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Abstract 
With the advent of Web search and the large amount of data published on the Web sphere, a tremendous amount of documents 

become strongly time-dependent. In this respect, the time dimension has been extensively exploited as a highly important relevance 

criterion to improve the retrieval effectiveness of document ranking models. Thus, a compelling research interest is going on the 
temporal information retrieval realm, which gives rise to several temporal search applications. In this article, we intend to provide a 

scrutinizing overview of time-aware information retrieval models. We specifically put the focus on the use of timeliness and its 

impact on the global value of relevance as well as on the retrieval effectiveness. First, we attempt to motivate the importance of 
temporal signals, whenever combined with other relevance features, in accounting for document relevance. Then, we review the 

relevant studies standing at the crossroads of both information retrieval and time according to three common information retrieval 

aspects: the query level, the document content level and the document ranking model level. We organize the related temporal-
based approaches around specific information retrieval tasks and regarding the task at hand, we emphasize the importance of results 

presentation and particularly timelines to the end user. We also report a set of relevant research trends and avenues that can be 

explored in the future. 

Keywords  
Relevance; time; temporal queries; temporal ranking; timelines 

1. Introduction and Motivations 

Searching valuable information in growing masses of data is still an open and thriving challenge in the community of 

information retrieval (IR). Alongside this progress, the Web users address the need of enhanced search facilities to 

e!ectively retrieve the resources that match their actual search intents. In order to provide the most relevant results to 

users, most state-of-the-art approaches rank documents by computing single scores separately with respect to one single 

objective criterion, expressing the documents topical overlap with the user’s information need [1]. However, several 

studies stressed on the fact that relevance is a multidimensional concept that goes beyond this too simple topicality 

criterion towards a much richer set of relevance criteria [1, 2, 3]. This multidimensional property has been recently 

witnessed in many IR contexts to tailor the search results according to the given set of criteria as well as the IR 

application at hand [4, 5]. Specifically, the time criterion has already been the core concept of recent IR ranking models, 

given that most of documents include a high level of temporal information [6]. Besides, a large part of work, carried out 



 

 

into this scope argued that the search intent, behind queries and user search behaviour, change over time, so that the 

temporal information contained in the documents may be exploited to enhance numerous aspects of the Web. This issue 

has been recently tackled in real world search engines. For instance, the Google1 search results on the query “Karim 

Benzema” (Cf., Figure 1) in the time period of the 2014 Fifa World Cup show a compact statistic table about the 

performance of “Benzema” in the tournament on the top of the page result, and below appears some recent related news. 

More interestingly, unlike the usual search results given as an answer to this kind of queries, the Wikipedia page of the 

player figures at the bottom of the documents result list. 

To make matters more concrete, consider a user who enters the query “Michael Jackson”. The latter may wish to find 

results about Michael Jackson’s biography, his o"cial website or some related news. However, as Michael Jackson’s 

death was in 2009 (i.e., not recent) and the query is too short, it may be di"cult to accurately find the users’ intent 

behind the submitted couple of keywords or their sensitivity to time. Likewise, if we take another completely di!erent 

query like “Cricket World Cup”, it is not clear if the latter is about the 2015 Cricket World Cup or another previous or 

even future one. Thus, understanding and exploiting temporal indicators contained on queries and documents may be of 

potential benefit for search engines. Indeed, temporal information can be used to favour documents whose contents refer 

to a time period in the past as per the query “Michael Jackson”, or more fresh documents such as that of “2015 Cricket 

World Cup”. If a time is explicitly stated in the query, this information could be taken into account to decide whether to 

return data matching the query on that particular point time in the past, or earlier related information. Taking in 

consideration the information about time is becoming increasingly prominent in the literature [7, 8, 9].  

State-of-the-art approaches are often based on ranking models encompassing time in a relatively crude manner. Most 

current methods sort the results based on the publication time of document content, or ask the user to restrict the results 

to a particular period of time. Other works include temporal factors in the core of the ranking model. A large number of 

productive research has followed so far this direction. All these methods give result to various domain applications 

within the Web search community ranging from temporal ranking to temporal summaries, spatio-temporal information 

extraction, temporal indexing, temporal dynamics, temporal clustering, to cite but a few.  

In this work, we provide a comprehensive and a comparative overview of most important work on both time and IR. 

We adopt a categorization inspired from three basic IR components namely query, documents, ranking models and we 

additionally review the di!erent techniques used to represent time-sensitive search results. There are some surveys 

studies concerning temporal IR on the past, where a set of representative methods for temporal document ranking were 

presented [6, 7, 10, 11]. Alonso et al. [7] and Nunes et al. [12] were, respectively, among the first to emphasize the 

exploitation of temporal information. Nunes et al. [12] proposed a classification of the sources of temporal evidence 

based on two groups, namely document-based evidence (i.e., features extracted from individual documents) and Web-

 

Figure 1. Google search results on the query “Karim Benzema”, accessed on June 2014. 



 

 

based evidence (i.e., features obtained from the whole Web). Mathews and Kanmani [6] proposed a brief overview on 

T-IR systems. They distinguished two di!erent methods namely, time-aware retrieval methods and temporal ranking 

methods. Recently, Campos et al. [11] provided a general overview on temporal IR as well as some related applications 

such as temporal clustering, temporal text classification, temporal search engines and future IR. The survey presented in 

this article is fundamentally di!erent from the previous ones according to several points of view. First, our work is more 

general than those already carried out and is not only restricted to approaches proposed on ad-hoc Web search. We 

cover many IR related topics on diverse areas including traditional Web search, social search, mobile search and geo-

temporal search that heavily involve document ranking and time-aware IR. We present these studies according to four 

IR aspects: queries, document’s contents, ranking models and result presentation. Second, the aim of our article is to 

provide a broad picture on timeliness from the IR perspective across various related domains. The focus is put regarding 

the aforementioned research axis and mainly from the query and ranking levels perspective. This could inspire 

researchers from other fields on how timeliness is important, and show them insight to what extent time-aware 

applications could also meet their specific research area. We also present the evaluation frameworks and techniques 

used in order to assess the e!ectiveness of these temporal IR (T-IR) methods and show the major results that emerged 

from them. We do not extensively compare these techniques in terms of their performance, because they have not been 

all tested on the same corpus. Nevertheless, we show the outcome of the most important challenges and tracks that 

focused on T-IR access models and techniques. We finally report some open, challenging and promising research 

directions. We note that by no means this work is meant to be exhaustive and to cover all T-IR domains. We refrain 

from detailing studies on Web crawling, Web archiving as well as temporal indexing and future IR. We only report 

some studies proposed into this scope that could a!ect query-document matching models from a typical IR perspective. 

A good overview of these topics can be found in Campos et al. [11].  

The remainder of this paper is organized as follows. In the next section, we remind some definitions that will be of 

interest throughout the rest of the paper. Section 3 describes our general categorization of temporal information access 

methods. In Section 4, we review the state-of-the-art work based on this categorization. Then, we discuss how the 

evaluation of T-IR approaches is carried out in the literature and we present some of the most prominent evaluation 

tracks that focused on T-IR models and techniques. Finally, we review the research trends for future work. 

2. Definitions and Terminology  

Query. A query expresses a user’s information need using generally a set of keywords [13, 14]. If a query contains 

explicit temporal expressions, it is classified into time sensitive queries. However, some time-sensitive queries 

may not contain any temporal expression and may also refer to different points in time. In this case, a temporal 

query understanding is crucial in order identify the time period to which the query refers to.  

Document. A document is frequently represented through a set of keywords [14] regardless of their origin of 

generation, e.g., a collection of Web-snippets, (micro)-blogs, bookmarks or even images or videos. A 

document could incorporate temporal signals, including temporal expressions, document publication time or 

document last-modified date, etc. In this work, we consider a document as a Web page or news article 

regardless of the generating source. 

Time. Time has been a prime motivation in many research areas. One of the most appropriate definitions for the IR 

realm is that defining it: “as a measure in which events can be ordered from the past through the present into 

the future, and also the measure of durations of events and the intervals between them”2. Events may be 

defined as items, facts or changes arranged in a time order and presented in texts, tables, charts or timelines. In 

traditional IR, time is often represented by documents timestamps (document creation time), query submission 

time or temporal expressions contained in documents or queries. The time dimension may be exploited within 

two main relevance criteria: 

1. Recency. Recency is a relevance criterion used in ranking models in order to boost newly published 

documents rather than older ones [15]. Recency could also refer to some types of queries where the user 

expects documents which are both topically relevant and fresh (timely). This criterion is usually computed 

as the di!erence between the document's publication time and that of the query timestamp. 

2. Freshness. There is no clear distinction between freshness and recency in the literature. Freshness can be 

interpreted in di!erent ways depending on the nature of queries. For instance, for queries related to news, 

freshness is more concerned about documents reflecting new information [16]. However, for non-temporal 

queries, freshness is interpreted as the recency of pages. 



 

 

Temporal Information Retrieval − Temporal Ranking. Temporal IR is a research area that aims to retrieve temporal 

relevant documents. Mathews and Kanmani [6] identified two interesting subareas in this field: Time-Aware 

Retrieval Models (T-R Model) and Temporal Ranking (T-Rank). In time-aware IR, there are two main 

temporal features: document timestamp and temporal relevance of the document content. Whereas, in temporal 

ranking, time is either taken into account directly in the ranking model or through models that aim to 

understand the query nature and address the ranking according to its type. In the remainder, we don’t make 

distinction between temporal ranking and time-aware IR. 

3. Time-Aware Information Retrieval: A General Classification  

Regarding the recent research focus on time and relevance, we can distinguish three main categories of approaches: time 

at the query level, time within documents and time as a factor within a ranking model. Our classification comes from the 

general schema of typical IR models. In Figure 2, we show each of these components through their connection with 

time. 

Besides the three major components emphasized in Figure 2, we also present the impact of time on search result 

presentation. Along with each component, we highlight the most commonly prominent time-dependent applications. For 

instance, one of the widely encountered problems when it comes to dealing with time at the document content level, is 

the extraction of the temporal expressions therein. Similarly, a close problem when responding to time-(in)sensitive 

queries is the query understanding [17], in order to identify relevant time periods corresponding to queries. To further 

ease the presentation of our overview of studies on T-IR regardless of the IR application at hand, we briefly describe the 

levels at which “time” may be incorporated or exploited as a relevance criterion or a feature to tailor the search results:  

· Time on the query level: in this category, the focus is specifically put on the query. The primary aim is often to 

understand the temporal intent behind user queries and tailor the retrieval model based on the query dynamic or 

query type. The main challenge here is to identify the time-period the queries refer to and to deal with query 

temporal ambiguity, i.e., especially when considering queries without any temporal expression or those that 

 

Figure 2.  General Framework of the T-IR area. 



 

 

could refer to many time points [18]. This category witnessed successful applications to areas as diverse as 

temporal query understanding, temporal dynamics and query processing, etc. Exploring these issues may 

enhance the retrieval effectiveness and help understand the information goals behind queries. For instance, 

modelling and predicting the change in queries that people issue (query dynamics) and the number of times that 

URLs are clicked for that query over time could help in estimating trends, periodicities and predicting the 

future.  

· Time on the document content level: in this second category, research studies handle temporal information 

existing on the document contents level. The first challenge here is to find the best ways to represent the 

temporal expressions contained in documents in natural language. Then, the second challenge consists in 

identifying, extracting and normalizing these temporal expressions [19]. These temporal descriptors could be 

extracted and anchored in time for explicit document exploration purposes. We could distinguish between 

explicit, implicit (e.g., names of holidays), and relative temporal expressions [10]. It is worth of cite that 

difficulties often arise when dealing with implicit (e.g., “Independence day”) or relative temporal expressions 

(e.g., “today”), while the use of explicit temporal expressions is straightforward.  

· Time on the document matching level: this category gathers works on temporal retrieval area or time-sensitive 

ranking, where temporal relevance attributes are encompassed into the core of the ranking model [20,21]. 

Studies in this category are closely related to those laying within both the first and second categories, given that 

time-based ranking models could be induced thanks to the temporal nature of queries. Here, the challenge is to 

leverage the traditional IR models where documents are basically ranked according to their creation time to 

more enhanced time-aware ranking models. To tackle this challenge, models often integrate these features into 

query-likelihood language modelling approaches or linear combination mechanisms of textual and temporal 

parts of the documents and/or queries [21]. On the other side, future IR, which fall into ranking models as 

depicted in Figure 2, focuses on future related information such as news about a new product to be released, 

information about an upcoming event, etc.  

4. Literature Review: Analysis of Time-Aware Information Retrieval Approaches 

In this section, we present a comprehensive overview of almost existing time-aware IR access methods. More 

specifically, we are interested in temporal-aware information access models especially from the query and ranking level 

perspectives. To do so, we select the most relevant research papers in the literature according to their impact on 

timeliness across various related domains. Figure 3 illustrates the time relationship to different temporally-aware IR 

areas. The figure depicts to what extent time is exploited in each IR area. Considering notions of clusters, each circle 

represents a range of work done in a particular IR area. The circle time represents any temporal evidence or feature that 

could be of benefit in IR systems. As can be see seen from Figure 3, many works fall under more than one IR task. For 

example, work on social web search may be considered as part of social, traditional and geotemporal search. Temporal 

evidence may be used at the intersection of all of these IR areas. The cluster size presents the amount of significant 

research papers carried out in each field. Although Figure 3 is not drawn to scale by any measure, it only provides a 

schematic view of how time could be encompassed in various IR tasks. In the following, we will discuss the 

implications of the integration of this concept on the performance of IR systems in each of the presented areas. 



 

 

4.1.  Traditional Web Search  

In traditional Web search, people usually aim to find relevant information satisfying informational, navigational or 

transactional goals [22]. Informational search is intended to find information about a specific topic, whereas in 

navigational search, users often look for a specific website in mind. Transactional search is intended to perform a Web-

mediated activity. Whenever ranking documents in response to a user need, there are a variety of temporal query and 

document signals that may be used to tailor the user search results.  

In the following, we describe the relevant work carried out in the scope of traditional Web search from the query, 

document and temporal ranking level perspective. Then, we report a summary of all of these works depending on the 

class of query, the ranking model and the used datasets.  

4.1.1. Time at The Query Level  
Recent research on Web search showed that a lot of Web queries contain, either implicit or explicit temporal 

expressions. An analysis of Web user query logs shows that 7% of Web queries have temporal intent implicitly provided 

[17]. Jones and Diaz [18] identified three temporal general types of query profiles: atemporal, temporally unambiguous 

and temporally ambiguous. Atemporal queries refer to non-time sensitive queries (e.g., “Amazon”). While temporally 

unambiguous are those referring to a precise time period (e.g., “2015”), temporally ambiguous ones are those pointing 

to di!erent points of time (e.g., “US open tennis”). For example, a query containing an explicitly stated time period such 

as “Australian Open Tennis Championships 2015” might only be matched with documents published at this particular 

period “2015”. However, for many queries, this time expression is not usually specified. Nunes et al. showed that only 

1.5% of queries are explicitly provided with temporal criteria [19]. Consider the query “Michael Jackson”, the latter 

might be (implicitly) about articles published in (or before) the period of June 25, 2009, the date of death of Michael 

Jackson. However, it can also be about documents (articles, news, videos) related to his death anniversary or even his 

new song “Never felt so good” firstly released on May 2, 2014. Thus, the relevant time interval for the query remains 

unclear. Instead of placing the burden on the users to explicitly deal with time when querying, a great deal of research 

has been done in order to understand the temporal nature of queries and systematically handle all of its families.  

Roadmap. In the following, we present the most representative work regarding two main research directions, namely 

query understanding and query dynamics, with respect to the schema presented in Figure 2 (Cf., Section 3). The impact 

of these studies on the ranking process will be discussed at the document-query matching level (Cf., Section 4.1.3). 

The first line of research concerning query understanding aims to understand the temporal intent behind user queries. 

We present two main types of queries that have been extensively studied in the last decades. 

Recency-Oriented Queries. Recency queries are those occurring right after breaking news or more recent events such 

as “Charlie Hebdo newspaper shooting”, “Ebola virus disease”, etc. The work of Li and Croft [20] was among 

the first researches in handling recency-oriented queries. Queries are classified based on the temporal 

distribution of documents over a collection of TREC queries (from volume 4 and volume 5). Dakka et al. [23] 

defined a time sensitive query over an archive of time stamped news documents as: “queries for which relevant 

documents are not spread uniformly over time but rather tend to be concentrated in restricted time intervals”. If 

 

Figure 3. Time relationship to various IR areas. 



 

 

the relevant time period for a time sensitive query is unspecified, the authors suggest the computation of time 

based probability p(q|t) for each time t and query q using the query-likelihood model. 

Periodic Oriented Queries & Bursts: Periodic queries are those occurring based on a recurring basis, e.g., “election”, 

“Cannes film festival”, etc. Vlachos et al. [24] represented these classes in terms of coe"cients in a Fourier 

transform based on time series. These time series are built for each query word or phrase from a large 

collection of MSN search engine query logs. Important periods are then identified by using outliers according 

to an exponential distribution. The significant periods are those having powers that deviate from the power 

content of the majority of the periods. After the extraction of important periods, the authors proposed an 

interactive burst discovery that is mainly based on the computation of the moving average (MA).  Closest to 

periodic queries are efforts on query bursts detection. Subasic et al. [25] defined a query burst as: “a period of 

heightened interest of users on a topic which yields a higher frequency of the search queries related to it”. For 

instance, the query “harrison ford plane crash” suddenly becomes among the most trending queries in the 

USA3, on March 5, 2015 after a plane crash in which the actor Harrison Ford was injured. Subasic et al. [25] 

grouped query bursts into three classes: (i) bursts that fade-out completely after a certain period; (ii) bursts that 

create new topics; and (iii) bursts on existing topics. The authors suggest interesting findings for content 

providers as well as search engines in order to satisfy user’s temporal needs and provide the most relevant 

results. For instance, to capture user’s attention on emerging topics, content providers should either publish 

early or target query bursts on emerging topics that did not exist before. 

In the second line of research that concerns query dynamics, the focus is mainly put on the usefulness of queries 

temporal patterns on research areas such as event tracking or temporal intent detection. In the sequel, we present the 

studies that have investigated the elicitation of user’s search behaviours as well as the work on how temporal queries 

analysis may be of benefit in tracking events. 

Event Tracking and prediction. Ginsberg et al. [26] showed that Google Web search queries may be a valuable 

source of information to track influenza-like illness in a population. The authors computed time series of about 

50 million of the most common search queries in the United States and designed a method to select the 

influenza-like illness queries. This work is followed by Diaz [27] who studied the newsworthiness of queries. 

The author developed e"cient methods for identifying queries that are related to breaking news. News intent is 

identified by means of either query dynamic understanding or using click-through prediction. Furthermore, the 

author investigated the impact of integrating search results from the news vertical search into Web core search 

results.  

User behaviour prediction. Radinsky et al. [28] examined how to model and predict user behaviour over time using 

time series. They explored di!erent dynamics of Web behaviours including trend, periodicity, noise, surprise 

and seasonality detection. The authors showed that the proposed time-aware modelling of user behaviour could 

be incorporated in many search-related applications such as query click prediction or query-URL prediction. 

Joho et al. [8] carried out a user survey in order to shed light on temporal characteristics of user Web search 

activities. This study suggests that an interplay of seasonal interests, technicality of information needs, target 

time of information, re-finding behaviour, and freshness of information can be important factors for the 

application of temporal search. Among the significant findings elicited from the conducted analysis is the 

importance of the recency of retrieved information. 

Query classification for user’s query temporal intent detection. Search intentions of two queries could be considered 

as similar as far as they present similar temporal profiles [29]. This issue has been studied by Radinsky et al. 

[30] through a Temporal Semantic Analysis (TSA) based approach. The authors used TSA to represent the 

semantics of natural language words, and to compute the semantic relatedness between words. Therein, a word 

is represented by a weighted vector of concept time series derived from several sources such as Wikipedia, 

Flickr and del.icio.us. Experiments on the New York Times archive showed that TSA leads to significant 

improvements in computing query-terms relatedness.   

Earlier, Asur and Buehrer [31] studied whether the di!erent frequency profiles could be of use to improve 

query classification. Three di!erent families of queries have been investigated, i.e., Navigational, Adult and 

News queries. To perform query classification, authors have computed trends in query-clicks over time. In the 

same context, Ren et al. [32] proposed a time-based query classification approach to automatically detect 

query’s user temporal intent. They identified several time-related latent semantics under queries, such as full-

time intent, most recent time intent, or burst time intent. Then, queries were grouped according to their 

temporal intents based on a query taxonomy and their search frequency distributions over time in Web query 



 

 

logs. The work presented in Costa et al. [33] is also worth of cite since it designed ranking features that exploit 

correlations between archived data and relevance. The author’s hypothesis was that closer periods are more 

likely to hold similar Web characteristics. For this purpose, a temporal-dependent ranking framework 

exploiting the variance of Web characteristics over time has been proposed. Their study has been performed on 

a Web archive containing over 14 years of Web snapshots and it has been proved to be very e!ective in 

ranking problems over Web archives.  

4.1.2. Time at the Document Content Level 
In the following, we overview the research studies that tackled the problem of time and relevance at the document 

content level.  

The main challenge here consists in the identification and extraction of temporal expressions contained on the Web 

documents. As discussed in Section 3 (Cf. Figure 2), temporal expressions may be classified, respectively, into implicit, 

relative or explicit. The extraction of these expressions is a crucial step in identifying the focused time for Web pages 

(i.e., adequate time associated with Web pages) and thus in improving the retrieval effectiveness of T-IR models. While 

explicit temporal expressions are often easy to identify (e.g., from a calendar), implicit temporal expressions are difficult 

to deal with, as they require a reference time. For instance, a temporal expression such as “today” needs to be matched 

to the right date to which it refers in the document (e.g., document publication or last modified time). However, when 

the document creation time is missing, implicit temporal expressions should be matched with other temporal expressions 

from the document. This task is part of the tasks of so-called temporal taggers and is the most challenging one in the 

temporal document annotation process. To deal with this problem, there is some crucial pre-processing steps that should 

be performed on text documents: (i) first, tokenizing information mentioned in documents into sets of phrases; (ii) 

identification of the sentences; (iii) POS: assigning part of speech to the set of tokens; and (iv) NER: Named-Entity 

Recognition. Once the temporal expressions extracted, they shall be normalized. One of the most used temporal taggers 

that have been proposed is HeidelTime4.  HeidelTime is a multilingual temporal tagger that is able to correctly identify 

the reference time of temporal expressions (e.g., “today”, In “November”) [34]. The extraction is performed depending 

on the domain of the documents that are to be processed: news, narratives (e.g., Wikipedia articles), colloquial (e.g., 

SMS, tweets), and scientific (e.g., biomedical studies). When evaluated in the TempEval-2 challenge5, this system was 

the best performing one among eight other competitors.  

Lin et al. [9] employed the GUTime tool6 to extract temporal expressions and determine the focused time of 

documents. The authors classify temporal expressions into two classes: (i) global time and (ii) local time. While the 

latter takes the publication time as the referent, the former makes reference to the narrative time in the text, which also 

depends on the document context. After extraction, these temporal expressions as well as the corresponding focused 

time are used within a temporal search engine.  

Detecting temporal expressions was also the aim of some evaluation tasks such as SemEval [35]. For instance, in the 

SemEval-2007 Task 15: “TempEval Temporal Relation Identification” [35], the aim was to propose new methods for 

the automatic identification of all temporal referring expressions, events and temporal relations within a text. Given that 

this task is judged to be difficult, the organisers of this evaluation challenge proposed three tasks to simplify it to the 

participants. The first one (Task A) addresses only the temporal relations holding between time and event expressions 

that occur within the same sentence. The second task (Task B) addresses only the temporal relations holding between 

the Document Creation Time (DCT) and event expressions. Assigning the temporal relation between the main events of 

adjacent sentences was the aim of Task C. To address these tasks, several NLP based approaches have been successfully 

applied [35, 36, 37]. These NLP methods include the part-of-speech (POS) tagging tools, NER, coreference resolution 

systems, to cite but a few.  

The integration of the temporal information identified from documents into the Web search will be presented in the 

remainder. 

4.1.3. Time at The Ranking Level 
In this section, we show how time could be of use at the query document-matching level, as sketched in Figure 2 (Cf., 

Section 3). The most commonly used approach to rank temporally relevant documents is to combine the topical 

relevance with temporal relevance features. One of the most used techniques is to incorporate the temporal expressions 

into a language modelling framework [21]. The documents are then ranked according to their probability of generating 

the query. Another promising idea that is based on the assumption that queries (popularity) and documents (content) 

change over time [38], consists in analysing these changes to understand the search experience. This helps in giving 

insights into what the document is fundamentally about and how temporally sensitive it is, and this can be appropriately 

matched to the user’s intent [28,39]. This issue has been mainly tackled using time series analysis [28, 39, 40, 41]. Thus, 
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the bursts or highest peaks in the time series of relevant documents are coupled to the events causing the interest for the 

topic of these documents.  

Roadmap. We split the dedicated related work into two significant lines of research, according to the way time is 

defined and in which context it is exploited. 

· Time as a Dimension of Relevance: Here, we present studies in which time is defined as a dimension of 

relevance and combined with other relevance factors. Li and Croft [20] proposed a time-based language model 

framework that incorporates time into both query likelihood language model and relevance-based language 

model. The scores of the most recent documents are boosted to privilege recent articles over older ones. 

Campos et al. [42] defined a novel temporal ranking model, called GTE-Rank, which takes into account both 

content importance and temporal distance to re-rank Web snippets. The authors studied the impact of the 

incorporation of the temporal classification model on the retrieval e!ectiveness and proposed a set of measures 

that enable to push down non-relevant ones. Berberich et al. [21] studied the inherent uncertainty problem in 

temporal expressions of users’ queries (e.g., “in the 1990s”). Interestingly enough, the authors showed how 

temporal patterns can be integrated into a language modelling framework and how they could be leveraged to 

improve the retrieval e!ectiveness for temporal information needs. Then, documents are ranked according to 

their estimated probability of (temporally and textually) generating the query.  

In the same line of research, Dakka et al. [23] defined the relevance of a document as a combination of topic 

similarity and time relevance. The authors proposed a general framework to incorporate time into the retrieval 

task in a principled manner. For a given time-sensitive query over a news archive, the approach automatically 

identifies significant time intervals for the query and uses them to adjust the document relevance scores by 

boosting the scores of documents published within the important intervals. The proposed model ranks 

documents in decreasing order of their probability of relevance based on their temporal (P(t|q)) and topical 

(P(q|d)) relevance: P(dt |q) = P(d, t|q) # P(q|d)P(t|q), where P(q|d) denotes the query likelihood on document 

d,  and the second factor P(t|q) conveys the relative importance of the time point t for the whole query q. While 

the first factor (i.e., topical relevance) can be estimated using a standard text-based query likelihood method, 

the second factor (i.e., temporal evidence) could be estimated using di!erent methods, e.g., the maximum 

likelihood model, which is defined as the normalized sum of the relevance scores of documents published at 

time t for query q. 

Recently, Lin et al. [43] studied the extraction of the focused time for Web pages (i.e., the most appropriate 

time associated with it). After extracting temporal expressions and determining the focused time among all the 

extracted information, the authors suggested a score model based on both the frequency of temporal 

information as well as the containment relationship among temporal information. As for most T-IR models, the 

authors combined the textual similarity and the temporal similarity between queries and documents within the 

ranking process. A Time-Aware Search Engine (TASE) has also been proposed for that purpose. Harper and 

Chen [44] assume that the World Wide Web is in constant evolutionary change and hypothesize that the text 

similarity of a page to a query does not change over time, unlike its importance which e!ectively changes. 

Pages are ranked based on their text content and the included temporal information as well as the page 

importance. As an application, the authors introduce a model for PageRank, which considers the relevance 

between the text of a page and a query, the temporal information, as well as the outstanding score of the page.  

On the other hand, a wide range of work focused on the temporal properties of standard IR measures and 

investigated how the corpora changes over time may be exploited in document ranking. Perkiö et al. [45] 

assumed that the relevance of documents is not static over time and proposed a statistical topic model that takes 

into account the temporal behaviour of the underlying statistical properties of the documents. The basic 

assumption of this work was that: “the ranking of the results for a query Q at time t should promote documents 

whose most prominent topics are the same that are the most active within the whole corpus at time t”. The 

authors modelled this hypothesis based on a temporal adaptation of the TF-IDF weighting formula. The 

experimental evaluation using a news corpus have shown encouraging results when relying on the temporally 

adaptive ranking model.  

More recently, Efron [40] used temporal behaviour of terms in the entire collection, rather than in individual 

documents to derive the weight of each word to be used during the document ranking. Unlike traditional 

measures of term importance, in which rare terms receive higher weights than common terms receive, Efron 

defined a term’s time-based weight as a function of its behaviour over the lifetime of the corpus. The author 

proposed three time-based measures relying on time series analysis. These methods are shown to yield 

statistically significant improvements over two baseline retrieval models, using data from several tasks 



 

 

undertaken at TREC. In the same line of research, Karkali et al. [46] extended the traditional Inverse Document 

Frequency (IDF) measure and show that it could be efficiently used as a measure for document novelty on text 

streams. Given that document streams may shift over time, the authors inject a time decay technique in the 

scoring function in order to give recent documents higher weight values than older ones when performing 

novelty detection. Experiments within a Google news dataset7 as well as a twitter corpus showed that using a 

temporal variant of IDF lead to significant improvement in a document novelty detection task. Aji et al. [47] 

built upon the work of Efron [40] and proposed a novel term weighting scheme that rely on the revision history 

of documents. The main intuition of this work is that the importance of a term in a document can be measured 

by analysing the revision history (e.g., the edit history of a page in Wikipedia) that incorporates a significant 

amount of human editors' knowledge about the world. That is, as some documents may present extensive 

changes due to revisions that reflect news events for a given topic, important terms may be introduced early in 

the life of a document. For example, in the earlier revisions (June 2006) of the Wikipedia page devoted to the 

movie “Avatar”, there was little editing activity and little content, the page simply mentioned that James 

Cameron would direct the film. However, in October 2006, there is a significant change to the content as new 

details about the plot, budget, and development are added. The authors argue that term weights should be 

adjusted by incorporating burst history of the movie page. This observation gives rise to a ranking model that 

combines the term importance information distilled from the revision history with two conventional statistical 

approaches, namely, BM25 and the generative statistical language model (LM). Experiments using the INEX 

2009 ad-hoc track evaluation and a set of TREC ad-hoc queries show significant improvements over the 

conventional BM25 and LM retrieval models. However, the proposed model was shown to be outperformed by 

the baselines for ambiguous queries which spans multiple topics such as the query “earthquake prediction” that 

include geology, natural disasters, etc. Following the same direction, Nunes et al. [48] used the same 

document’s revision history as a source of temporal evidence and propose several different term-weighting 

measures. The basic idea of the approach is to give higher weight values to terms that have existed for a longer 

time in a document, since its first version should be valued higher than a term that was introduced only in the 

latest revision made. The proposed method has been evaluated using a collection of Wikipedia articles. The 

results showed that the proposed revision term frequency and revision term frequency spans perform the 

traditional TF measure.  

· Time as a Query Topic: A novel interesting IR problem that has been recently studied consists in considering 

the time as a query topic instead of using a text query as in traditional search. The work of Kim et al. [49] was 

among the first ones that tackled such issue. The authors have considered the query as a time series for a time 

period. The retrieval task is to find relevant documents in a text collection of the same period, which contain 

topics that are correlated with the query time series [49]. After testing several ranking methods that rely on 

ranking text documents based on the assessment to what extent their terms are correlated with the query time 

series, they showed that their method supports users in finding the documents that are relevant to the time 

series queries, which could help them in analysing the variation patterns of the time series. 

4.1.4. Synthesis 
Prior research on the temporal dimension of search showed the importance of time in document ranking [50, 12]. Many 

sources of temporal evidence were presented ranging from document-based evidence to Web-based features. These 

research could be structured according to three types, depending on the main source of temporal evidence being 

explored [12]: (i) Link-based research uses links, both in-links  and  out-links,  in  a  temporal  context  to  refine  

information  retrieval; (ii) Content-based research examines document’s contents from a temporal point of view; and 

(iii) metadata-based research uses evidence gathered from HTTP headers and external services (e.g. PageRank values).  

This temporal evidence is exploited to improve IR on the Web. As previously mentioned, we have organised these 

work on three levels. Table 1 reports a synthesis of the discussed work on the query level, with the type of the 

investigated query, the used model and the datasets used for evaluating the underlying research contributions. Most of 

the studied queries could be classified into two families: temporal and atemporal. The former are those for which the 

user’s interest is about documents published in particular points of time in the past or recently published ones, which are 

about fresh events. To understand the temporal nature of queries, these studies exploit the distribution of the documents 

respective dates to identify time intervals that are likely to be of interest to the latter. For instance, when searching for 

“earthquakes”, the peaks in the distribution may indicate when “earthquakes” occurred. Time series analysis is shown to 

be a good candidate to tackle this kind of issues [24, 41, 51, 49]. This solution is of particular relevance especially in the 

context of news collections and query logs. For instance, as reported in Kulkarni et al. [39], analysing the changes in 

query popularity, web content and query intent could help search engines to decide when it is appropriate to interject 
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news into the result page. These approaches use time series with a special focus towards identifying features by which 

changes in query-term frequency or popularity can be classified including spikiness, periodicity, trend, etc. [24, 51, 39, 

28].  

Table 1. A Synthetic overview of empirical studies on temporal query understanding.  

Main references Query class Ranking Model Dataset 

Li and Croft [20] Recency Temporal language model TREC queries 301-400 over collections 
from TREC volumes 4 and volume 5 

Vlachos et al. [24]  Bursts, periodic Time-Series Analysis MSN search engine query logs 

Jones and Diaz [18] Atemporal, temporally 

unambiguous, temporally 
ambiguous  

- News articles and Web search query logs 

Diaz [27] - Language model  News articles 

Metzler et al. [17] Implicit year qualified 

queries 

- Query logs 

Asur and Buehrer [31] 

 

Navigational, Adult and 

News queries 

- - 

Berberich et al. [21] Temporal expressions Temporal language model New York Times Annotated 
Corpus, English Wikipedia 

Subasic and Castillo [25] Bursts Temporal language model Query logs from Yahoo 

Shokouhi [51] Seasonal - Search logs 

Kulkarni et al. [39] Spikiness, spike shape, 

periodicity, overall trend 

- Query logs from the Bing search engine, 

daily Web crawl, periodic human 

relevance judgments 
Radinsky [28] Trend, periodicity, noise, 

surprise, seasonality 

Time-Series Analysis Query and URL logs from Bing 

Dakka et al. [23] Time-sensitive Temporal language model News article data sets 

Jabeur et al. [52] - Bayesian Model TREC 2011 Microblog track dataset 

Efron [40] - Time-Series Analysis TREC Tipster collection, TREC robust 
track 

  

From the ranking perspective, an ongoing body of work exploit the temporal change of user’s search behaviour and 

documents collections in order to enhance the retrieval task [28]. While some work investigated specific temporal year 

queries to modify the language model [17], others added temporal factors into the same model and relevance to re-rank 

documents results [20]. The term frequency changes over time has also been investigated to weight terms in dynamic 

collections of documents [40]. Another line of research has focused on improving the ranking of recent information 

within several IR tasks [27, 52]. The exploitation of the language modeling framework is straightforward and it is shown 

to be effective in solving such IR problems [27].  The temporal variant of this model has been successfully applied in a 

wide scope of applications ranging from real-time search, temporal summarization, topic detection and within different 

evaluation frameworks. Worth of mention is the common interest on news archive collections and query logs. This 

explains their interest in many seminars dedicated to T-IR applications, such as the Time-aware Information Access 

temporal (TAIA) series [53, 54]. Most of the researches done into this scope are based on Twitter and Wikipedia. 

4.2. Social Web Search 

Our motivation behind a separate section for social Web search comes from the fact that social Web content di!ers from 

that of the classical Web content in several points [55]. First, the user’s search intentions are slightly di!erent given that 

in social search, users usually seek for user generated social content. Second, contents are di!erent, for instance, in 

social systems such as Twitter, tweets are short and do not change after being posted [55] while Web pages evolve and 

are richer. Moreover, time is gaining a surging interest in this area, given that this task is temporal in nature as the 

relevance of the search is time-dependent.  

Roadmap. To the best of our knowledge, most of the work done in the scope of the temporal-dependent social Web 

search primarily focus on the ranking process, unlike traditional Web search where a spate of research is given to query 

understanding and processing (Cf., Figure 2, Section 3). Thus, in the following, we report the studies that typically aim 

to exploit time in social IR settings. We split these studies according to the type of documents that users are seeking for.  



 

 

Tweet search. Many temporal characteristics have been incorporated to account for tweet relevance [56, 57, 58]. 

Elsweiler et al. [57] tried to understand what people are really trying to achieve in Twitter. Their conclusion 

was that the search is motivated by (i) temporal patterns (e.g., trending event information); (ii) social content 

(e.g., searching for a particular person); and (iii) topical content. The tweet search task is driven by a variety of 

criteria such as authority, topicality and recency of tweets. Time is represented by the recency criterion which 

is often defined as the di!erence between the time a document was published and the query submission 

timestamp. Jabeur et al. [52] proposed a Bayesian model that aggregated relevance factors such as the social 

importance of microbloggers and the temporal magnitude of tweets. The temporal magnitude of microblogs is 

estimated based on temporal neighbours that present similar query terms.  

In Wang et al. [58], the authors made use of learning to rank methods in order to aggregate the relevance 

features in a microblog search setting. The authors divide features into two categories: entity related and 

temporal related features. Temporal features include some clues about the temporal distribution of documents, 

the average time of the whole collection, time interval between queries and a given document, etc. Then, the 

Listnet learning to rank algorithm [93] is used to combine all these features. The authors showed that learning 

to rank is efficient in combining temporal evidence into ranking models. Miyanishi et al. [60] proposed a 

concept-based query expansion method based on a temporal relevance model that uses the temporal variation 

of concepts (e.g., terms and phrases) on microblogs. Their model is based on important concepts that are 

frequently used within a particular time period associated with a given topic, which better discriminates, rather 

than words, between relevant and non-relevant microblog documents.  

Event-episode discovery. This task focuses on the retrieval of new events from news documents. Wei et al. [61] have 

investigated the problem of integrating temporal information for event episode discovery. The authors 

developed a temporal based method to e!ectively discover event episodes from a sequence of news documents 

pertaining to a specific event. Two temporally enhanced metrics inspired from the classical TF − IDF metric 

have been then proposed: TF-IDF Tempo and TF-Enhanced-IDF Tempo. The authors show that incorporating 

a time-decaying function can significantly improve the effectiveness of their event episode discovery 

technique.  

Beyond the task of real-time search, some work have paid attention to the usability of some external sources 

such as Wikipedia in reflecting the latency of events in the real world. Osborne et al. [62] examined Wikipedia 

pages that exhibit unusual large spikes in page views. Then, they compared the obtained tweets and Wikipedia 

pages over textual and time dimensions to identify common aspects of both systems. The authors showed that 

there is a delay of two hours between events breaking on Twitter and the time when users start to search 

Wikipedia for information about it. Close to this work, Whiting et al. [63] discussed the main content and 

meta-data temporal signals available within the website. The source and nature of each signal as well as its 

extraction have also been studied. Some datasets have been released in this work in order to support temporal 

research based on Wikipedia. Some approaches that work on event detection based on Wikipedia edits and 

linkage highlighted that the bursty changes in both the linkage and content of a Wikipedia page in a particular 

time could be a result of a trending event related to the topic of the page. Based on this, the changed page is 

considered relevant if relevant changes can be observed in the interlinked pages as well [64]. Julianna et al. 

[64] have combined a textual relevance score with a temporal relevance score that measures the changes in 

time of both linkage and content. The authors claimed that their methods can directly be applied for any 

hyperlinked collection. 

Tag recommendation. This task focuses on helping users in annotating documents on the Web. Zhang et al. [65] 

proposed a time-dependent tag-recommender algorithm that is based on the frequency and the temporal usage 

of a user’s tag assignments. The algorithm models the temporal tag usage with an exponential distribution 

based on the occurrence patterns of tags over time. The intuition behind this was that the users’ preferences 

towards tags could change over time. To assess a tag for a user-document pair, the authors first considered the 

user’s general interest in the tag, then computed its recurrence probability based on the first- and last-time 

usage of the tag. The time-dependent algorithm has been tested on two real-life datasets extracted from 

Bibsonomy and Delicious. Experimental results have shown that the proposed temporal model outperforms 

state-of-the-art tag prediction methods. 

Time-aware social search. Given the tremendous amount of users’ generated contents in social networks, several 

works harnessed the available temporal features to improve the ranking effectiveness. Khodaei and Alonso [66] 

used a set of temporally-aware social signals and show how they can add another aspect to the existing social 

signals. The authors assumed that documents can be socially relevant to certain people (or networks) for 

specific time periods or with some temporal patterns. The time of (social) actions is used to categorize a user’s 



 

 

social interests into five categories: (i) recent interests; (ii) on-going; (iii) past; (iv) seasonal; and (v) random 

interests. Then, social results could be filtered based on one of these categories. The authors show through 

experiments on Facebook and Twitter sample data that these temporal signals could be used in existing search 

engines. Inagaki et al. [67] proposed a set of click features to improve machine learned recency ranking. 

Among these features a temporal factor called click buzz that captures the spiking interest of a URL for a query. 

The latter favours URL that have recent interests to the user. In a closest social IR task, Badache et al. [68] 

proposed an approach based on social signals to estimate document’s relevance. The authors made use of a 

recency criterion assuming that a resource is fresh whenever there are recent social signals associated with it. 

Freshness is defined as: “a date of each social action (e.g., date of comment, date of share) performed on a 

resource on social”. The authors show that temporal features improve relevance ranking of conventional text 

search. 

4.3. Mobile Web Search 

With the proliferation of mobile devices, recent trends in information technology show an emerging interest on mobile 

Web search. In a mobile IR setting, users are interested in relevant information while they are moving. Relevance often 

depends on the user’s situation (location/time) and some social (surrounding persons) dimensions [69, 70]. As time 

became a paramount relevance factor in mobile search settings, we report in the following some research on time and 

mobile Web search.  

Church et al. [71] examined users’ goals behind mobile search and argued that taking advantage of temporal, location 

and preference-based contexts may be of potential benefit in mobile information scenarios. The authors carried out a 

four-week diary study in order to understand the intent behind information needs and how those information change 

based on context. They found 8.4% of diary entries expressing information need including explicit temporal cues such 

as “tonight, tomorrow, next week, etc.”. Interestingly, Church et al. found that most of the geographical information 

needs (30%) were temporally dependent, even though most of them did not include explicit temporal cues (e.g., “Where 

is nice for lunch near Jervis St.?”). In this case, it is obvious that the user is looking for fresh information that is only 

relevant for this particular point of time.  

In the same line of research, Teevan et al. [72] investigated the importance of location, time, and people in mobile 

local search behaviour. To do so, the authors analysed the results of a survey of 929 employees at Microsoft whom have 

been asked to report their most recent mobile local search. The authors highlighted three important aspects that emerged 

from the data: temporal features, location and social context. Time was the most important aspect that influenced the 

topics people search for. For instance, people wanted search result to be near them in term of time (e.g., 9% of 

respondents did not care how long it would take to reach the destination, while 26% were interested in having it to be as 

close as possible) [72].  

Yau et al. [69] combine situation-based adaptation and profile-based personalization into an IR model. A situation is 

represented as a set of past context attributes and/or actions such as: location, time, light, device, etc. A user profile 

includes a usage history and general interests that have been automatically learned using a modified Naive Bayesian 

classifier. Here, the time is simply represented by the date when the search occurs.  

In summary, in most of research on mobile IR, time is used as a simple but important relevance feature that yields 

information about when a query is submitted and allows to tailor the search results to users accordingly. 

4.4. Geo-temporal Information Retrieval 

In this section, we present studies on geo-temporal IR that are particularly done at the document ranking level. 

The spatio-temporal information exploration is also an emerging field which heavily relies on temporal information. 

Works on this area often combine spatial and temporal information [73, 74, 75, 76]. Spatial information is normalized 

according to the given latitude/longitude and is extracted through the so-called geo-taggers.  

Strötgen et al. [73] have proposed a new model to rank documents according to combined textual, temporal, and 

geographic queries. Unlike previous works, the authors abandoned the independence assumption between the query 

parts by computing proximity scores. Therefore, the higher number terms and expressions fulfilling the di!erent query 

parts occur close to each other in a document, the more relevant the document is. An extended version of the Okapi 

BM25 ranking model has been proved to be e"cient for such a purpose. Mishra et al. [74] proposed a geo-temporal re-

ranking approach based on counting the number of geographic and temporal expressions from an initial search. The 

documents final ranking relies on the initial probability coupled with weighting of the counts.  



 

Later, Daoud and Huang [75] proposed a geo-temporal retrieval strategy that models and exploits geo-temporal 

context-dependent evidence extracted from pseudo-relevant feedback documents. The final score of the document is 

based on combining the content-based score, the temporal score, the geographic score, and the proximity score using a 

linear combination mechanism. Experiments on the New York Times news collection and the TREC 2004 robust 

retrieval track collection showed a positive correlation between the geographic and temporal query sensitivity and the 

retrieval performance. 

4.5. Result presentation 

With the rapid growth of the World Wide Web, data are generated at a furious pace. It becomes di"cult to users to 

choose the documents to access, especially when it comes to temporal-dependent information needs. Consider, for 

instance, a user looking for information about the “Charlie Hebdo newspaper shooting”. It might be possible that the 

user’s information need is about the number or names of the victims and survivors after the attack. However, the user 

might also have a myriad of general interest about subsequent relevant information regarding the suspects, involved 

entities and political aftermath. General search engines and content providers simply return a set of documents ranked 

by their relevance to the query. However, presenting results in the form of a complete and updatable timeline would be a 

promising issue. More recently, Google search engine proposed a kind of timeline for some types of queries (Cf., Figure 

4). In Figure 4, the Google search result on the query “Oscar academy awards” shows some recent related news about 

the event, in addition to a table showing information about the winners of the current and previous editions.  

 Some news websites presented similar approaches based on manually created timelines to show news about trending 

events. For instance, in Figure 5, we show the timeline manually created by the CBC news Website8 during the “Charlie 

Hebdo newspaper shooting” event. We can see that events are chronologically ordered in time (hour and date), with an 

illustrative map showing the geographical locations of the most important incidents, as well as some additional audio 

recording about the events.  

Timeline construction has recently been tackled by some challenges and evaluation tracks such as the Tweet timeline 

generation (TTG) task of the TREC Microblog track and the Cross-document Event Ordering task of SemEval9 2015. 

The ultimate goal of these tracks is to unveil a set of significant sentences in response to a query or a given entity that 

could be a person, an organization or even a product, and put them within a chronological time span. This visualization 

approach allows end users to have an overall picture about the information (events or temporal query) they are looking 

for. In the context of a social IR, Li and Cardie [77] have tackled the problem of timeline generation for Twitter users. 

They proposed an unsupervised approach based on a Dirichlet Process Mixture Model to extract two significant types of 

information from the joint Twitter feed: personal tweets and time-specific information (to exclude time-general events). 

The authors found that topic models are not adequate for this task, as they harness word frequency as a main criterion 

 

Figure 4.  Google search results on the query “Oscar academy awards”, accessed on February 2015. 



 

for topic modelling, except for topics about celebrities that are widely discussed. Moreover, the time-specific feature is 

not found to be yet e!ective, as it fails to distinguish between short-term interests and personally important event topics.  

So far, Tran et al. [78] proposed a timeline summarization approach for news articles based on a learning to rank 

algorithm. Due to the absence of public available datasets for this task, the authors manually constructed a collection of 

timelines10 that are published by popular news agencies such as BBC, CNN, etc. A timeline summary is defined as a 

temporally ordered list of day summaries, where each day summary consists of a couple: a day's identifier and a set of 

sentences describing the main news event(s) that occurred on that day [78]. To measure the quality of summaries, the 

authors made use of three criteria: sentence relevance, sentence novelty and content continuity. 

 

5. Main Tracks for the Evaluation of Time-Aware Information Access Models 

A key innovation in the IR academic community was the early recognition of the importance of building and crucially 

sharing test collections [13]. This offer research groups the opportunity to evaluate their own IR systems and compare 

them with other published results obtained on the same shared collection. Motivated by the theoretical interest in the 

problems of temporal IR, there has been a spate of recent evaluation tracks and challenges that focused on T-IR access. 

These tracks present a focus for many time-aware international collaborative research exercises including temporal 

summarization, timeline generation, semantic evaluation and information filtering. Some of these activities include, but 

are not limited to: 

SemEval 2015 - Time and Space track11: this evaluation track includes 5 tasks (i) TimeLine: Cross-Document Event 

Ordering; (ii) QA TempEval; (iii) Clinical TempEval; (iv) Diachronic Text Evaluation; and (v) SpaceEval. The 

Cross-Document Event Ordering is a new task on SemEval that focuses on the timeline generation problem. 

QA TempEval revolves around the temporal question-answering (QA) accuracy and the evaluation of temporal 

information understanding. The task mainly consists in building a knowledge base for obtaining answers for 

temporal questions about the documents and then compare them to a human answer key. Clinical TempEval 

focuses on identifying and describing events, times and the relations between them in clinical text. The 

Diachronic Text Evaluation task proposes to tackle the problem of automatically identifying the time period 

 

Figure 5. Timeline of the “Charlie Hebdo newspaper shooting” event on the CBC News Website, accessed on January 2015. 



 

 

whenever a piece of news was written. The SpaceEval task consists in identifying and classifying items from 

an inventory of spatial concepts based on a set of features including time and space measurements, locations, 

motions, etc. Most of these tasks require the identification and extraction of temporal expressions included in 

the given document collections.  

TREC Temporal Summarization Track12 (TS): aims to return relevant documents about an event from a time-stamped 

document collection. TREC 2013 was the first iteration of this track. It consists of two tasks: (i) Sequential 

Update Summarization where participants should return relevant and novel updates (sentences) for an event; 

and (ii) Value Tracking that intend to estimate values for a particular attribute for an event. Participants of this 

task made use of the TREC KBA Stream Corpus, which consists of a set of time-stamped documents from a 

variety of news and social media sources. Many temporal metrics have also been proposed to evaluate the 

proposed systems. Eight (8) groups have participated to the TREC 2013 TS track, the best run is that of PRIS 

[79]. For the first task, the system used the hierarchical Latent Dirichlet Allocation (LDA) for sentence scoring, 

while it exploits a Conditional Random Field (CRF) model for the second task. For the TREC TS 2014 task, 

participants were also given another pre-filtered corpus which only contains documents from the 2014 event 

topic periods and they are asked to produce temporal summaries for 15 di!erent events, spanning accidents, 

natural disasters, storms, shootings and protests. 

TREC Knowledge Base Acceleration Track (KBA) [80]: the KBA track intends to help users expand and reduce 

e!orts with the maintenance of knowledge bases like Wikipedia, by automatically filtering the time-ordered 

corpus for the documents that are highly relevant to a predefined list of entities [80]. For TREC 2012, the 

organizers selected a set of filter topics based on 29 Wikipedia target entities: 27 people and 2 organizations. 

Participants are asked to apply their systems to a set of hourly directories of corpus data in a chronological 

order. The goal is to find documents having a significant likelihood indicating whether the latter is citation 

worthy for a given entity. F-score and a utility evaluation measure are used to assess the submitted runs. The 

highest performing systems in KBA 2012 (11 participating teams, 43 runs) were based either on rich feature 

engineering from the KBA or on learning to rank algorithms (e.g., SVMs). TREC 2013 proposed two tasks: (i) 

Cumulative Citation Recommendation (CCR), the same as KBA 2012; and (ii) Streaming Slot Filtering (SSF), 

a new task that builds on CCR by specifying a slot name for each entity (i.e., detects changes to the slot 

values). For KBA 2013, 141 entities have been released and 15 teams (140 runs) took part of the track. The 

best performing run in the evaluation is based on machine learning methods. As the track focuses on 

identifying vital documents that contain timely new information, most of participant systems are based on 

temporal features to retrieve vital documents. For instance, Abbes et al. [81] used a burst-based factor relying 

on the assumption that the higher the number of matching documents in a short period is, the higher the 

probability of having vital documents would be. This factor is linearly combined with a Language Model-based 

factor.  

NTCIR Temporal Information Access (Temporalia) Task13: o!ers two subtasks to address temporal information 

access: (i) Temporal Query Intent Classification (TQIC) subtask; and (ii) Temporal Information Retrieval 

(TIR) subtask. While the former aims at classifying queries into four predetermined temporal classes (past, 

recency, future and atemporal) based on their implicit or explicit temporal intent, the latter focuses on 

retrieving a set of documents in response to a search topic that incorporates a time factor [82]. Compared to the 

TREC temporal summarization track where the scope is related to the ranking documents for the ”recency” 

class of queries, the Temporalia task is limited to information about concrete past events or to a particular type 

of attribute-like information (e.g., numerical value). The task participants are given a document corpus, called 

“LivingKnowledge news and blogs annotated sub-collection” collected from blog and news sources. For the 

Temporalia 2014 task, 8 teams have participated with 36 runs. The retrieval e!ectiveness is evaluated by the 

precision and nDCG at 20. The main outcome from the TQIC subtask was that past queries were found to be 

quite easy to classify (73%) while recency queries were the most difficult (56%). The best performing system 

used logistic regression classifiers and SVMlin classifier to predict temporal query classes [83]. The team’s 

methods were also based on additional data from the AOL 500K query session dataset. For the TIR subtask, the 

best performing system was a baseline submitted by the organizer team relying on a BM25 weighting scheme 

and using some fields that are given in the topic descriptions. One of the outcomes from this subtask, as well as 

for the TQIC subtask, suggests that it is difficult to generate effective models for all temporal classes based on 

a single IR method. For future research, the task organisers suggest the extension of the TIR subtask with 

multi-document summarization, which consists in creating temporal summaries from many documents 

including historical order of peoples, organizations, or events [84].  



 

 

Tweet timeline generation (TTG) task of the TREC Microblog track [85]: is a new task firstly proposed on the 2014 

TREC Microblog track and tries to respond to the following: ”I have an information need expressed by a query 

Q at time t and I would like a summary that captures relevant information”. Two challenges are to be addressed 

for this task: (i) detect and eliminate redundant tweets (novelty); and (ii) automatically identify the number of 

relevant tweets to return. In the 2014 TREC TTG, 15 teams have participated with 50 runs. Participating 

systems are evaluated based on, respectively, recall, precision and F-measure. The best performing system 

proposed a graph-based ranking method representing tweets as nodes and relying on similarity measures to 

compute the relationship between the tweets in one hand, then the tweets and the query on the other hand [86].  

Several T-IR models have been proposed and evaluated in the context of the above challenges. We present in Table 

3, some of the proposed approaches with the document collection as well as the associated metrics used for evaluation. 

As shown in Table 3, news archives are the most used data collections to evaluate the T-IR methods. 

Table 3.  Evaluation of T-IR models.   

Track (or Task) Dataset Temporal span Availability Evaluation metrics 

SemEval 2015 Collection of news 

articles, wiki, blogs, 

Clinical data 

Different times spans (from 

1960 to 2014) 

 MAP, Recall, Precision 

TREC TS TREC KBA Stream 

Corpus 

From October 2011 

through mid-February 2013 

 EG metric, coverage, EL 

metric, Harmonic Mean of 

normalized EL, Latency 
Comprehensiveness 

TREC KBA TREC KBA Stream 

Corpus 

From October 2011 

through mid-February 2013 
 

F_1 accuracy, Scaled Utility 

NTCIR Temporalia LivingKnowledge news 

and blogs 

2014 
 

Precision, nDCG, Q-

measure 

TREC Microblog TTG  TREC Microblog dataset  2014 
 

Cluster precision, Cluster 
recall 

   

6. Research Trends 

Despite the great advance in the T-IR domain, some potential areas remain unexplored. We present in the following, 

some interesting avenues that could be investigated in the future. 

Data sources and evaluation. With the pace at which the social Web grows, we argue that recency queries have 

almost the same overall trend over diverse news collections. As previously discussed, many sources have been 

used in the T-IR realm, the primary ones are Wikipedia and news sources. However, users tend to react to 

trending events across various social networks (e.g., Facebook, Twitter, Youtube, Reddit, 4Chan, Imgur, etc). 

Thus, we believe that the relevance of one document from one document collection may provide useful 

information about the relevance of other documents from other collections with similar content that were 

published around the same time. This requires novel methods just like those proposed in the data aggregation 

field, but that leverage the traditional information presentation paradigm toward more time-sensitive search 

results. Some news websites are dealing with this issue, but the content remains manually created.  

Another promising direction that recently emerged consists in proposing relevant search results published in 

diverse times of interest to the query. This issue was the main topic of temporal diversification approaches 

[87,88]. In addition, a challenging constraint that should be taken into account is the comprehensiveness of the 

provided content regardless of the used data sources. A good search result should be easy, succinct and refer to 

summarized content that does not require cognitive e!ort for the user.  

Considering the evaluation issue, despite the ever-growing maturity of T-IR approaches, most of the proposals 

are individually submitted and evaluated with specific datasets and evaluation methods to prove its superiority 

to previous approaches. We advocate that the superiority of a proposed model should be objectively tested with 

a whole collection of datasets that are issued by various sources in order to avoid the data bias problem. 

Moreover, another fundamental limitation that may be faced in this context is the evaluation scenario which is 



 

 

unrealistic to some extent. Consider for example the TREC KBA evaluation track, the latter asks the 

participants to automatically filter the whole time-ordered dataset for the documents that are highly relevant 

given a list of entities (topics). However, in real time scenarii, a system is not given any future evidence or 

information about the entities or the events that may occur in future. This is not the case here as far as the 

system participants may have access to future information such as term statistics over the entire corpus, which 

would not have been available after the timestamp of a given topic. Needless to say, this issue exists in many 

real-time documents collections that are based on the Cranfield-style evaluation paradigm [89]. Another 

concern that is worth emphasizing is the system comparison procedure. Due to the complexity and large 

volumes of most document collections, the IR systems are facing many other systems engineering issues 

beyond the proposal of efficient retrieval models, such as choosing the tokenization method, the stemming 

algorithm, among others. This leads to different systems implementations which make it difficult to compare 

them only in term of effectiveness. Some of these issues have been addressed by the evaluation-as-a-service 

model [90], which was firstly implemented at TREC 2013 to address restrictions on data redistribution. The 

premise of this model is that instead of distributing the document collection, the track organizers provided a 

service API with which all participants could accomplish the evaluation task. This provides a solution to all the 

systems engineering issues, and consequently, the participants are only concerned about the retrieval models. 

However, this solution is not generalized yet and it is only used in the TREC Microblog track. In the same line 

of research, some interesting research proposed the so-called Living Labs as an attempt to further away from 

the Cranfield-style evaluation paradigm, and make evaluations more “realistic”. The basic idea of living labs 

for IR is to provide a central and shared data repository and evaluation environment giving researchers the data 

required to test and evaluate IR models as well as methods and systems [91, 92]. Even though this idea is novel 

and worth interesting, it has not been operationalized yet for T-IR.  

Time and Stream analysis. As previously mentioned, most of T-IR systems are evaluated on news articles and real-

time data collections. Most of these datasets are considered as streams, as it is the case for the TREC KBA 

corpus or Twitter data.  Analysing and proposing efficient methods for such data flows is a difficult task. 

Although many research papers have been proposed for tackling these problems, most of the techniques are 

either complicated to be implemented or oversimplified that cannot yield reasonable performances in handling 

such continuous volumes of data [93]. Moreover, as time is the essence in these datasets, it should be 

thoroughly considered at the three levels discussed in the paper (query, document content and the model). 

Novel hybrid techniques that are derived from the already existing approaches will be required and they should 

be designed specifically to gauge with the overflowing news streams.  

Presentation of time sensitive results. Displaying relevant and visually compelling temporal results is an interesting 

means to further enhance the functionality of current T-IR systems. Recently, there has been several attempts 

into this insight. The Google’s news timeline14 is an example of such applications. The presented news could 

be explored by time and returned from di!erent news sources. Another similar interesting application is that of 

Newsmap15; that visually reflects the constantly changing landscape of the Google News aggregator. The goal 

is to provide an accurate visualization tool that divides information into recognizable bands which reveal the 

underlying patterns in news reporting. The systems show news segments in constant changes around the globe. 

Nevertheless, these attempts need to be enhanced and studied to assist users seeking for urgent needs or news 

summaries. This avoids users from exploring pages with complex and lengthy textual descriptions and 

obfuscating advertisements and graphics [94]. The TREC temporal summarization track as well as the TREC 

Microblog timeline generation task are suitable tracks that would hopefully allow tackling these issues. 

However, with the proliferation of mobile devices, new requirements for results presentation are imposed due 

to the resource-constrained environments of these devices (size of the screen, energy consumption). 

Unfortunately, progress towards realizing dynamic user exploration techniques has been very limited. 

Ranking models. T-IR ranking methods are mostly based on linear combination models. However, most of these 

methods (i) assume the independency of the query terms; and (ii) don’t take into account the possible 

dependencies between the considered relevance factors. Though some probabilistic models based on Markov 

random field [95] account for term proximity, they are not exploiting the temporal information contained in 

query terms and documents. For instance, people have tended to talk about “Jennifer Lawrence iCloud leak” 

only after the massive hack of the iCloud celebrity accounts, which happened on August, 2014. That is, there 

are terms that are highly correlated only on a given period. Computing their scores regarding this information 

could boost the retrieval e!ectiveness. For instance, Figure 6 illustrates the temporal distribution of the terms 

“Jennifer Lawrence”, “4chan”, “celebrity”, “leak” and “iCloud”, worldwide in the past 90 days using Google 

Trends. Figure 6 shows a high correlation on the date “1, September 2014”, i.e., after the recent iCloud security 



 

 

breach leading to hundreds of intimate celebrity pictures leaked and posted on 4Chan website. Such term 

dependencies have not till yet grasped the interest of the community. This dependency property has been 

investigated between the relevance dimensions, including the “time” as a factor [4, 5], but the temporal factor 

was represented by the basic recency relevance criterion. This leads to the assumption that documents, that are 

topically relevant for all the query terms and published in these bursty time periods, are more likely to be 

relevant in response to the whole query. Estimating the distribution of the query terms in the document 

collection considering the terms-temporal dependencies may improve the retrieval effectiveness.  

 Another interesting line of research that could be tackled is to supplement the standard challenges of adhoc 

retrieval with issues from topic detection and tracking, temporal summarization, novelty detection and other 

related area given the resemblance of the proposed models within these tasks. For instance, many models 

proposed on topic detection and tracking have been successfully applied on temporal summarization. As a 

matter of fact, unifying those techniques could potentially lead to powerful systems.  

 On the other hand, one of the major problems that affect the reproducibility of results and its application on 

other tasks is the large number of parameters to be tuned in the T-IR models.  For instance, computing the time 

series on a given temporal window may yield completely different results than another timespan. Parameter-

free datasets and models may be of benefit in these cases. However, there are many challenges to be overcame 

before this can be applied on real settings, including diverse data sources and appropriate evaluation protocols, 

as previously mentioned.  

7. Conclusion 

Temporal IR is a new emerging research field that aims to enhance the retrieval e!ectiveness by incorporating temporal 

characteristics of queries and documents in the core of the IR ranking models. Research directions that have been 

recently addressed in this concern showed the potential of embedding temporal signals into the ranking process and its 

e!ects on the retrieval e!ectiveness. In this paper, after motivating and presenting a number of examples and scenarios 

where temporal information could be very useful, we proposed a general categorization of the state-of-the-art research 

in the community. We have put the focus on three aspects in which time meets directly the IR realm. More particularly, 

we paid a special attention to work in which time is encompassed on the query level, the document content level and the 

document ranking level. We have also highlighted the importance of result presentation, in particular timeline 

visualisation. Recent advances in the areas of social Web search, mobile IR and geo-temporal ranking have also been 

provided in order to show how temporal and spatial or other relevance factors are jointly considered to account for 

documents relevance. The choice of these IR fields is not intended to be exhaustive, it is rather an attempt to provide a 

view of various fields as they thoroughly connect with time. Then, we have reported the leading tracks for the evaluation 

of time-aware information access models.  

The scrutiny of the experience arisen from the state-of-the-art approaches reveals that there is a compelling need to 

shift these studies towards more targeted generalized frameworks that involve all the IR components. Interesting future 

work to fill this gap may consist in providing real world documents collections such as query logs or real users’ search 

behaviours to empirically evaluate T-IR models. Another compelling experimental issue is that concerning the 

evaluation metrics used to assess the quality of the extracted temporal expressions as well as the document results. Most 

 

Figure 6. Google trend results on the terms ”Jennifer Lawrence”, ”4chan”, ”celebrity”, ”leak”, accessed on September 2014. 



 

of the common methods rely on classical (adaptation) evaluation measures such as precision, recall and F-measure and 

to some extent ROUGE scores, among others, depending on the domain of the application. For instance, the ROUGE 

measure which is used for the automatic evaluation of summaries is found to be unable to distinguish between automatic 

and human summaries. This metric may be inappropriate when a large number of test points is available [96]. Further 

investigations are needed to study more temporally dependent metrics that consider the time as an important evaluation 

measure through the whole evaluation process.  
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Notes 

1. http://www.google.com / 

2. http://en.wikipedia.org/wiki/Time/  

3. http://www.google.com/trends/hottrends/ (Accessed on March 6, 2015)  

4. http://heideltime.ifi.uni-heidelberg.de/heideltime/  

5. http://www.timeml.org/tempeval2/  

6. http://timeml.org/site/tarsqi/modules/gutime/  

7. The dataset is publicly available at: http://www.db-net.aueb.gr/GoogleNewsDataset/ 

8. http://www.cbc.ca/news/world/charlie-hebdo-newspaper-shooting-timeline-1.2892399  

9. http://alt.qcri.org/semeval2015/task4/  

10. http://www.l3s.de/~gtran/timeline/  

11. http://alt.qcri.org/semeval2015/  

12. http://www.trec-ts.org/  

13. https://sites.google.com/site/ntcirtemporalia/  

14. https://news.google.com/  

15. http://newsmap.jp/  
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