x ∈ Ω

T (0, x) =

{
Ti,s < TA, if x < s0,

Ti,l ≥ fl(ci(x)), if x > s0,

(8)

and we consider in the sequel the following boundary conditions for the temperature
and concentration fields

T (t, 0) = Ti,s < TA, ∂xT (t, x) = 0 for x→ +∞,
∂xc(t, x) = 0 for x→ +∞ and x = 0.

(9)

We now state some properties of the model. We refer to the given references for
the detailed proofs.

According to [1] and [19], the one-dimensional system (1)-(7) is parabolic and
preserves the positivity of the temperature T and a concentration c between 0 and
1. Furthermore, when endowed with conditions (8) and (9) and with particular
choice of liquidus-solidus diagram, it admits a self-similar solution, for which the
concentration in the solid phase is constant, the temperature and the concentration
in the liquid phase are error functions of the self-similar variable x/

√
t and the

interface position s(t) is proportional to
√
t. In Section 4.2, we provide a particular

self-similar solution of (1)-(7) with modified initial boundary conditions.
The model (1)-(7) does not account for cross effect terms between heat and mass

diffusion: a mass flux should be induced by the temperature gradient (this is the
Soret effect) and a heat flux should be caused by the mass transfer (known as the
Dufour effect). In [1], the authors enhance these terms to the multi-dimensional
system and prove its parabolicity under condition. Moreover, according to [22],
these terms are mandatory to prove the existence of a weak solution to the multi-
dimensional system. Note that this terms are not quantitatively significant, espe-
cially in one-dimension, that’s why we choose to get rid of them.

An interesting feature of the moving boundary model (1)-(7) is that it can be
written under the following equivalent condensed form, for t > 0, x ∈ Ω,

ρ∂t(cpT )− ∂x(K∂xT ) = − (ρL+ ρTm(cp,s − cp,l)) ṡ(t)δ0(x− s(t)), (10)

∂tc− ∂x(D∂xc) = 0, (11)

together with the interface condition (7) and introducing the piecewise constant
functions

(cp,K,D) = (cp,s,Ks, Ds)10≤x<s(t) + (cp,l,Kl, Dl)1x>s(t). (12)

The notation δ0(.) stands for the Dirac mass so that the source term in the first
equation is isolated and active only at the interface s(t). Computing Rankine-
Hugoniot relations for (10)-(11) at the interface s(t) leads to

ṡ(t)ρ
[
cp,lT (t, s(t)+)− cp,sT (t, s(t)−)

]
= −Kl∂xT (t, s(t)+) +Ks∂xT (t, s(t)−) (13)

− (ρL+ ρTm(cp,s − cp,l)) ṡ(t),
ṡ(t)

[
c(t, s(t)+)− c(t, s(t)−)

]
= −Dl∂xc(t, s(t)

+) +Ds∂xc(t, s(t)
−). (14)

Thanks to the liquidus-solidus equilibrium (7), the jump relation (13) boils down to
the Stefan condition (5), while (14) complies with the relation (6). Hence the inter-
face constraints are implicitly contained in the condensed model (7)-(10)-(11). Note
that the computation of the interface constraints by means of Rankine-Hugoniot
relations has been conducted in numerous works, see for instance [22] and [1]. The
singular source term formulation allows to get rid of the implicit definition of the
interface like for free boundaries problem formulation. Moreover the heat and mass
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equations are now stated in the whole domain Ω without distinguishing the liquid
and the solid zones. It enables to handle several moving fronts in a simpler manner.

3. Random choice interface capturing method

We now turn to the approximation of the reformulated model (10)-(11)-(7). We
adapt the Lagrange-projection method with random sampling remap developed in
[6] for the computation of nonclassical shocks of scalar conservation laws, in [8] for
traffic flow model, in [2] for the interaction of a solid particule with a compressible
fluid and in [3, 14] for the interface tracking in a compressible two-phase flow. The
method consists in two steps. In a first step we use a finite volume approximation
of the temperature and the concentration fields with appropriate numerical fluxes.
Since the singular source term is only active at the interface, the temperature
and the concentration equations are conservative far from the interface. Hence we
consider classical conservative numerical fluxes in the solid and liquid domains. A
special attention is paid to the definition of the numerical fluxes at the melting front
in order to be consistent with the interface constraints (5) and (7). First a notable
feature is the shape of the space-time cells on both side of the interface. Since the
melting interface is moving, the neighbouring space-time cells of the interface are
trapezoidal (see Figure 2). This leads to a particular definition of the finite volume
scheme in these two cells. Second the difference between the temperature fluxes
at the moving interface corresponds to the lake of conservation due to the singular
source term (see (10)). Hence we design in Section 3.1.1 a well-balanced scheme
for the temperature. The numerical scheme admits good properties (continuity of
the temperature at the interface, positivity). Then we build the numerical flux
for the concentration in Section 3.1.2. It complies with the conservation form of
the concentration equation (see (11)) and guarantees the jump of the concentration
according to general noneutectic liquidus-solidus diagram, following Figure 1. Again
the finite volume scheme accounts for the trapezoidal shape of the space-time cells
on both side of the moving interface. We emphasize that we consider an explicit
time-discretization (comments on implicit integration are given in conclusion).

The second step consists in a remap stage: the front is placed at a grid interface
at each time step by mean of random sampling. This avoids the use of a moving
mesh which makes the method easier to implement. In Section 3.2 we provide the
algorithm of the random projection step. The projection is active at the moving
front only which implies that the scheme is statistically conservative (we refer to
[3] for numerical illustrations and [14] for a detailed proof).

3.1. Lagrangian step and numerical fluxes. We consider a uniform mesh of the
one-dimensional domain Ω with cells Ci = [xi−1/2, xi+1/2[, centered in xi = i∆x,
i ∈ Z. The computational domain is assumed to be infinite to avoid difficulties
due to boundary conditions (the questions of boundary conditions will be adressed
in the next section depending on the considered test case). We denote by ∆t the
time step and by Tn

i and cni a constant per cell approximation of the temperature
T and the concentration c at time tn = n∆t within the cell Ci. Let sn be the
position of the moving front at time tn, and assume that it coincides with the
grid interface sn = x1/2. At this stage, we assume that the front evolves with the

constant velocity v between tn and tn+1, such that, before the random projection
step, its position at time tn+1 is s̃n+1 = x1/2 + v∆t. To avoid the disappearance of
a cell, we classically impose

|v| ≤ ∆x

∆t
. (15)

Since sn = x1/2, the cells Ci with i ≤ 0 (resp. i ≥ 1) belong to the solid domain
Ωs (resp. the liquid domain Ωl).
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The purpose of the lagrangian step is to compute the approximated temperature
and concentration field T̃n+1

i , c̃n+1
i within the cell Ci, i ∈ Z, using a finite volume

approximation and appropriate numerical fluxes at the grid interfaces. Since the
temperature and the concentration have different behaviour at the moving front
and since the equations (10)-(11) are coupled solely by the singular source term
and the constraint (7), we can distinguish the construction of the numerical fluxes
of the temperature from those of the concentration.

SOLID LIQUID

x

t
tn

tn+1

g
T
,0

(T
n −
1
,
T

n 0
)

g
T
,0

(T
n 1
,
T

n 2
)

g
− T
,v

(T
n 0
,
T

n 1
)

g
+ T
,v

(T
n 0
,
T

n 1
)

x−1/2 x1/2 = sn x3/2

Tn
0

T̃n+1
1T̃n+1

0

Tn
1Tn

−1

T̃n+1
−1

Tn
2

T̃n+1
2

s̃n+1 = sn + v∆t

Figure 2. Lagrangian step for the temperature field. Far from
the moving front, a classical monotone numerical flux gT,0 is used.
At the interface one uses the numerical fluxes g−T,v and g+

T,v (see

(37)) which take into account the singular source term in equation
(10).

3.1.1. Numerical fluxes for the temperature. We focus on the discretization of the
heat equation

ρ∂t(cpT )− ∂x(K∂xT ) = −ρ(L+ Tm(cp,s − cp,l)ṡ(t))δ0(x− s(t)),
t ∈ [tn, tn+1[, x ∈ Ω,

T (tn, x) =
∑

i∈Z T
n
i 1[xi−1/2,xi+1/2[,

s(tn) = x1/2,

T (tn, s(tn)) = Tm,

ṡ(t) = v,∀t > 0,

(16)

between time tn and tn+1, where the interface temperature Tm and velocity v ∈ R
are given and the coefficient cp and K admit a jump at the interface following (12).

Far from the moving front, the finite volume formulation corresponds to the
integration of the heat equation (16) on the space-time rectangle Ci × (tn, tn+1)
(see Figure 2). It yields for all i 6= 0, 1

T̃n+1
i = Tn

i −
∆t

∆x
(gT,0(Tn

i , T
n
i+1)− gT,0(Tn

i−1, T
n
i )), (17)

where the numerical flux gT,0 is consistent with the heat flux −Kk/(ρcp,k)∂xT
within the phasic subdomain Ωk, k = l, s. In practice we consider the first order
approximation

gT,0(Tn
i , T

n
i+1) = −Ki/(ρcp,i)

Tn
i+1 − Tn

i

∆x
, i 6= 0, 1. (18)

We now focus on the definition of finite volume scheme near the moving front.
The integration of the heat equation (16) on the space-time trapezoid (x−1/2, t

n)−
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(x1/2, t
n)− (x1/2 + v∆t, tn+1)− (x−1/2, t

n+1) (see Figure 2) leads to the following
approximation of the temperature

(∆x+ v∆t)T̃n+1
0 = ∆xTn

0 −∆t(g−T,v(Tn
0 , T

n
1 )− gT,0(Tn

−1, T
n
0 )), (19)

where the flux gT,0(., .) is classically defined by (18) whereas the flux g−T,v(Tn
0 , T

n
1 )

has to be consistent with the lagrangian heat flux −Ks/(ρcp,s)∂xT − vT at the
moving front. Similarly the integration of the heat equation on the space-time
trapezoid (x1/2, t

n)− (x3/2, t
n)− (x3/2, t

n+1)− (x1/2 + v∆t, tn+1) gives

(∆x− v∆t)T̃n+1
1 = ∆xTn

1 −∆t(gT,0(Tn
1 , T

n
2 )− g+

T,v(Tn
0 , T

n
1 )), (20)

where gT,0 is again given by (18) and g+
T,v(Tn

0 , T
n
1 ) must be consistent with the

lagrangian flux−Kl/(ρcp,l)∂xT −vT at the moving front. We consider the following
numerical fluxes

g−T,v(T0, T1) = − Ks

ρcp,s

Tm − T0

∆x/2
− vP−(x1/2 + v∆t/2),

g+
T,v(T0, T1) = − Kl

ρcp,l

T1 − Tm
∆x/2

− vP+(x1/2 + v∆t/2),

(21)

with

P−(x) =
Tn

1 − Tm
∆x/2

(x− x1/2) + Tm, P+(x) =
Tm − Tn

0

∆x/2
(x− x0) + Tn

0 . (22)

The function P+ (resp. P−) is a first order Lagrange polynomial defined by the
points (x0, T

n
0 ) (resp. (x1, T1)) and (x1/2, Tm), such that P±(x1/2 + v∆t/2) corre-

sponds to a first order approximation of the temperature at the point x1/2 + v∆t/2

and ensures P±(x1/2) = Tm.

Proposition 3.1. Consider a datum (Tn
i )i∈Z such that Tn

i ≥ 0, ∀i ∈ Z. Under the
stability condition

∆t ≤ ∆x2/(3 min(αl, αs)), (23)

with αk = Kk/(ρcp,k), k = l, s, the scheme (17)-(22) guarantees the positivity of

the temperature, i.e. T̃n+1
i ≥ 0, ∀i ∈ Z.

Moreover, suppose cp,s = cp,l and Ks = Kl and consider a initial datum Tn
i =

1
∆x

∫
Cn

i
βx dx with β ∈ R and fix Tm = βx1/2. Then, the scheme exactly preserves

the initial linear profile, i.e. T̃n+1
i = 1

∆x

∫
C̃n+1

i
βx dx, ∀i ∈ Z.

Proof. Positivity. The positivity is a consequence of the monotonicity of the scheme
(17)-(22). For i < 0 ∈ Z, the scheme reads

T̃n+1
i = Tn

i (1− 2αi∆t/∆x
2) + (Tn

i+1 + Tn
i−1)αi∆t/∆x

2

=: F(Tn
i−1, T

n
i , T

n
i+1).

(24)

The function F is nondecreasing with respect to its three arguments if ∆t ≤
∆x2/(2αs). Moreover F(0, 0, 0) = 0. Hence T̃n+1

i ≥ 0. The same construction
holds in the liquid domain with the condition ∆t ≤ ∆x2/(2αl). Focus now on the
cell i = 0. One has

(∆x+ v∆t)T̃n+1
0 = Tn

0 (∆x− 3αs∆t/∆x) + Tn
1 v

2∆t2/∆x+ Tn
−1αs∆t/∆x

+ Tm∆t/∆x(2αs − v(v∆t−∆x))

=: F0(Tn
−1, T

n
0 , T

n
1 ).

(25)

One observes that the function F0 is nondecreasing with respect to its three argu-
ments if ∆t ≤ ∆x2/(3αs) and satisfies F0(0, 0, 0) = 0. The same holds for i = 1
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with a function F1(Tn
0 , T

n
1 , T

n
2 ) which is nondecreasing if ∆t ≤ ∆x2/(3αl) and

satisfies F1(0, 0, 0) = 0. Hence, denoting

T∆(t, x) =
∑
n∈N

∑
i∈Z

Tn
i 1[n∆t,(n+1)∆t[×Ci

(t, x),

one has 0 ≤ T∆(t, x) for a.e. t > 0 and x ∈ R as soon as (23) is fulfilled.
Preservation of stationary solutions. Far from the interface, the consistency of

the numerical flux gT,0 implies that T̃ 1
i = βxi, ∀i 6= 0, 1. We now focus on the cell

C0. At time t1, the cell C0 becomes [x−1/2, x1/2 +v∆t]. Furthermore the numerical
scheme (19) with the initial datum gives

(∆x+ v∆t)T̃ 1
0 = (∆x+ v∆t)β(x0 + v∆t/2) =

∫ x1/2+v∆t

x−1/2

βx dx.

Hence the linear profile is preserved on the moving cell C0. The same property
holds in the cell C1 which coincides, at time t1, with [x1/2 + v∆t, x3/2] since the
scheme (20) gives

(∆x− v∆t)T̃ 1
1 =

∫ x3/2

x1/2+v∆t

βxdx.

By induction the scheme preserves stationnary profiles for any n ≥ 1. �

3.1.2. Numerical flux for the concentration. We now turn to the finite volume ap-
proximation of the mass diffusion

∂tc− ∂x(D∂xc) = 0, t ∈ [tn, tn+1[, x ∈ Ω,

c(tn, x) =
∑

i∈Z c
n
i 1[xi−1/2,xi+1/2[,

s(tn) = x1/2,

ṡ(t) = v, ∀t > 0,

c(tn, s(tn)−) 6= c(tn, s(tn)+),

fs(c(t
n, s(tn)−)) = fl(c(t

n, s(tn)+)),

(26)

between times tn and tn+1 where the diffusion coefficient D admits a jump at
the interface following (12). Far from the moving front, the integration of the
mass diffusion on the rectangle Ci × (tn, tn+1) leads to the following finite volume
formulation for all i 6= 0, 1

c̃n+1
i = cni −

∆t

∆x
(gc,0(cni , c

n
i+1)− gc,0(cni−1, c

n
i )), (27)

where the numerical flux gc,0 is consistent with the mass flux −D∂xc.
Like for the temperature field, we choose the first order approximation

gc,0(cni , c
n
i+1) = −Di

cni+1 − cni
∆x

. (28)

Near the moving front the numerical scheme has to guarantee the jump of
the concentration at the front and the liquidus-solidus constraint fs(c(t, s(t)

−)) =
fl(c(t, s(t)

+)). We introduce the numerical flux g?c,v which is consistent with the
lagrangian flux at the interface −D∂xc− vc and copes with the conservation of the
concentration equation. The scheme writes

(∆x+ v∆t)c̃n+1
0 = ∆xcn0 −∆t(g?c,v(cn0 , c

n
1 )− gc,0(cn−1, c

n
0 )),

(∆x− v∆t)c̃n+1
1 = ∆xcn1 −∆t(gc,0(cn1 , c

n
2 )− g?c,v(cn0 , c

n
1 )),

(29)
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where the numerical flux g?c,v is defined by

g?c,v(cn0 , c
n
1 ) =


−Dl

cn1 − c
∆x/2

− vP (x1/2 + v∆t/2), with c such that H(c̄) = 0,

−Ds
c− cn0
∆x/2

− vP (x1/2 + v∆t/2), with c such that H(c) = 0,

(30)
where

H(c) = c(Dl −
v

2
(∆x+ v∆t)) + f−1

s ◦ fl(c)(Ds +
v

2
(∆x− v∆t))

− cn1 (Dl − v2∆t/2)− cn0 (Ds − v2∆t/2),

H(c) = f−1
l ◦ fs(c)(Dl −

v

2
(∆x+ v∆t)) + c(Ds +

v

2
(∆x− v∆t))

− cn1 (Dl − v2∆t/2)− cn0 (Ds − v2∆t/2),

(31)

and

P (x) = cn0 +
c− cn0
∆x/2

(x− x0), P (x) = c+
cn1 − c
∆x/2

(x− x1/2). (32)

The quantity c is an approximation of the concentration c(t, s(t)+) while c ap-
proaches c(t, s(t)−). The functions H and H are such that the liquidus-solidus
constraint is satisfied at the interface i.e. fs(c) = fl(c). The definition of the nu-
merical flux strongly relies on the existence of a unique concentration c solution of
H(c) = 0 (or c solution of H(c) = 0).

Proposition 3.2. Assume that cn1 and cn0 belong to [0, 1] and that Assumptions 2.1
on the liquidus-solidus diagram hold. Under the stability condition

∆t ≤ 2
max(Ds, Dl)

v2
, (33)

then there exist a unique c̄ solution of H(x) = 0 and an unique c solution of
H(x) = 0. Furthermore c and c belong to [0, 1].

Proof. The function H is strictly increasing as soon as (33) holds. Then observe
that H̄(0) = −Dlc

n
1 −Dsc

n
0 ≤ 0 and that H̄(1) = Dl(1−cn1 )+Ds(1−cn0 ) ≥ 0. Thus

according to the intermediate value theorem, there exists an unique concentration
c̄ such that H(c̄) = 0. The same arguments hold for H. �

Note that the scheme guarantees both the jump condition (6) and the liquidus-
solidus constraint (7) by construction.

Proposition 3.3. Let (c0i )i∈Z such that 0 ≤ c0i ≤ 1, ∀i ∈ N. Assume the stability
conditions

∆t ≤ ∆x2

3 min(Dl, Ds)
(34)

and (33) hold. Then the scheme (27)-(31) guarantees 0 ≤ c̃n+1
i ≤ 1,∀i ∈ Z.

Proof. As in the case of temperature, the positivity is a consequence of the mono-
tonicity of the scheme. For i ∈ Z, i 6= 1, 0, the scheme reads

c̃n+1
i = cni (1− 2Di∆t/∆x

2) + (cni+1 + cni−1)Di∆t/∆x
2

=: F(cni−1, c
n
i , c

n
i+1).

The function F is nondecreasing with respect to its three arguments if ∆t ≤
∆x2/(2Di). Moreover F(0, 0, 0) = 0 and F(1, 1, 1) = 1. Then c̃n+1

i ∈ [0, 1] if
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cni ∈ [0, 1]. Focus now on the cell i = 0. According to Proposition 3.2, there exists
an unique c ∈ [0, 1] such that H(c) = 0. The scheme writes

(∆x+ v∆t)c̃n+1
0 = cn0 (∆x− 3Ds∆t/∆x) + cn−1Ds∆t/∆x

+ c∆t(v + 2Ds/∆x− v2∆t/∆x)

=: F0(cn−1, c
n
0 , c).

The function F0 is nondecreasing with respect to its three arguments if ∆t ≤ ∆x2

3Ds

and ∆t ≤ 2Ds

v2
+

∆x

v
. The latter condition boils down to the sum of the constraints

(15) and (33). Moreover F0(0, 0, 0) = 0 and F0(1, 1, 1) = 1. Then by a monotonicity
argument the scheme is positive. The same arguments hold in the liquid region. �

3.2. Projection step and general algorithm. We now turn to the projection
step and provide the algorithm for the whole model (10)-(11)-(7).

We denote sn the position of the interface at time tn and assume that it co-
incides with an interface of the mesh. The purpose of the following algorithm is
to determine randomly the position sn+1 of the interface at time tn+1 when it is
moving with the speed vn during the time interval [tn, tn+1[ and to project it on
the grid.

The general algorithm is the following.

(1) Initialization. Start from (Tn
i )i∈Z, (cni )i∈Z, sn and vn which respectively

denote the piecewise constant per cell temperature and concentration ap-
proximation, the position of the interface and its velocity at time tn. As-
sume the interface coincides with a grid interface sn = xIn+1/2 (see Figure
3).

(2) Lagrangian step.
(a) Far from the interface sn. Compute the approximate temperature

T̃n+1
i and c̃n+1

i using (17) and (27), ∀i 6= In, In + 1.

(b) On both sides of the interface sn. Compute the approximations c̃n+1
In

and c̃n+1
In+1 using (29) and the numerical flux (30)-(31). Compute the

approximations T̃n+1
In and T̃n+1

In+1 using (19)-(20) and the numerical
fluxes (37)-(22).

(3) Random projection step.
(a) Build a sequence of pseudo random numbers yn ∈ (0,∆x) (see details

below).
(b) Project the new interface sn+1 depending on the sign of yn + vn∆t as

follow (see Figure 3).
• If vn > 0, then

(Tn+1
In , cn+1

In ) = (T̃n+1
In , c̃n+1

In )

(In+1, Tn+1
In+1, c

n+1
In+1) =

{
(In + 1, T̃n+1

In , c̃n+1
In ) if yn < vn∆t

(In, T̃n+1
In+1, c̃

n+1
In+1) else,

• If vn < 0, then (In+1, Tn+1
In , cn+1

In ) =

{
(In, T̃n+1

In , c̃n+1
In ) if yn > −vn∆t

(In − 1, T̃n+1
In+1, c̃

n+1
In+1) else,

(Tn+1
In+1, c

n+1
In+1) = (T̃n+1

In+1, c̃
n+1
In+1).

(c) Update the velocity vn+1 using the jump relation on the concentration
field as follow

vn+1 =

(
Dl

cnIn+1 − cn

∆x/2
−Ds

cn − cnIn

∆x/2

)
/(cn − cn), (35)
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where cn and cn are given by (31).

Let us explain the projection step 3b with help of Figure 3. In Figure 3-top,
the random variable satisfies 0 < yn < vn∆t, which means that the point sn + y
belongs to the interval of T̃n+1

In . Hence at time tn+1, the interface is located at

sn+1 = In+1 + 1/2 = In + 3/2, that is In+1 = In + 1, (Tn+1
In , cn+1

In ) = (T̃n+1
In , c̃n+1

In )

and (Tn+1
In+1, c

n+1
In+1) = (T̃n+1

In , c̃n+1
In ). The converse case yn < vn∆t is sketched in

Figure 3-bottom.
The projection step 3b relies on the definition of the pseudo-random sequence

yn ∈ (0,∆x) in step 3a. In practice we build a the low-discrepancy (k1, k2) van der
Corput sequence computed with relative prime parameters k1 = 3 < k2 = 5. We
refer the reader to [3] and [14] for C algorithm and details the random projection
method.

Following [20], the velocity update at step 3c is obtained by mass conservation
before sampling) and uses a discrete version the Rankine-Hugoniot condition of the
concentration field (6). Note that in the case of the Stefan problem, that is when
the concentration field is not taken into account, the velocity is updated using only
the Stefan condition (5). In practice, we use

ρLvn+1 = (g̃−T,v(Tn
In , Tn

In+1)− g̃+
T,v(Tn

In , Tn
In+1)), (36)

with

g̃−T,v(Tn
In , Tn

In+1) = −Ks
Tm − Tn

In

∆x/2
− vnP−(x1/2 + vn∆t/2),

g̃+
T,v(Tn

In , Tn
In+1) = −Kl

Tn
In − Tm
∆x/2

− vnP+(x1/2 + vn∆t/2),

(37)

and the polynomial P± defined in (22). Since the numerical fluxes are consistent
with the lagrangian heat flux −K/(ρcp)∂xT−vT , the relation (35) is thus consistent
with the Stefan condition (5).

Observe that we choose to compute the velocity vn+1 explicitly using the nu-
merical fluxes (37) evaluated at time tn.

4. Numerical results

4.1. A two-phase Stefan problem. This first test case consists in the a simple
two-phase Stefan problem without mass diffusion nor solidus-liquidus constraint at
the interface. Then the model boils down to phasic equations (1)-(3) together with
the Stefan condition (5) or equivalently to (10) with T (t, s(t)) = Tm. In [15] the
authors provide an exact solution for this problem when considering a semi-infinit
domain and homogeneous Neumann boundary conditions i.e. ∂xT (t, x) = 0, for
x ∈ ∂Ω. For sake of completness we recall the formula provided in [15]. Consider
cp,l = cp,s = ρ = 1 and the initial piecewise constant temperature profile

T (0, x) =

 T 0
l , 0 < x < s(0) (liquid zone),
Tm, x = s(0) (melting temperature at the interface),
T 0
s , s(0) < x (solid zone),

the solution reads

T (t, x) =


T 0
l (erfc((x− s(0)/2

√
Klt))− erfc(λ/

√
Kl))

2− erfc(λ/
√
Kl)

, if x < s(t),

T 0
s − T 0

s

erfc((x− s(0)/2
√
Kst)

erfc(λ/
√
Ks)

, if x > s(t),

s(t) = s(0) + 2λ
√
t.

The value λ is solution of a non linear equation, which for the set of parameters
L = 0.53, Kl = 0.005, Ks = 1, cl = cs = 1 = ρ = 1, is λ = 0.122595 (see again
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tn x

tn+1

In − 1/2 In + 3/2sn = In + 1/2

Tn
In−1 Tn

In Tn
In+1

T̃n+1
In−1 T̃n+1

In T̃n+1
In+1

Tn+1
In = T̃n+1

In Tn+1
In+1 = T̃n+1

In

sn + vn∆tsn + yn sn+1 = In+1 + 1/2

tn x

tn+1

In − 1/2 In + 3/2

sn+1

sn = In + 1/2

Tn
In−1 Tn

In Tn
In+1

T̃n+1
In−1 T̃n+1

In T̃n+1
In+1

Tn+1
In = T̃n+1

In Tn+1
In+1 = T̃n+1

In+1

sn + vn∆t sn + yn

Figure 3. Random projection step (for vn > 0). Top: the random
variable satisfies 0 < yn < vn∆t (see the red diamond at the
left of the moving interface). Then the moving front evolves from
sn = In + 1/2 to sn+1 = In+1 = In + 1. Bottom: conversely if
∆x > yn > vn∆t (see the red diamond at the right of the moving
front), then the interface remains fixed from time tn to tn+1.

[15]). The initial phasic temperatures are T 0
s = 0.1 and T 0

l = 0.53, which means
that the solid phase is artificially superheated.

We compare our Random Choice Method (RCM) to the explicit in time level set
method developed in [9]. For both numerical methods we consider a uniform mesh
of [0, 5] with 2000 cells and a final time Tfinal = 0.25s. In Figure 4 one can observe
that both numerical method give similar results compared to the exact solution.
When zooming on the interface (Figure 4-bottom), one observes that the random
sampling method is more precise. When focusing on the position of the interface in
time, one can observe on Figure 5-bottom that the Random Choice Method yields
a curve with stepped profile. This is due to the random sampling done at each time
step at the interface.

4.2. Rubinstein test case: comparison toward an exact solution. When
considering linear liquidus-solidus diagram, it is possible to compute analytical
solutions of the Rubinstein model. Following the proof of [26] (see also similarity
solutions listed in the review of Tarzia [18] for numerous Stefan-like problems), we
compute a similarity solution as a function of (x − s0)/

√
t on the infinite domain

Ω = R. The temperature and the concentration fields satisfy{
limx→−∞ T (t, x) = Tsol, limx→+∞ T (t, x) = Tliq,

∂xc(t, x) = 0 for x→ ±∞, limx→+∞ c(t, x) = cliq.

At the interface, the temperature is assumed to be constant and is given by the
liquidus-solidus equilibrium :

T (t, s(t)) = Tint = fl(c) = fs(c), (38)
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Figure 4. Comparison between level set and the random sampling
method. Temperature profile in space and a zoom at the interface.,
position of the interface in time, zoom of the interface position in
time.

where c = c(t, s(t)+) and c = c(t, s(t)−). The similarity solution reads

T (t, x) =


Tsol +

Tint − Tsol
2− erfc

(
λ/
√
αs

) (1 + erf

(
x− s0

2
√
αst

))
if x < s(t),

Tliq +
Tliq − Tint

erfc
(
λ/
√
αl

) (erf

(
x− s0

2
√
αlt

)
− 1

)
, if x > s(t),

c(t, x) =


c, if x < s(t),

cliq +
cliq − f−1

l ◦ fs(c)
erfc

(
λ/
√
Dl

) (
erf

(
x− s0

2
√
Dlt

)
− 1

)
, if x > s(t),

(39)
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Figure 5. Comparison between level set and the random sampling
method. Position of the interface in time and a zoom.

where αk = Kk/(ρcp,k), k = l, s and the interface position reads s(t) = s0 +

2λ
√
t. Considering a linear liquidus-solidus diagram, that is the liquidus and solidus

functions are respectively given by fl(c) = TA + γlc and fs(c) = TA + γsc with
γl > γs, one can determine the two constants λ > 0 and c ∈ [0, 1] by solving the
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following nonlinear system

cliq − c
c− c

=
λerfc

(
λ/
√
Dl

)√
πDl

exp(λ2/Dl)
=: H(λ),

Tint =
Lλ+ TsolA1(λ) + TliqA2(λ)

A1(λ) +A2(λ)
=: W (λ),

A1(λ) :=

√
αs/π exp(−λ2/αs)

2− erfc
(
λ/
√
αs

) ,

A2(λ) :=

√
αl/π exp(−λ2/αl)

erfc
(
λ/
√
αl

) .

(40)

As it is proven in [26], the system (39)-(40) has a solution (Tint, c, c, λ) with TA <
Tint < Tliq and 0 < c < c < 1 and 0 < λ. The proof relies on the monotony of the
continuous functions W (λ) and H(λ) (we refer to [26] for detailed arguments).

For the coefficients αs = αl = Ds = Dl = ρ = L = 1, TA = 2, γl = 2, γs = 1,
the temperatures Tliq = 3 and Tsol = 0 and the concentration cliq = 0.2, the
numerical resolution of (40) gives λ = 0.1717126, c = 0.3191531, c = 0.1595766
and Tint = 2.3191531.

To mimic the problem, we consider the initial temperature and concentration
distribution

T (0, x) =


Tsol, if 0 < x < s0,

Tint = fl(cliq), if x = s0,

Tliq, if s0 < x < 5,

c(0, x) =

{
c, if 0 < x < s0,

cliq, if s0 < x < 5,

where s0 = 1.665 with homogeneous Neumann boundary conditions (for both the
temperature and the concentration) on the finite domain [0, 5]. The computational
domain contains 2000 cells and we fix Tfinal = 0.1s and CFL = 0.8. The compari-
son between the Random Projection Method and the analytical solution are given
in Figures 6. The computed concentration (Fig. 6-top) is in good agreement with
the analytical solution, in particular the jump of concentration at the interface is
sharp and well localized. Same observations can be done on the temperature field
(Fig. 6-bottom): the computed temperature fits well the analytical temperature,
the continuity of the temperature is properly preserved, the green mark indicates
the interface. In Fig. 7-top, one observes the good agreement of position of the
interface in time. Again the stepped profile of the curve is due to the Random
Projection Method. The temperature of the interface in time is given in Fig. 7-
middle. One observes that the algorithm requires few time iterations to capture
the correct constant interface temperature Tint. The red dots correspond to the
interface temperature recorded every 4000 time iterations. In Fig. 7-bottom, the
corresponding solid concentrations c (red stars) and liquid concentrations c (red
crosses) are plotted on the liquidus-solidus diagram. Except for the first time itera-
tions, the computed concentrations are in good agreement with the liquidus-solidus
diagram.

4.3. A two interfaces test case. We propose an academic test case where two
interfaces evolve in the domain according to different liquidus-solidus diagrams
plotted in Figure 10. The aim of the test case is to validate the ability of the
Random Choice Method to handle two interfaces. The initial configuration consists
in a liquid zone between two solid regions. The first interface obeys the liquidus-
solidus diagram fs,1(c) = TA,1 + c, fl,1(c) = TA,1 + 2c with TA,1 = 2 and the second
interface follows fs,2(c) = TA,2 +2c, fl,2(c) = TA,2 +c with TA,2 = 3.5. We consider
constant in space coefficients αs = αl = Ds = Dl = ρ = L = 1. We consider the
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Figure 6. Comparison between the Random Projection Method
and an analytical solution of the Rubinstein problem. From top to
bottom: concentration profile in space, temperature profile in
space.

initial profiles

T (0, x) =


0, if 0 < x < s1,

3, if s1 < x < s2,

4, if s2 < x < 5,

c(0, x) =


3.25 if 0 < x < s1,

0.2, if s1 < x < s2,

0.1, if s2 < x < 5,

where s1 = 0.1 and s2 = 1 with homogeneous Neumann boundary conditions
(for both the temperature and the concentration). Thus the first solid phase is
increasing whereas the second decreases in time. The domain [0, 5] is composed
of 2000 cells, the computation time is Tfinal = 0.1s and the CFL is 0.8. Note



MODELLING BINARY ALLOY SOLIDIFICATION BY A RANDOM PROJECTION METHOD19

 1.66

 1.68

 1.7

 1.72

 1.74

 1.76

 1.78

 0  0.02  0.04  0.06  0.08  0.1  0.12

t

Interface position in time

RCM
Exact

 2.315

 2.32

 2.325

 2.33

 2.335

 2.34

 2.345

 2.35

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11

t

Interface temperature in time

RCM

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

t

Liquidus-Solidus diagram

Liquidus
Solidus

Solid concentrations
Liquid concentrations

Figure 7. Comparison between the Random Projection Method
and an analytical solution of the Rubinstein problem. From top to
bottom: position of the interface in time, temperature of the inter-
face in time, computed concentrations c and c and correspondance
with the liquidus-solidus diagram.
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that the time step is submitted to the stability conditions (23)-(33)-(34) of both
interfaces. The concentration and the temperature profiles are given in Figure 8.
Once again one observes that the jump of concentrations are accurately located
and the continuity of the temperature is preserved. The evolutions of the interfaces
in time are given in Figure 9-top. The first solid phase increasing slowly whereas
the decrease of the second solid phase is much faster. The temperatures of both
interfaces achieve a constant value rapidly (Tint,1 = 3.65 and Tint,2 = 2.28). Each
dot on the temperature curves in time correspond to liquid and solid concentrations
plotted on the liquidus-solidus diagrams in Figure 10.
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Figure 8. Two interfaces test case. From top to bottom: concen-
tration profile in space, temperature profile in space.
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5. Conclusion

In this paper we proposed a Lagrange projection scheme for the Rubinstein and
Stefan-like problems. The Lagrangian step relies on the definition of proper nu-
merical fluxes which guarantee by construction the continuity of the temperature
and the jump of the concentration according to an noneutectic liquidus-solidus dia-
gram. The projection step is performed at the interface only by a random sampling
technique. The numerical scheme exhibits good properties (stability, maximum
principle) and provides good numerical results compared to the level set method
and analytical solutions. Our perspectives are in several directions:

• get rid of the explicit time integration and CFL constraints to adopt an
implicit time integration;

• extend the random choice method to higher dimension by a simple direc-
tional splitting algorithm. This could be performed on cartesian grids as
soon as the interface does not present a dendritic profile;
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Figure 10. Two interfaces test case. Computed concentrations
c and c for both interfaces and correspondance with the liquidus-
solidus diagrams.

• enrich the model to take into account convection in the domain. This will
modify the definition of the numerical fluxes for the temperature field but
won’t modify the random projection step.
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