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ABSTRACT

Word discovery is the task of extracting words from un-
segmented text. In this paper we examine to what extent neu-
ral networks can be applied to this task in a realistic unwrit-
ten language scenario, where only small corpora and limited
annotations are available. We investigate two scenarios: one
with no supervision and another with limited supervision with
access to the most frequent words. Obtained results show
that it is possible to retrieve at least 27% of the gold stan-
dard vocabulary by training an encoder-decoder neural ma-
chine translation system with only 5,157 sentences. This re-
sult is close to those obtained with a task-specific Bayesian
nonparametric model. Moreover, our approach has the ad-
vantage of generating translation alignments, which could be
used to create a bilingual lexicon. As a future perspective, this
approach is also well suited to work directly from speech.

Index Terms— Word Discovery, Computational Lan-
guage Documentation, Neural Machine Translation, Atten-
tion models

1. INTRODUCTION

Computational Language Documentation (CLD) aims at cre-
ating tools and methodologies to help automate the extraction
of lexical, morphological and syntactic information in lan-
guages of interest. This paper focuses on languages (most
of them endangered and unwritten) spoken in small commu-
nities all across the globe. Specialists believe that more than
50% of them will become extinct by the year 2100 [1], and
manually documenting all these languages is not feasible. Ini-
tiatives for helping with this issue include organizing tasks [2,
3] and proposing pipelines for automatic information extrac-
tion from speech signals [4, 5, 6, 7, 8].

Methodologies for CLD should consider the nature of the
collected data: endangered languages may lack a well-defined
written form (they often are oral-tradition languages). There-
fore, in the absence of a standard written form, one alterna-
tive is to align collected speech to its translation in a well-
documented language. Due to the challenge of finding bi-
lingual speakers to help in this documentation process, the
collected corpora usually are of small size.

One of the tasks involved in the documentation process
is word segmentation. It consists of, given an unsegmented
input, finding the boundaries between word-like units. This
input can be a sequence of characters or phonemes, or even
raw speech. Such a system can be very useful to linguists,
helping them start the transcription and documentation pro-
cess. For instance, a linguist can use the output of such a
system as an initial vocabulary, and then manually validate
the generated words. Popular solutions for this task are Non-
parametric Bayesian models [9, 10, 11, 12, 13] and, more re-
cently, Neural Networks [5, 8, 14]. The latter have also been
used for related tasks such as speech translation [15, 16] or
unsupervised phoneme discovery [17].

Contribution. This paper is the first attempt to leverage
attentional encoder-decoder models for language documenta-
tion of a truly unwritten language. We show that it is possible,
from very little data, to perform unsupervised word discovery
with a performance (F-score) only slightly lower than that of
Nonparametric Bayesian models, known to perform very well
on this task in limited data settings. Moreover, our approach
aligns symbols in the unknown language with words from a
known language which, as a by-product, bootstraps a bilin-
gual dictionary. Therefore, in the remainder of this paper, we
will use the term word discovery (instead of word segmenta-
tion), since our approach does not only find word boundaries
but also aligns word segments to their translation in another
language.

Another reason why we are interested in attentional
encoder-decoder models, is that they can easily be modi-
fied to work directly from the speech signal, which is our
ultimate goal.

Approach. In a nutshell, we train an attention-based
Neural Machine Translation (NMT) model, and extract the
soft-alignment probability matrices generated by the atten-
tion mechanism. These alignments are then post-processed
to segment a sequence of symbols (or speech features) in an
unknown language (Mboshi) into words. We explore three
improvements for our neural-based approach: alignment
smoothing presented in [16], vocabulary reduction discussed
in [18], and Moses-like symmetrization of our soft-alignment
probability matrices. We also propose to reverse the trans-
lation direction, translating from known language words to



unknown language tokens. Lastly, we also study a semi-
supervised scenario, where prior knowledge is available, by
providing the 100 most frequent words to the system.

Outline. This paper is organized as follows: we present
related work in Section 2, and the neural architecture, corpus,
and our complete approach in Section 3. Experiments and
their results are presented in Section 4 and 5, and are followed
by an analysis in Section 6. We conclude our work with a
discussion about possible future extensions in Section 7.

2. RELATED WORK

Nonparametric Bayesian Models (NB models) [19, 20] are
statistical approaches that can be used for word segmentation
and morphological analysis. Recent variants of these mod-
els are able to work directly with raw speech [10], or with
sentence-aligned translations [12]. The major advantage of
NB models for CLD is their robustness to small training sets.
Recently, [18] achieved their best results on a subset (1200
sentences) of the same corpus we use in this work by using
a NB model. Using the dpseg system1 [9], they retrieved
23.1% of the total vocabulary (type recall), achieving a type
F-score of 30.48%.

Although NB models are well-established in the area
of unsupervised word discovery, we wish to explore what
neural-based approaches could add to the field. In particu-
lar, attention-based encoder-decoder approaches have been
very successful in Machine Translation [21], and have shown
promising results in End-to-End Speech Translation [15, 22]
(translation from raw speech, without any intermediate tran-
scription). This latter approach is especially interesting for
language documentation, which often uses corpora made of
audio recordings aligned with their translation in another
language (no transcript in the source language).

While attention probability matrices offer accurate infor-
mation about word soft-alignments in NMT systems [21, 15],
we investigate whether this is reproducible in scenarios with
limited amounts of training data. That is because a no-
table drawback of neural-based models is their need of large
amounts of training data [23].

We are aware of only one other work using an NMT sys-
tem for unsupervised word discovery in a low-resource sce-
nario. This work [16] used an 18,300 Spanish-English paral-
lel corpus to emulate an endangered language corpus. Their
approach for unsupervised word discovery is the most sim-
ilar to ours. However, we go one step further: we apply
such a technique to a real language documentation scenario.
We work with only five thousand sentences in an unwritten
African language (Mboshi), as we believe that this is more
representative of what linguists may encounter when docu-
menting languages.

1Available at http://homepages.inf.ed.ac.uk/sgwater/resources.html.

# types #tokens avg # tokens
per sentence

Mboshi Dev 1,324 3,133 6.0
Mboshi Train 6,245 27,579 5.9
French Dev 1,343 4,321 8.2

French Train 4,903 38,226 8.4

Table 1: Organization of the corpus in development (Dev,
514 sentences) and training (Train, 4,643 sentences) sets for
the neural model.

3. METHODOLOGY

3.1. Mboshi-French Parallel Corpus

We use a 5,157 sentence parallel corpus in Mboshi (Bantu
C25), an unwritten2 African language, aligned to French
translations at the sentence level. Mboshi is a language spo-
ken in Congo-Brazzaville, and it has 32 different phonemes
(25 consonants and 7 vowels) and two tones (high and low).
The corpus was recorded using the LIG-AIKUMA tool [24]
in the scope of the BULB project [25].

For each sentence, we have a non-standard grapheme
transcription (the gold standard for segmentation), an unseg-
mented version of this transcription, a translation in French,
a lemmatization3 of this translation, and an audio file. It is
important to mention that in this work, we use Mboshi un-
segmented non-standard grapheme form (close to language
phonology) as a source while direct use of speech signal is
left for future work.

We split the corpus into training and development sets,
using 10% for the latter. Table 1 gives a summary of the types
(unique words) and tokens (total word counts) on each side of
the parallel corpus.

3.2. Neural Architecture

We use the LIG-CRIStAL NMT system4, using unsegmented
text input for training. The model is easily extendable to work
directly with speech [15]. Our NMT models follow [21].
A bidirectional encoder reads the input sequence x1, ..., xA
and produces a sequence of encoder states h = h1, ..., hA ∈
R2×n, where n is the chosen encoder cell size. A decoder
uses its current state st and an attention mechanism to gen-
erate the next output symbol zt. At each time step t, the de-
coder computes a probability distribution over the target vo-
cabulary. Then, it generates the symbol zt whose probability
is the highest (it stops once it has generated a special end-of-
sentence symbol). The decoder then updates its state st with
the generated token zt. In our task, since reference transla-

2Even though it is unwritten, linguists provided a non-standard grapheme
form, considered to be close to the language phonology.

3For tokenization and lemmatization we used TreeTagger [26].
4Available at https://github.com/eske/seq2seq.



tions are always available (even at test time), we always force
feed previous ground-truth symbol wt instead of the gener-
ated symbol zt (teacher forcing).

ct = attn(h, st−1) (1)
yt = output(st−1 ⊕ E(wt−1)⊕ ct) (2)

zt = arg max yt (3)
st = LSTM(st−1, E(wt)⊕ ct) (4)

⊕ is the concatenation operator. s0 is initialized with the
last state of the encoder (after a non-linear transformation),
z0 = <BOS> (special token), and E ∈ R|V |×n is the target
embedding matrix. The output function uses a maxout layer,
followed by a linear projection to the vocabulary size |V |.

The attention function is defined as follows:

ct = attn(h, st) =

A∑
i=1

αt
ihi (5)

αt
i = softmax(eti) (6)

eti = vT tanh (W1hi +W2st + b2) (7)

where v, W1, W2, and b2 are learned jointly with the other
parameters of the model. At each time step (t) a score eti is
computed for each encoder state hi, using the current decoder
state st. These scores are then normalized using a softmax
function, thus giving a probability distribution over the input
sequence

∑A
i=1 α

t
i = 1 and ∀i, 0 ≤ αt

i ≤ 1. The context
vector ct used by the decoder, is a weighted sum of the en-
coder states. This can be understood as a summary of the
useful information in the input sequence for the generation of
the next output symbol zt. The weights αt

i can be seen as a
soft-alignment between input xi and output zt.

Our models are trained using the Adam algorithm, with a
learning rate of 0.001 and batch size (N ) of 32. We minimize
a cross-entropy loss between the output probability distribu-
tion pt = softmax(yt) and reference translation wt:

L =
1

N

N∑
i=1

loss(si = w1, ..., wT | xi)

(8)

loss(w1, .., .wT | xi) = −
T∑
t

|V |∑
j

log ptj × 1(wt = Vj)

(9)

ptj =
eytj∑|V |
k eytk

(10)

3.3. Neural Word Discovery Approach

Our full word discovery pipeline is illustrated in Figure 1. We
start by training an NMT system using the Mboshi-French

Fig. 1: Neural word discovery pipeline.

parallel corpus, without the word boundaries on the Mboshi
side. This is shown as step 1 in the figure.

We stop training once the training loss stops decreasing.
At this point, we expect the alignment model to be the most
accurate on the training data. Then we ask the model to force-
decode the entire training set. We extract soft-alignment prob-
ability matrices computed by the attention model while de-
coding (step 2).

Finally, we post-process this soft-alignment information
and infer a word segmentation (step 3). We first transform the
soft-alignment into a hard-alignment, by aligning each source
symbol xi with target word wt such that: t = arg maxi α

t
i.

Then we segment the input (Mboshi) sequence according
to these hard-alignments: if two consecutive symbols are
aligned with the same French word, they are considered to
belong to the same Mboshi word.

4. UNSUPERVISED WORD DISCOVERY
EXPERIMENTS

For the unsupervised word discovery experiments, we used
the unsegmented transcription in Mboshi provided by lin-
guists, aligned with French sentences. This Mboshi unseg-
mented transcription is made of 44 different symbols.

We experimented with the following variations:

1. Alignment Smoothing: to deal with source (phones
or graphemes) vs. target (words) sequence length dis-
crepancy, we need to encourage many-to-one align-
ments between Mboshi and French. These alignments
are needed in order to cluster Mboshi symbols into
word-units. For this purpose, we implemented the
alignment smoothing proposed by [16]. The soft-
max function used by the attention mechanism (see
eq. 6) takes an additional temperature parameter:
αt
i = exp (eti/T )/

∑
j exp (etj/T ) A temperature T

greater than one5 will result in a less sharp softmax,
which boosts many-to-one alignments. In addition,

5We use T = 10, like the original paper [16].



TOKENS TYPES
Recall Precision F-score Recall Precision F-score

Base Model (Mb-Fr) 7.16 4.50 5.53 12.85 6.41 8.55
Base Model (Mb-Fr)

with Alignment Smoothing 6.82 5.85 6.30 15.00 6.76 9.32

Reverse Model (Fr-Mb) 20.04 10.02 13.36 18.62 14.80 16.49
Reverse Model (Fr-Mb)

with Alignment Smoothing 21.44 16.49 18.64 27.23 15.02 19.36

Table 2: Unsupervised Word Discovery results with 4,643 sentences.

the probabilities are smoothed by averaging each
score with the scores of the two neighboring words:
αt
i ← (αt

i−1 + αt
i + αt

i+1)/3 (equivalent to a low-pass
filtering on the soft-alignment probability matrix).

2. Reverse Architecture: in NMT, the soft-alignments
are created by forcing the probabilities for each target
word t to sum to one (i.e.

∑
i α

t
i = 1). However,

there is no similar constraint for the source symbols,
as discussed in [16]. Because we are more interested in
the alignment than the translation itself, we propose to
reverse the architecture. The reverse model translates
from French words to Mboshi symbols. This prevents
the attention model from ignoring some Mboshi sym-
bols.

3. Alignment Fusion: statistical machine translation sys-
tems, such as the Moses [27], extract alignments in
both directions (source-to-target and target-to-source)
and then merge them, creating the final translation
model. This alignment fusion is often called sym-
metrization. We investigate whether this Moses-like
symmetrization improves our results by merging the
soft-alignments probability matrices generated by our
base (Mboshi-French) and reverse (French-Mboshi)
models. We replace each probability αt

i by 1
2 (αt

i +βi
t),

where βi
t is the probability for the same alignment

i↔ t in the reverse architecture.

4. Target Language Vocabulary Reduction: to reduce
vocabulary size on the known language, we replace
French words by their lemmas. The intuition is that,
by simplifying the translation information, the model
could more easily learn relations between the two lan-
guages. For the task of unsupervised word discovery,
this technique was recently investigated by [18].

The base model (Mboshi to French) uses an embedding
size and cell size of 12. The encoder stacks two bidirectional
LSTM layers, and the decoder uses a single LSTM layer. The
reverse model (French to Mboshi) uses an embedding size and
cell size of 64, with a single layer bidirectional encoder and
single layer decoder.

We present in Table 2 the unsupervised word discovery
task results obtained with our base model, and with the re-
verse model, with and without alignment smoothing (items
1 and 2). We notice that the alignment smoothing technique
presented by [16] improved the results, especially for types.

Moreover, we show that the proposed reverse model con-
siderably improves type and token retrieval. This seems to
confirm the hypothesis that reversing the alignment direction
results in a better segmentation (because the attention model
has to align each Mboshi symbol to French words with a total
probability of 1). This may also be due to the fact that the re-
verse model reads words and outputs character-like symbols
which is generally easier than reading sequences of characters
[28]. Finally, we achieved our best result by using the reverse
model with alignment smoothing (last row in Table 2).

We then used this latter model for testing alignment fu-
sion and vocabulary reduction (items 3 and 4). For alignment
fusion, we tested three configurations using matrices gener-
ated by the base and reverse models. We tested the fusion
of the raw soft-alignment probability matrices (without align-
ment smoothing), the fusion of already smoothed matrices, as
well as this latter fusion followed by a second step of smooth-
ing. All these configurations lead to negative results: recall
reduction between 3% and 5% for tokens and between 1%
and 9% for types. We believe this happens because by averag-
ing the reverse model’s alignments with the ones produced by
the base model (which does not have the constraint of using
all the symbols) we degrade the generated alignments, more
than exploiting information discovered in both directions.

Lastly, when running the reverse architecture (with align-
ment smoothing) using French lemmas (vocabulary reduc-
tion), we also noticed a reduction in performance. The lem-
matized model version had a recall drop of approximately 2%
for all tokens and types metrics. We believe this result could
be due to the nature of the Mboshi language, and not neces-
sarily a generalizable result. Mboshi has a rich morphology,
creating a different word for each verb tense, which includes
radical and all tense information. Therefore, by removing this
from the French translations, we may actually make the task
harder, since the system is forced to learn to align different
words in Mboshi to the same word in French.



Unsupervised Semi-supervised
Recall 27.23 29.49

Precision 15.02 24.64
F-score 19.36 26.85

# correct types 1,692 1,842
# generated types 11,266 7,473

Table 3: Types results for the semi-supervised word discov-
ery task (100 known words, 4.653 sentences).

5. SEMI-SUPERVISED WORD DISCOVERY
EXPERIMENTS

A language documentation task is rarely totally unsupervised,
since linguists usually immerse themselves in the community
when documenting its language. In this section, we explore
a semi-supervised approach for word segmentation, using our
best reverse model from Section 4.

To emulate prior knowledge, we select the 100 most fre-
quent words in the gold standard for Mboshi segmentation.
We consider this amount reasonable for representing the in-
formation a linguist could acquire after a few days. Our intu-
ition is that providing the segmentation for these words could
help improve the performance of the system for the rest of the
vocabulary.

To incorporate this prior information to our system, we
simply add known tokens on the Mboshi side of the corpus,
keeping the remaining symbols unsegmented. This creates
a mixed representation, in which the Mboshi input has at
the same time unsegmented symbols and segmented words.
Since languages follow Zipfian distributions [29] and we are
giving to the model the most frequent words in the corpus,
analysis is not done in terms of tokens, since this would be
over-optimistic and bias the model evaluation, but only in
terms of types. Results are presented in Table 3.

For types, we observed an increase of 2.4% in recall. This
is not a huge improvement, considering that we are giving
100 words to the model. We discovered that our unsupervised
model was already able to discover 97 of these 100 frequent
words, which could justify the small performance difference
between the models. In addition to the 100 types already
known, the semi-supervised model found 50 new types that
the unsupervised system was unable to discover.

Finally, it is interesting to notice that, while the per-
formance increase is not huge, the semi-supervised system
reduced considerably the number of types generated, from
11,266 to 7,473. This suggests that this additional informa-
tion helped the model to create a better vocabulary represen-
tation, closer to the gold standard vocabulary.

Recall Precision F-score σ
Reverse Model

(Fr-Mb) with AS 27.23 15.02 19.36 0.032

dpseg 13.94 38.32 20.45 0.272

Table 4: Comparison between the NB model (dpseg) and the
reverse model with alignment smoothing (AS) for unsuper-
vised word discovery. The scores were obtained by averaging
over three instances of each model.

Fig. 2: Word frequency distribution of the three models and
the gold standard distribution.

6. ANALYSIS

6.1. Baseline Comparison

As a baseline, we used dpseg [30, 31] which implements
a Nonparametric Bayesian approach, where (pseudo)-words
are generated by a bigram model over a non-finite inventory,
through the use of a Dirichlet-Process.

We used the same hyper-parameters as [18], which were
tuned on a larger English corpus and then successfully applied
to the segmentation of Mboshi. We use a random initialization
and 19,600 sampling iterations.

Table 4 shows our results for types compared to the NB
model. Although the former is able to retrieve more from the
vocabulary, the latter has higher precision, and both are close
in terms of F-score. Additionally, ours has the advantage of
providing clues for translation.

It is interesting to notice that our neural approach, which
is not specialized for this task (the soft-alignment scores are
only a by-product of translation), was able to achieve close
performance to the dpseg method, which is known to be
very good in low-resource scenarios. This highlights the po-
tential of our approach for language documentation.

6.2. Vocabulary Analysis

To understand the segmentation behavior of our approach, we
looked at the generated vocabulary. We compare our unsu-
pervised and semi-supervised methods with the gold stan-
dard and the NB baseline, dpseg. The first characteristic



Fig. 3: Type length distribution of the gold standard, dpseg
and our unsupervised and semi-supervised methods.

we looked at was the word distribution of the generated vo-
cabularies. While we already knew that dpseg constraints
the generated vocabulary to follow a power law, we observed
that our approaches also display such a behavior. They pro-
duce curves that are as close to the real language distribution
as dpseg (see Figure 2).

We also measured the average word length to identify
under-segmentation and over-segmentation. To be able to
compare vocabularies of varying sizes, we normalized the fre-
quencies by the total number of generated types. The curves
are shown in Figure 3. Reading the legend from left to right,
the vocabulary sizes are 6,245, 2,285, 11,266, and 7,473.

Our semi-supervised configuration is the closest to the
real vocabulary in terms of vocabulary size, with only 1,228
more types. All the approaches (including dpseg) over-
segment the input in a similar way, creating vocabularies with
average word length of four (Figure 3).

Since both dpseg and neural-based approaches suffer
from the same over-segmentation problem, we believe that
this is a consequence of the corpus used for training, and not
necessarily a general characteristic of our approach in low-
resource scenarios. For our neural approaches, another justi-
fication is the corpus being small, and the average tokens per
sentence being higher at the French side (shown in Table 1),
which can potentially disperse the alignments over the possi-
ble translations, creating multiple boundaries.

Moreover, as Mboshi is an agglutinative language, there
were several cases in which we had a good alignment but
wrong segmentation. An example is shown in Figure 4, where
we see that the word “ı́mokώsώ” was split in two words in
order to keep its alignment to both parts of its French trans-
lation “suis blessé”. This is also the case of the last word in
this figure: Mboshi does not require articles preceding nouns,
which caused misalignment. We believe that by exploiting
translation alignment, we could constraint our segmentation
procedure, creating a more accurate word discovery model.
Finally, we were able to create a model of reasonable quality
which gives segmentation and alignment information using
only 5,157 sentences for training (low-resource scenario).

Fig. 4: Example of soft-alignment generated by our unsu-
pervised word discovery model. The darker the square, the
higher is the probability for the source-target pair. Our seg-
mentation was “ngá ı́mo kώsώ m’ é bώli”, while the correct
one is “ngá ı́mokώsώ m’ ébώli”.

7. CONCLUSION

In this work, we presented a neural-based approach for
performing word discovery in low-resource scenarios. We
used an NMT system with global attention to retrieve soft-
alignment probability matrices between source and target
language, and we used this information to segment the lan-
guage to be documented. A similar approach was presented
in [16], but this work represents the first attempt at training a
neural model with a real unwritten language based on a small
corpus made of only 5,157 sentences.

By reversing the system’s input order and applying align-
ment smoothing, we were able to retrieve 27.23% of the vo-
cabulary, which gave us an F-score close to the NB baseline,
known for being robust to low-resource scenarios. Moreover,
this approach has the advantage of naturally incorporating
translation, which can be used for enhancing segmentation
and creating a bilingual lexicon. The system is also easily ex-
tendable to work with speech, a requirement for most of the
approaches in CLD.

Finally, as future work, our objective is to discover lex-
icon directly from speech, inspired by the encoder-decoder
architectures presented in [15, 22]. We will also explore dif-
ferent training objective functions more correlated with seg-
mentation quality, in addition to MT metrics. Lastly, we in-
tend to investigate more sophisticated segmentation methods
from the generated soft-alignment probability matrices, iden-
tifying the strongest alignments in the matrices, and using
their segmentation as prior information to the system (iter-
ative segmentation-alignment process).
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