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Modeling a Bacterial Ecosystem Through Chemotaxis
Simulation of a Single Cell

Abstract We present in this paper an artificial life

ecosystem in which the genes in the genome encode

chemotaxis of bacteria that aim at: detecting resources

(or sensing the environment), controlling the bacteria

motion and producing a foraging behavior, and allow-

ing bacteria to communicate together to obtain more

sophisticated behaviors. The chemotaxis network of a

cell is modulated by a hybrid approach that uses an

algebraic model for the receptor clusters activity and

an ordinary differential equation for the adaptation dy-

namics, and a metabolism model that is based on the

transformation of matter from ’food’. The results show

analysis of the motion obtained by some bacteria and

their effects on the population behaviors generated by

evolution. This evolution allows bacteria to have the

ability to adapt themselves to better growth in the en-

vironment and to survive. As future work, we aim to

improve the effect of the communication between bac-
teria to obtain bacteria that can emerge as new species,

and to integrate the concept of colonies.

Keywords Artificial life · Bacterial chemotaxis ·

Single cell

1 Introduction

Simulation models in artificial life have focused metabolic,

cellular systems and artificial chemistries. Artificial life

research has also made progress in the study of adap-
tive behavior through computational models of artifi-
cial organisms. Remarkably simple chemical reactions

can perform movements toward some attractants, and
are therefore capable of modulating the behavior of ar-

tificial organisms.

We will also demonstrate whether a simple bacterial

chemotaxis process of a cell can explain the evolution of

more complicated behaviors such as bacterial popula-

tion dynamics. One of the central questions of modern

systems biology is the influence of microscopic parame-

ters of a single cell on the behavior of a cell population.

In terms of bacterial chemotaxis, this issue can be for-

mulated as the influence of signaling network param-

eters on the spatiotemporal dynamics of bacteria that

migrate towards chemical attractants and away from

repellents. This chemotaxis is one of the simplest be-

haviors known, and it likely is one of the first behaviors

to have existed in the history of life on earth.

In the bacterial chemotaxis process, when no attrac-

tant or repellant is present, or when the concentration

of attractant or repellant is uniform, a bacterium such

as E .coli tends to swim in a random walk, with periods

of smooth swimming (or runs) interrupted by brief tum-
bles that changes the swimming direction. In response

to attractant gradient, this random walk becomes bi-

ased and the bacteria tumble less frequently when en-

countering increasing concentrations of an attractant
(i.e., they swim longer runs), and tumble more fre-

quently when the attractant concentration is decreasing

[1]. The motivation for studying such small organisms

lies in the belief that elucidating the mechanisms con-
trolling their behavior will help in understanding more

complex biological pathways and organisms. Phospho-

rylation cascade in a chemotaxis network was first sim-

ulated by Bray et al [2], using a system of ODEs, and

[3], a later version of their model, added adaptation. A
major advance in chemotaxis modeling was achieved in
[4]. Later, in [5], a theoretical analysis of a full ODE

system with included phosphorylation cascade.

Here, we present a bacterial ecosystem by simulat-
ing bacteria chemotaxis network. The chemotactic Es-
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cherichia coli bacterium model describes signal process-
ing by mixed chemoreceptor clusters, which is a rapid-
equilibrium (algebraic) model, adaptation through methy-

lation simulated by ordinary differential equations (ODEs),

and the running and tumbling of a cell with a flagella

motor [6]. The metabolism of this bacterium is a set of
chemical reactions that occur in the cell. These chemi-
cal reactions are designed digitally to perform different

functions as split , mutation and death. the aim goal of
this metabolic model is to demonstrate the importance

of recycling the matter in an ecosystem environment.

2 Bacterial Chemotaxis

The chemotaxis process consists of three stages: chemore-

ception, signaling, and adaptation [7]. Methyl accept-
ing chemotaxis proteins (MCPs) are located along the

cell surface. These proteins act as chemoreceptors and

bind with chemicals in the environment. If a nutrient

attractant is detected outside of the cell, through MCP,

the level of production of protein CheA decreases be-

cause the receptors state shifts to the off state. It has

been shown that the activity of the receptor cluster de-

pends on the local ligand concentration and the methy-

lation level according to the MWC (Monod-Wyman-

Changeux signal processing) model [8], [9]. CheA binds

with phosphate in the cell (denoted CheA-P). And the

phosphate group is transferred from the active CheA

to the response regulator CheY. The concentration of

CheY-P modulates the motor and its behavior makes

the cell run or tumble.

2.1 MWC model

We applied the MWC model for a mixed receptor clus-

ter [8], [9], where each receptor homodimer is described
by a two-state model. The inactive state of a receptor

has a higher affinity to the attractant than the active

state. The entire complex exists with all of its receptor
homodimers either active or inactive. The probability

A that receptor cluster is active is dependent on ligand
concentration and the methylation state of the recep-
tors and calculated as:

A = 1/(1 + eF ) (1)

Where F= Fon - Foff , and where F on/off is the free en-

ergy of the cluster to be on/off as a whole. Hence, the
average activity per receptor in the cluster is A. The
total free-energy difference in the mean-field approxi-

mation is F = nrfr(m), which is just the sum of the

individual free-energy differences between the receptor

on and off states.

fr(m) = fon
r − foff

r = ǫr(m) + log(
1 + [S ]/Kon

r

1 + [S ]/Koff
r

) (2)

where [S] is the ligand concentration, K
on/off
r is the

dissociation constant for the ligand in the on and off

state, respectively. The methylation state of the recep-

tor enters via the ”offset energy” ǫr(m).

2.2 Adaptation model

Adaptation is modeled according to the mean-field ap-

proximation of the assistance-neighborhood (AN) model
[8], [10]. Adaptation in chemotaxis is mediated by two

enzymes, methyltransferase CheR and methylesterase

CheB. It is assuming that the demethylating enzyme

CheB works only on active receptors and that the methy-

lating enzyme CheR works only on inactive receptors

within the AN. Each bound CheR adds methyl groups

at a rate a(1-A), and each bound CheB removes methyl

groups at a rate bA. It is assumed that both enzymes

work at saturation ([CheR]= 0.16, [CheB]= 0.28) [11]:

dm/dt = a(1−A) [CheR ]− bA [CheB ] (3)

The average methylation level evolves in time as

m(t+∆t) = m(t) + kV ∆t (4)

The parameter k indicates the adaptation rate rela-

tive to the wild type adaptation rate V that is the rate
of receptor methylation (see equation 3) [6].

2.3 Kinase activity

Both ligand binding and receptor methylation affect the

activity of CheA. For example, the increase of an attrac-
tant inhibits CheA activity, but subsequently methy-

lates a specific receptor. CheA kinase activity [6] is cal-

culated as (varing into [0,1]):

CheA = CheAtotAKA/(AKA +KY CheYtot) (5)

Where, A is the probability that receptor cluster is
active, CheYtot is the total CheY concentration that is

equal to 9.7 acoording to [11], KA=5 and KY =100 are
the rate constants acoording to [6].



2.4 CheY phosphorylation

The concentration of CheYp is obtained as a function

of active CheA from the steady-state equation [12].

CheY = CheYtotKY A/(KY CheA+KZCheZ + gy)(6)

Where, CheYtot is the total CheY concentration,
and CheZ is the total CheZ concentration, CheA is

the active [CheA ], and ky = 100µM−1s−1, kZ =
30/ [CheZ ]s−1, Y = 0.1 are the rate constants accord-
ing to [12], [13], [14]. Receptor modification increases

CheA activity and decreases sensitivity to attractants.

2.5 The CCW motor bias

The CCW motor bias depends on CheYp concentration

in the following form [15].

mb =
mb0

CheY (1−mb0) +mb0
(7)

Where, mb0 (0.65) is the steady-state motor bias.

3 Bacterial Metabolism

The metabolism is responsible for essential cycles of

growth, development and reproduction. Genes and move-

ments of a bacterium affect the majority of these cycles.

An organism’s genome may contain instructions that

encode the ability to metabolize one or more substrates

present in the environment. Metabolism of a food ei-

ther accelerates or decelerates a bacterium’s replication

rate by a factor that is positive or negative, signifying

a nutrient or a toxin, respectively. In this model, ev-
ery bacterium is represented by a genome from which

it extract its basic properties describing how it moves,

gains energy, expels toxins, and produces waste. These

properties are updated in the genome at each time step,
mutation is applied after each ”split” operation.

Forrest and Jones’ simulation [16] allows for simple

material cycling through agent bodies. Materials are

collected by the agents and stored for a time before be-
ing released back into the environment when the agent

dies. From this point of view, we adopted this idea and
the bacteria when they die, they will be transferred to

a source of energy for the other bacteria.

Metabolism is calculated as the organism’s total en-

ergy (energy obtained via the metabolizable food in

addition to basal energy provided equally to all organ-
isms) and subtracted to the ’cost of motion’ generated

from the tumble frequency produced by the bacteria

network. This metabolic model, supports bacteria to

stabilize their energy consumption in order to reach

splitting threshold. After this each bacterium splits into

two daughter cells. The food (i.e. food sources or waste
of bacteria) is stored internally and used up as follows:

∆Mt = (M0+A(MF+MW )+MT+mb0MM+MS)∆t(8)

– ∆Mt is the total metabolic expenditure (by which

the internal store or the energy gained from foods

is depleted in each time step);
– M0 is the base level metabolism (or the initial level

at birth, which is equal to 25);

– A is the ability of bacteria to consume a food from
the environment (according to the encoding genome

described in the next section);

– MF is the metabolic value stored from the food
sources consumption that is +2 units;

– MW is the metabolic value stored from the waste

consumption (+1 unit);
– MT is the metabolic cost of toxin consumption (-2);

– MM is the metabolic cost of movement (-1 unit);

– mb0 is the tumble frequency obtained from chemo-

taxis network of the bacteria;

– MS is the metabolic cost of split operation (Mt/2).

4 Genetic representation

In the bacterial chemotaxis, there is a processing system

of moderate complexity within the cell, triggered by

its inputs and producing an output response. In E.Coli

bacterium, this response corresponds to a change in the

flagella rotation. The bacterial chemotaxis shows prop-

erties of receptor function, adaptation, memory and

motor bias. To control these properties in order to sim-
ulate bacterial population behaviors, we use a genome

that encodes the activities of each level in the chemo-

taxis network. In this genome, we have two different

types of encoding as presented in figure 1. First, a bi-
nary encoding that describes the different capacities of
a bacterium, that are: The capacities to detect a nutri-

ent, and toxins with the same receptors. These capabil-

ities serve as inputs for the network chemotaxis. The M

and T values correspond to a small or large zone of nu-

trient detection. A consumption capacity of a bacteria,
explaining how many a bacterium can consume from

the food, this capacity is affecting the metabolism pro-
cess (see equation 8). The gene AC represents the con-

centration of autoinducers (or the ability of detecting
small diffusing autoinducers molecules), allowing bac-

teria to produce molecules and detect the molecules

produced by other bacteria presented in their group,
in order to communicate each other.

Second, a real encoding that encodes functions of

the chemotaxis network of a bacterium that are: Cluster



Fig. 1 The bacterium’s genome.

activity (CI), kinase activity, methylation level (Me),
CheY phosphorylation (Y) and motor bias (Mb), that

are obtained from the equations (1) to (7).

Once a bacterium manages to accumulate enough
energy to reach the division state, it divides immedi-

ately into two identical daughter cells, except that, the

new bacterium copy will be mutated, in order to en-

able bacteria to evolve. This ensures that the parent’s
genetic material is preserved, while at the same time
new genetic material is introduced in the population. A

small probability pm of mutation is proposed to be ap-

plied to the genome, by associating a noise to a selected

gene. It must be emphasized at this point that, after the

division process, the amount of energy of the parent’s

cell will be distributed equally to the two copies. This

will guarantee that the parent cell continues to exist,

and it can create many different offsprings during its

lifetime and does not ”die” after division.

5 Experimental Results

The objective of this work is to design an artificial

ecosystem populated with bacteria. The set of exper-

iments presented here are established in order to try to

found a solution of the question of how to demonstrate

if a simple bacterial chemotaxis process of a cell can

explain the evolution of more complicated behaviors as
bacterial population dynamics?

Simulated bacteria live and evolve in a 2-dimensional

environment subdivided into discrete grid squares in

which the bacteria exist as individual entities (i.e. the
biotic element of the ecosystem). The developed model

allows distinguishing three resources that are: (i) food
(a source of energy) diffuses from multiple point of
the environment and also (ii) from dead bacteria (or

waste), and (iii) toxin resources. Although the environ-

ment has been discretized, bacteria are free to move

in the continuous two-dimensional space by translating

their location. Each bacterium has one cell, all have

equal size, shape, chemotaxis network controlling their

movements, and artificial genomes generated at each
run. All other parameter setups used in the Chemotaxis

Network are the same as presented in our previous work

[17]. At the start of each run, the bacteria had random

locations in the environment. We started each evolu-

tionary run from 10 bacteria with randomly generated

genomes. Dead bacteria are replaced by sources

All runs presented in figure 2 (left-hand) show a fast
population increase in the first twenty simulation cycles

(or generations). This increase leads to a population re-
production (or split), and then the population stays rel-

atively constant for about 200 generations. From this

level to the generation 300, the population decreases
rapidly. This is a consequence of two facts. First a high

number of bacteria die due to the depletion of food re-
sources. Secondly, the speed of decrease is due to the
bad MCP and toxin avoidance capacities. From gener-

ation 300, and every 300 cycles, the growth rate is of-
ten increased according to the capacities defined in the

genome of each bacterium, which are also advanced.
The number of species varies great during an experi-

ment, which means that bacteria frequently split and

die over time. It is important not simply relate this to
food in the environment and to their own biomass, it is

rather related the evolved capacities.

We test the changes in the values of the population’s

collective energy for all 30 runs, as presented in Figure

2 (right-hand) were we observe that the metabolizable

resources are consumed, while the populations collec-

tive energy decreases in the beginning of the run (as

new cells are created), at the division process’s maxi-

mum speed, division process the biomass is exponen-

tially decreased. Knowing that all sources are depleted.

Within thirty generations, while many bacteria die be-

cause they did not have enough energy for movement,

but fortunately not all the population, as, all simulation

will stop in this case (but this has been tested before

choosing the environment parameters). In iteration 300,

when new nutrients resources are added to the environ-
ment, the bacteria consume nutrients, split, and when

no more nutrient are present in the environment, their
Energy decreases again but avidly than before. This

means that the bacteria obtained after thousand of time
steps are more stabilized and more effective in their use

of energy. This effectiveness is due to the evolved ca-

pacities of detection (MCP capacities) of nutrients and

mostly is due to the approved consumption ability.

The evolved capacities of bacteria effect the chemo-

taxis network response, for example: if a large zone is

covered with a bacterium, it will conduct it to a long

run movement (i.e. Inactive State). Also, if a good con-
sumption ability is obtained, the bacteria metabolism

will be better optimized. We also present data about

the oscillations of the swimming of some bacteria. The
figure 3 shows the path of (x,y) coordinates of some
bacteria borrowed from the simulation, where each bac-

terium applies long runs and short tumbles in the pres-



Fig. 2 Left-Hand. The Growth rate runs, which we have replicated 30 times with quantitatively the same results, representing
the optimal values of the whole of the bacteria for 5000 steps. Right-Hand. The Energy of the evolved population of bacteria
for 30 runs at 5000 generations. Inside the figure, a zoom in the same runs for 500 generations.

ence of nutrient sources (as response to the nutrient),
and a random walk in the Steady State. Run is a pe-

riod of long straight swimming, and tumble is when

bacteria stop and abruptly change their orientations,

which is seen in the figure as the angles formed be-

tween two runs. This path graph explained how bacte-

ria moved from their initial positions toward a favorite

zones, where two phases of evolution are remarked, in

the first 300 cycles: bacteria are executing long run from

a source to another, mostly in the first 20 cycles, and

when all resources are depleted the oscillations became

biased then a random walk is executed. The same thing

is remarked in the second 300 cycles.

6 Discussion

The results show that a simple simulation model of

single-celled creatures and biological mechanisms and

simple chemical reactions allows us to model more com-
plicated behaviors of a population of bacteria. We sum-
marize that the growth rate (or bacteria number) con-

tinues to increase for several hundred epochs, as the re-
sources are eventually present in the environment, and

the population’s collective lifespan is ameliorated be-
cause the evolved bacteria consume less energy with

their optimal capacities and gather more sources. The

behavior of the system is thus to favor emergence (or

adaptation) of best capacities to detect food and avoid

toxins, therefore to avoid death and to better reproduce
and to survive longer.

When bacteria are moving, consuming and split-

ting, their chemotaxis network are optimized in order
to control their evolution. The figure 4 explain how the

chemoatxis network answer to changes happened in the

environment and inside the bacterium cell. Four inter-

nal states are observed in this response; Steady State,

Fully Inactive, Adapted , and Fully Active State. In each

of these states the different protein’s concentrations are

observed and analyzed referred to [6].

In the Steady State the bacteria perform a random

walk , and exploring the environment with the initial

values: (the kinase CheA =0.0164, and methylation =1.92,

the CheY =1.92. Finally the motor bias =0,65). All

these values are used by the ordinary differential equa-

tions to calculate their changes over time. When bac-

teria detect food sources, they enter to a consump-

tion state, where transmembrane receptors sense this

changes of attractant and became inactive.The attrac-

tant binding inhibit the autophosphorylation activity

of CheA. The CheY phosphorylated by the groups re-

ceived from CheA (CheY-P), diffuses to the flagellar

motors and changes of motor rotation, and causes a
run. This increase of attractant concentration (realized

by an attractant detection) shifts the equilibrium to

off state of the receptors (i.e. Fully Inactive State),

that results in an initial fast decreases of kinase activ-

ity (CheA) (to 0.002) and hence CheY level, and causes

longer runs (i.e mb 0.75). The decrease of ChA activity

is followed by a slow CheR dependent adaptation.

In theAdapted State, the probabilities of booth states

of the receptors (on, off ) are equal, and the booth

CheR, and CheB enzymes are working for methylation

and demethylation processes. In this state, methylation

increases receptor ability to simulate CheA activity.

A removal of attractants shifts the system to the

on state (or Fully Active State) that activates CheA

autophosphorylation (0.047) and hence the downstream

CheY phosphorylation. Methylation also decreases the

activity of the receptor complex to attractant, thereby

regulating the ligand binding to receptor complex.



Fig. 3 Path realized by some bacteria in 2D space for the
first 600 cycles. The squares present the sources of nutrients
that are present until the generation 20 and again from 300.

7 Conclusion and Future work

Our model was been designed to simulate growth and

behavior of bacterial ecosystem; it controls a group of

bacteria cells at each time step. To analyze the ob-

tained behaviors, we present data that characterizes

bacteria positions in space, Energy, and, state in the

cellular reproduction cycle. These results demonstrate

that bacteria are still able to evolve through mutation.

The constructed model of chemotactic E .coli employed

a hybrid model for pathway simulation, with mixed al-

gebraic, ODE, and stochastic components instead of a

fully stochastic model with an evolutionary algorithm

to evolve a population of bacteria.

In future work, we aim to improve the effect of the

chemotaxis network to obtain more powerful bacteria

that can emerge as new species which behaves differ-

ently from others, via the concept of colonies, and also
to test this model on different environmental conditions

and various changes.
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