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Abstract: Search engines are based on models to index documents, match queries
and documents and rank documents. Research in Information Retrieval (IR) aims at
defining these models and their parameters in order to optimize the results. Using
benchmark collections, it has been shown that there is not a best system configura-
tion that works for any query, but rather that performance varies from one query to
another. It would be interesting if a meta-system could decide which system config-
uration should process a new query by learning from the context of previousqueries.
This paper reports a deep analysis considering more than 80,000 search engine config-
urations applied to 100 queries and the corresponding performance. The goal of the
analysis is to identify which configuration responds best to a certain type of query.
We considered two approaches to define query types: one is post-evaluation, based
on query clustering according to the performance measured with Average Precision,
while the second approach is pre-evaluation, using query features (including query
difficulty predictors) to cluster queries. Globally, we identified two parameters that
should be optimized: retrieving model and TrecQueryTags process. One could ex-
pect such results as these two parameters are major components of IR process. However
our work results in two main conclusions: 1/ based on post-evaluation approach, we
found that retrieving model is the most influential parameter for easy queries while
TrecQueryTags process is for hard queries; 2/ for pre-evaluation, current query fea-
tures do not allow to cluster queries to identify differences in the influential parameters.

Key Words: Information Retrieval, query difficulty, query clustering, IR system pa-
rameters, Random Forest



1 Introduction

Being able to find relevant information about a topic is becoming more and more

important for everyone. Indeed, everyone needs to find information, however, due

to the great number of existing documents, it is very likely that most of them

will not answer accordingly, even though it is highly probable that relevant

information exists.

This is why search engines are widely used tools when one needs to find

accurate information. Indeed, they allow users to express their question, through

a query submitted to a search engine, and retrieve a list of documents that might

be of interest for this specific query. Therefore, IR can be defined as a ”set of

tools and techniques that enable to find documents containing information that

is relevant to a need” [Radhouani, 2010]. This represents the context of our work.

IR is a very active research area that aims at proposing and evaluating the in-

dexing, matching and ranking methods to retrieve relevant documents according

to users’ queries. Many models have been defined in the literature, most of them

having various parameters. To evaluate a model, the IR community relies on

international benchmark collections, such as the ones from the Text REtrieval

Conference (TREC)1, composed of sets of documents, topics, relevance judg-

ments and performance measures. It has been shown that there is an important

variability in terms of queries and systems for these collections. System or search

engine variability refers to the fact that a best system does not exist. A single

configuration of a search engine that would treat any query as an oracle does not

exist; rather, specific search engines are better for specific queries. By the way,

system variability has not been deeply studied. Are systems sensitive to query

difficulty? Are they sensitive to other query characteristics? If it is the case, some

systems would be specialized in some types of queries. For example, ambiguous

queries would need a system that first disambiguates the query terms, particular

queries would be improved if first expanded, etc.

Having in mind the system variability, our goal is to identify which search

engine (or configuration) would respond best for a particular type of query. If

we were able to characterize query types and learn the best system for each

query type, then, for a newly submitted query, we would be able to decide

which system should process it. This requires to thoroughly analyze systems,

queries and obtained results, in order to find whether some system parameters

are more influential on results and whether this influence is query dependent.

In our context, the best system means which retrieval model to choose, whether

the query should be expanded, or not and if the query should be expanded, in

what manner should this be done. This is why we consider parameters regarding

indexing, retrieval and query expansion all together.

1 http://trec.nist.gov/



This paper reports a deep analysis considering more than 80,000 search en-

gine configurations applied to 100 queries and the corresponding system perfor-

mance. The related work is presented in Section 2. The data set is described in

Section 3. Section 4 reports the analysis of the system parameters according to

query types. Defining query types is not obvious. We considered two approaches:

the first one is based on clustering queries according to the query difficulty; the

second approach uses various query features to cluster queries. Section 5 con-

cludes the paper.

This work represents an extension of the paper [Ayter et al., 2014] and the

extension consists in the higher level of experimentation details, more discus-

sions, the addition of explained figures and the introduction of a new section in

which we discuss the characteristics of two queries with a particular behavior.

2 Related Work

Statistical analysis of search results. Some studies in the literature have

been conducted using statistical analysis methods to observe search results over

sets of queries. In [Banks et al., 1999] the author analyzed TREC results; their

data set consisted in the average precision values (see Section 3) for systems,

on a per query basis. Various data analysis methods were used to identify the

existence of different patterns. However, the authors stated the results are incon-

clusive. The same type of data matrix was used in [Chrisment et al., 2005], where

the authors employed hierarchical classifications and factor analysis to visualize

correlations between systems and queries. Mizzaro and Robertson [Mizzaro, 2007]

aimed at distinguishing good systems from bad systems by defining a minimal

subset of queries obtained from data set analysis. The authors concluded that

”easy” queries perform this task best. Dinçer [Dinçer, 2007] compared perfor-

mances of various search strategies through the means of Principal Component

Analysis. Compaoré et al. [Compaoré et al., 2011] employed, as we do, indexing

parameters and search models to determine which parameters significantly affect

search engine performance. However, the number of parameters they used was

significantly lower.

System variability and query difficulty. System variability is a major is-

sue when choosing the most fitted system for a certain query. Harman and Buck-

ley [Harman and Buckley, 2004], [Harman and Buckley, 2009] underlined that

understanding variability in results (system A working well on topic 1 but poorly

on topic 2 and system B behaving in an opposite manner) is difficult because it is

due to three types of factors: topic statement, relationship of the topic to the doc-

uments and system features. Query difficulty is closely linked to system variabil-

ity. Some features have been shown to predict query difficulty; these predictors

cover various aspects of the three previous factors: term ambiguity (the number



of WordNet senses for query terms [Mothe and Tanguy, 2005]), term discrimina-

tion (IDF [Jones, 1972]), document list homogeneity (NQC [Shtok et al., 2009]),

and result lists divergence (QF [Zhou and Croft, 2007]).

Clustering queries. In this paper, we use query difficulty predictors as

features for query clustering. We then learn a model to associate a query clus-

ter to the relevant system; in this way any new query that can be associ-

ated with an existing cluster can be processed by the corresponding system.

In [He and Ounis, 2003] query features were also used to cluster TREC top-

ics. The best term-weighting schema in terms of precision/recall measures was

then associated with each topic cluster. Different term weighting schemas were

applied depending on query characteristics. On TREC Robust benchmark, this

method improved results on poorly performing queries. Kurland [Kurland, 2009]

considered query-specific clusters for re-ranking the retrieved documents. Clus-

tering queries has also been studied in the web context, based on query logs

[Wen et al., 2002]. Bigot et al. [Bigot et al., 2011] showed how to group queries

by their difficulty, using TREC submission results for training. A new query for

the system, according to its type, was then assigned to the right search engine.

Mothe and Tanguy [Mothe and Tanguy, 2007] also showed that queries can be

clustered according to their linguistic features and that these features are corre-

lated with system performances. In addition, combining various predictors for a

better correlation with query performance [Kurland et al., 2012], [Chifu, 2013]

also suggested that query difficulty predictors values could represent features to

differentiate query types.

3 Data set Presentation and Descriptive Analysis

The data we analyze in this paper has been built by using various search engine

components and parameters on TREC ad hoc collections. To do so, we have

employed the Terrier2 platform [Ounis et al., 2006].

TREC provides various topics corresponding to users’ needs (having three

parts: title, descriptive and narrative). Queries for retrieval are constructed from

these topics. TREC also provides the documents for the search and relevance

judgments to evaluate the retrieval results; several performance measures can be

computed. On the other hand, the Terrier environment provides several modules

and parameters for indexing, retrieval and query expansion models.

The initial data set was built using about 80,000 different combinations of

term weights, retrieval algorithms and parameters applied on 100 queries from

the TREC ad hoc track (TREC7 and TREC8). The redundant parameters were

filtered out and the final data set consisted in 8 parameters (1 for indexing, 2 for

retrieval and 5 for query expansion), for which different values were chosen (see

2 http://terrier.org/



Table 1). Subsequently, the results were evaluated using the Average Precision

(AP) performance measure. AP is extensively used in IR to compare systems

effectiveness [Voorhees and Harman, 1997]. Indeed, the average of APs across

all the queries is the Mean Average Precision (MAP) and represents a global

performance measure for a system. When considering a retrieved document list,

the AP is defined as the average of precision calculated each time a relevant

document is retrieved. AP takes its value between 0 and 1; the latter being the

best. The AP for a query q is defined as:

AP (q) =

∑R

k=1

(

P@k × 1{k∈Dq}

)

|Dq|
, (1)

where Dq represents the set of relevant documents for the query q and 1{k∈Dq}

equals 1 if the k-th document from Dq is relevant and 0 otherwise. The trec eval

tool has been employed to compute AP for the experiments.

We also employ the Average Average Precision (AAP) [Mizzaro, 2007], which

represents the average of the AP values for a single query over all systems. AAP

for a query q is defined as follows:

AAP (q) =
1

m

m
∑

i=1

AP (q, si) , (2)

where m is the total number of systems and si (with i = 1, . . . ,m) represents a

system from the system set.

Of course, when we discuss about query expansion the robustness is crucial

(Robustness Index [Sakai et al., 2005]). However, when the AP is optimized per

query and if the expansion is considered necessary, the robustness should not be

harmed.

The analyzed data is made of 8,159,800 rows and 10 columns (8 parameters,

1 query, 1 AP).

3.1 Descriptive statistics

First of all, we wanted to see if some parameters were obviously better than

others, as far as the AP is concerned. Figure 1 shows the boxplots of the AP for

each value taken by each search parameter. The boxplots are very similar from

one parameter value to another. For example, the median and the first and third

quartiles of the AP are almost identical for the four stemming algorithms.

Regarding the retrieving algorithm, there are a few differences: boxes of the

DFRee and DirichletLM models are a little thinner and lower than boxes of

the other algorithms. It means that both their median and their variability are

smaller than those of other algorithms. However, this difference is not strong

enough to conclude that these two algorithms are worse than the others.



Table 1: The considered parameters for the analysis

Name Explanation Possible Values

stemmer name of the stemming algorithm Crop, FSS, PS, TR-

WPS

retrieving model name of the retrieving algorithm BB2, BM25, DFRee,

DirichletLM, Hiem-

straLM, InB2, InL2

TrecQueryTags process what topic fields is used to build

the query

N T T,D T,D,N T,N

parameter free expansion is the parameter for expansion

model free?

TRUE, FALSE

trec qe model model of query reformulation Bo1, Bo2, Info, KL,

KLCom, KLCor

expansion documents number of top documents to use

for query reformulation

2, 5, 10, 20, 50, 100

expansion terms number of highest weighted

terms to use

2, 5, 10, 15, 20

expansion mindocuments number of documents a term

should appear in to be eligible

for expansion

2, 5, 10, 20, 50

Figure 1: Boxplots of the AP for the first two parameters

We can also see that most of the good AP values are outliers beyond the

top whisker of the boxplot, which means that few systems and queries give

good results (less than 10% of the data with a specific value of a parameter).

Consequently, it may be difficult to efficiently predict good AP results. Finally,

we can notice that the first quartile of the boxplots is very close to 0 and most

of the AP values are smaller than 0.4, which means there are many systems that

give bad results and there might also be a lot of rows for which the AP is null.



3.2 Poorly performing queries and systems

There is a large number of low AP values (as seen in Section 3.1). If there are

much more bad results than good ones, a predicting model would tend to predict

bad results better than good results. This could represent a problem since we

are more interested in good results. For this reason, we removed some from the

data set in order to be able to focus on good results. There were 437,672 rows

with a null MAP and almost 70,000 systems have at least one query with a null

AP, thus we could not remove all of them from the data set without losing a

lot of information. Another lead was to check whether any particular queries

yielded worse AP values than others. We underlined that queries 442 and 432

are responsible for many more null AAP values than other queries representing

11.9% and 11% of the null data, meaning that these queries are much harder

than the others.

We finally remove the parameter combinations that yielded really bad results,

no matter what the query was. Doing so, by removing about 2.5% of the data,

we removed more than 30% of the AP values that were equal to 0, while ensuring

that the distribution of the results in the new data set was similar to the original

one. We also notice that queries 442 and 432 remain the queries with the most

null AP values, which represent about 16.9% and 15.7% of the rows with AAP

equal to 0.

3.3 Analysis of queries 432 and 442

Since no major bias was introduced when we removed rows, we analyse the

results of queries 442 (”heroic acts”) and 432 (”profiling motorists police”). These

queries are responsible for more than 30% of the null MAP measures, therefore

it would be interesting to identify parameters that work better for these queries.

However, the AP measurements of these two queries are very low, regardless

of the system: maximum AP for the query 442 is 0.0564 and is 0.0746 for 432 and

a few systems reach AP over 0.05 for these queries. Thus, we raise the question

of what can be considered as better results for these queries, since better results

will be very low. We also try to find if there are parameters that give less bad

AP values. We will say that a ”good” AP value for these two queries is greater

than 0.05. There are only 120 and 18 systems, respectively, for which the AP of

queries 442 and 432 is greater than this threshold.

Subsequently, we looked at the values taken by each parameter in these 120

and 18 rows, to see if some of them were identical. The results of this study are

presented in Table 2. Unfortunately, it is very rare to see the same values of the

parameters between queries 442 and 432, so it is not possible to know how to

set parameters in order to get less low AP.

Moreover, we can see that only two out of the seven retrieving model algo-

rithms appear in this table: DirichletLM and DFRee. The same thing happens



Table 2: Summary of systems for which MAP≥ 0.05 (Queries 442 and 432)

Query

442

Query

432

stemmer

Crop

PS

FSS

TRWPS

0

80

40

0

4

10

0

4

retrieving model

DirichletLM

DFRee

other

120

0

0

14

4

0

Tags process

TITLE

TITLE, DESC

other

120

0

0

0

18

0

free expansion
TRUE

FALSE

60

60

11

7

qe model

Bo1

Bo2

KL

KLCp

KLCt

other

32

32

18

18

20

0

4

14

0

0

0

0

Query

442

Query

432

expansion docs

2

5

10

20

other

60

60

0

0

0

0

0

8

10

0

expansion terms

2

5

10

20

other

120

0

0

0

0

1

3

7

7

0

min documents

2

5

10

20

50

16

15

29

31

29

8

0

0

2

8

with two out of the five values of TrecQueryTags process. It could mean that

these algorithms and fields give slightly better results on queries 432 and 442.

However, we should carefully interpret these results because very few systems

have been represented and we only focused on two queries, so we cannot know

whether this is specific for these queries or it could be generalised to other

queries.

4 System parameter tuning based on query performance

A single best system for all the queries is utopic, thus defining a model that could

work for unseen queries implies to learn somehow from query characteristics.

For this reason, we define clusters of queries for which we aim to associate a

system with, making the hypothesis the most efficient systems would be different

depending on the query cluster. Defining query clusters is not obvious. Two

complementary approaches have been used to define query clusters. The first

one is based on query difficulty (Section 4.1). In the second approach, we cluster

queries according to query characteristics such as their length, their IDF, query

difficulty predictors, etc. (Section 4.2).

4.1 Clustering queries according to their difficulty

We first consider a post-evaluation framework using the effectiveness of systems

on each query. The queries are gathered in evenly proportioned clusters, accord-

ing to their difficulty as measured by the AP: easy, medium and hard queries.



4.1.1 Analysis of variance

The first question we wanted to answer was whether all parameters have a sig-

nificant effect on MAP. Indeed, there is a possibility that, for one or more of

the eight search parameters, to have no significant difference in terms of MAP,

when we vary the values of this parameter. In that case, it would mean that,

whatever the value we give to the parameter, the MAP measure will stay almost

the same. It would not directly help us finding the best system, but it could

reduce the number of parameters to optimise. Moreover, some parameters could

have an influence on easy queries and none on hard ones, for example.

In order to study this significance, we performed analysis of variance (ANOVA)

testson the three query difficulty levels. Due to the size of the data set, we could

not test all queries in a difficulty level, but instead we randomly selected two

queries for each cluster.

In a first model, we considered there was only one effect: the parameter we

wished to study:

APij = µ+ parami + ǫij , where ǫij ∼ N (0, σ2)

parami is the effect of the ith value of the parameter on AP. This was done for

each of the eight parameters.

In a second model, we considered all effects at the same time with no inter-

action:

APi = µ+ param1k1(i) + ...+ param8k8(i) + ǫi, where ǫi ∼ N (0, σ2)

kj(i) is the value taken by the jth parameter for the ith system.

These two models were only applied to six randomly chosen queries with

the following conclusion: all parameters seem to be significant, whatever the

query difficulty is, except for the free expansion parameter (one non significant

p-value). Therefore, all the parameters should be kept in the following analysis.

4.1.2 Classification and regression trees

We noticed in the previous section that all parameters have an influence on AP

values, but ANOVA tests do not tell what values to give for these parameters

toward optimizing the results. Indeed, if we could find a model that predicts well

the data, we might be able to use it in order to optimize the parameters and to

get the best AP as possible for any query.

The first statistical approach we used to model the data was Classifica-

tion And Regression Trees (CART) [Breiman et al., 1984]. An advantage of this

method is that, besides predicting results, we can see which are the best dis-

criminating variables by plotting the trees.



Table 3: Definition of the good and bad results by difficulty

Difficulty Bad Average Good

Easy AP < 0.16 0.16 ≤ AP ≤ 0.5 0.5 ¡ AP

Medium AP < 0.03 0.03 ≤ AP ≤ 0.18 0.18 ¡ AP

Hard AP < 0.001 0.001 ≤ AP ≤ 0.04 0.04 ¡ AP

Figure 2: Classification tree: (a) for easy queries; (b) for hard queries

Here, we are not interested in knowing exactly what the AP value will be

for one combination of parameters, we would rather like to know how good this

value will be. Therefore, we need to define what a good or bad result is.

In order to do so, we looked at the first and third quartiles of the AP for

each query group and decided that the results would be good when they are

greater than the third quartile, bad when they are lower than the first quartile

and average otherwise. The chosen limits of each level of satisfaction, for each

difficulty level, can be found in Table 3.

Trees were computed for all systems and all queries of each difficulty level.

In order to provide more interpretable trees, pruning was performed by setting

a threshold on a complexity parameter (cp=0.001).

Easy queries. The parameter that best discriminates the AP results is

the model of query reformulation (trec qe model) (see Figure 2 a.). Thus, it

separates the systems with the Info algorithm (trec qe model=c, the letter c

representing the third expansion model - Info) on the left from those with other

algorithms on the right. However, we can see that no combination of parameters

gives ”good” results, we only get ”bad” and ”average” (avg) on the leaves of the

tree. Maybe we could have had ”good” results if we had pruned the tree later

(using a smaller complexity parameter) but the model would have been too



complex and there might have been an overfitting. This is not very satisfying

because it means that this method does not allow us to predict the best results

and, therefore, to know what parameter values to use. We can see however that

there are a few ”bad” results, so we know which parameter values to avoid.

For example, when the Info algorithm is used for query reformulation and the

parameter for expansion model is free, it is very likely that results will be ”bad”.

Medium queries. The predictions are very similar to hard queries (see

below), except for the stemmer algoritm which is not involved here for ”good”

predictions.

Hard queries. With regard to hard queries (Figure 2 b.), there are two

”good” predictions which occur when using the fields (TrecQueryTags process)

TITLE or TITLE, DESC, the reformulation algorithms (trec qe model) Bo1,

Bo2, KL, KLCom or KLCor and the retrieving model algorithms either BB2,

DFRee, InB2, BM25 or InL2. Also the stemming algorithm has an importance

in one of the predictions.

To conclude, we noted that results were not always satisfactory as they could

not always predict ”good” AP values. Nevertheless, it is more interesting to know

which parameters to be careful about with hard queries than with easy ones.

Indeed, for easy queries, results are supposed to be quite good and parameter

values do not have a big influence, as opposed to hard queries.

Since CART tends to be quite unstable, random forests [Breiman, 2001] are

employed to confirm the previous results.

4.1.3 Random Forests

In this aggregation method, the algorithm (randomForest function in R) ran-

domly chooses a given number of variables (among all the variables of the data)

for every split of classification trees. Many trees are computed in this manner and

results are averaged in order to obtain an importance measure for each variable,

based on the changes its presence or absence caused. We used this method on

each of the three query difficulty clusters and we optimized the number of vari-

ables to select. For computational reasons we applied random forests to 10,000

randomly chosen training rows.

We used cross-validation and an accuracy measure to fix the number of vari-

ables to select. The accuracy was the greatest when there were four parameters

in the trees, for every difficulty level. The accuracy decreases with the growth of

the number of variables (see Figure 3).

We plotted the parameter importance graphs for each difficulty level, over

the obtained random forests (500 trees in each forest). For instance, the search

parameters that appear to be the most important to differentiate the goodness

of AP results are: retrieving model and trec qe model with an importance of

0.022 and 0.021, respectively. The other parameters have an importance of less



Figure 3: Accuracy for random forest (Easy queries)

than 0.007 (see Figure 4). For the medium queries the important parameters are

TrecQueryTags process, retrieving model and trec qe model, respectively.

In the case of hard queries the last two parameters interchange. First of all, we

note that, even though they are a few differences between easy, medium and hard

queries, two parameters are always among the three most important ones: the

retrieving model and the reformulation model (trec qe model). We summarize

the top 3 most important parameters, per difficulty level, in Table 4.

Table 4: Most important parameters by level of difficulty

Easy Medium Hard

1st retrieving model TrecQueryTags process TrecQueryTags process

2nd trec qe model retrieving model trec qe model

3rd expansion documents trec qe model retrieving model

Moreover, the obtained results are quite similar to the results when using

CART. There are differences in the order of importance between CART and

random forests, which can be explained by the fact that CART are unstable and

depend on the training set. However, the results of random forests are presum-

ably more reliable because of the average that is computed.

The results we obtained with queries divided into three groups of different



Figure 4: Importance of variables (Easy queries)

difficulty levels are quite encouraging. However, it would be interesting to have

the same kind of information when queries are clustered into groups defined by

other criteria. Indeed, the defined difficulty levels in our case depend entirely on

the considered queries, since they were ordered and then separated into equal

sized groups. Therefore, query characteristics were computed for every query

(e.g. number of words) in order to define a new clustering.

4.2 Clustering queries hierarchically based on query features

In this section, we consider a pre-evaluation approach without any information

about the system effectiveness but based on query features only. The charac-

teristics we used to define new query clusters correspond to query difficulty

predictors from the literature (pre and post retrieval), predictor combinations,

statistics either on query terms, or on their representation in the indexed docu-

ments. This new data, after removing redundant features, consisted of 100 rows

and 83 columns, corresponding to the 100 TREC queries and 82 characteristics

(+ one column for the AP). The features are described in the following section.

4.2.1 Query features

We present here the query feature types employed in our clustering experiments.

The features are heterogeneous by nature and cover various aspects of the query



and its terms, such as ambiguity, term popularity, syntax and morphology. Other

features characterize the retrieved document lists for a system, regarding the

score homogeneity or list divergence.

Morphological features. We used morphological query features as follows:

the number of acronyms in the query, the number of terms with suffixes, the

average number of morpheme, the average number of proper nouns, the average

number of numerical values and the number of unknown tokens.

Syntactic features. Regarding syntactic features, we employed the average

number of conjunctions, prepositions, personal pronouns in queries together with

measures such as syntactic depth and syntactic distance between terms.

Term ambiguity. The WordNet Senses (WNS) [Mothe and Tanguy, 2005]

measures the term ambiguity and it has been used as a pre-retrieval linguistic

predictor. WNS is computed by the average of sense numbers in WordNet3, for

the query terms . We derive several features from this predictor, such as the

maximum, the average and the sum of the number of senses for the query terms.

Term discrimination. The Inverse Document Frequency (idf ) measures

whether a term is rare or popular in a corpus of documents [Spärck Jones, 1972]

and it has been used as a statistical pre-retrieval difficulty predictor. Its value

for a query is represented by the average of idf for the query terms. We use here

several variants: the minimum, the maximum, the average and the sum of idf.

Document list homogeneity. The Standard Deviation (STD) measures

the degree of variation with respect to the average for the list of scores assigned

to the retrieved documents, corresponding to a query and it has been employed

as a post-retrieval statistical predictor. It is a variant of NQC [Shtok et al., 2009],

without normalization.

Document lists divergence.Query Feedback [Zhou and Croft, 2007], mod-

els retrieval as a communication channel problem. It computes the overlap be-

tween two retrieval lists obtained by processing an initial query and the same

query expanded by additional terms, respectively. Having the two retrieved lists,

the overlap represents the number of documents that these lists have in com-

mon. A cut-off level x could be established for the document lists, that means

the first x retrieved documents only are considered for the overlap. We consider

here four cut-off levels: 5, 10, 50 and 100. It has been used in the literature as a

post-retrieval predictor.

4.2.2 Clustering using PCA coordinates

To solve feature scaling issues, or low feature variability from one query to an-

other, we performed a principal component analysis (PCA) on the data, using

the PCA function of the FactoMineR package. In this manner, distances are

3 http ://wordnet.princeton.edu/



computed on the query coordinates in this new base and they all have roughly

the same value. Moreover, it is easier to represent clusters this way.

Then we look at the variable coordinates in the first three dimensions, viewing

the correlation circles (Figure 5). The closer a variable is to the circle, the more

correlated it is with the axes. Even if the plots are not easily readable, we can

extract some relevant information detailed below. If we look at the horizontal

axis on the Figure 5, which corresponds to the first dimension of the PCA, we

can see that there are, on the left side, variables related to the query features

LOG and TF (term frequency in the collection). On the right side, we can find

characteristics such as the inverse document frequency (IDF) and the normalised

inverse document frequency (IDFN).

Figure 5: Variables in the three dimensions of the PCA: dim1/dim2 on the left,

dim1/dim3 on the right.

Considering the second dimension (left side graph), there are, on the upper

side, the characteristics SUM(TF Q), SUM(LOG), SUM(IDFENQUIRY) and NBWords.

On the bottom, characteristics concern the terms ambiguity and minimum in-

verse frequencies.

Finally, the third dimension (right side graph) differentiates characteristics

that measure the similarity between original and extended queries on the bottom,

from characteristics that measure ambiguity of the extended query on the upper

side.

From the new coordinates, we compute the Euclidean distance matrix and

the hierarchical clustering. We opted for Ward’s for the agglomeration criterion:

this method tends to give cluster of similar size (see Figure 6).

To choose how many clusters to keep, we plotted the height of the dendrogram

branches against the number of clusters. Keeping 5 clusters seemed appropriate

because it allowed us to have enough groups so that data sets would not be too

large, but not too many so that there would be enough queries inside each group.



Figure 6: Dendrogram of the PCA coordinates (Ward’s method)

It is possible to graphically represent the queries and their corresponding cluster

using 5 different colors on the axes defined by the PCA (see Figure 7). We can

see that clusters 1 to 3 (respectively black and green) are not very different when

we consider their coordinates on the vertical axes.Cluster 2 is the one for which

queries have the greatest LOG and TF whereas Cluster 1 is the one where queries

have a great IDF.

The majority of queries are assigned to three clusters (containing 33, 20,

and 38 queries respectively). The fourth and the fifth clusters contain only 8

queries and 1 query, respectively. Therefore these queries are not included in the

statistical analysis that follows.

4.2.3 Classification and regression trees.

As in Section 4.1.2, we study CART on queries from the first 3 clusters as defined

by the query features. We also defined goodness of AP values by using quartiles,

in the same way as before (see Table 5 for the values).

We wanted to know what the best discriminating parameters were when

considering query features rather than query difficulty; focusing on combinations

of parameters that would give ”good” results.

Cluster 1. Figure 8 shows that the parameters which best discriminate the

goodness of MAP values are TrecQueryTags process and retrieving model.



Figure 7: Five clusters in the PCA coordinates

Table 5: AP quartiles by cluster of queries based on query features

Bad Average Good

Cluster 1 MAP ¡ 0.046 0.046 ≤ MAP ≤ 0.367 0.367 ¡ MAP

Cluster 2 MAP ¡ 0.002 0.002 ≤ MAP ≤ 0.082 0.082 ¡ MAP

Cluster 3 MAP ¡ 0.020 0.020 ≤ MAP ≤ 0.274 0.274 ¡ MAP

However, using a smaller complexity penalisation (cp=0.0005) did not lead to

”good” results with this tree.

Cluster 2. TrecQueryTags process and retrieving model are most im-

portant variables for the second cluster. CART for cluster 2 were not able to

predict ”good” results either, even when we changed the penalisation.

Cluster 3. For the last cluster, the most important parameters are the same

as the ones of the two other clusters.There were no ”good” predictions with this

cluster either.

The most important variables that we have observed with these trees are

the same as those obtained when we considered the level of difficulty of the

queries (see Section 4.1). This means that parameters TrecQueryTags process

and retrieving model are indeed very important in the prediction of the AP

values. However, with any of these trees, it was not possible to find the parame-

ter combinations which yields ”good” results. We changed the training set and

the complexity penalisation (”cp”) several times, but still without any ”good”

predictions. The cause might be the high number of ”average” results in the

data (twice as many as ”good” or ”bad” results), but in this way we would have

had the same problem with the ”bad” predictions and it is not the case here.



Figure 8: Classification tree for queries from Cluster 1

4.2.4 Random Forests

As previously, we use random forests and this method was applied on 10,000

random rows of each of the three query clusters defined by their features and 500

trees were computed. By plotting graphs of accuracy, we saw that the accuracy

was the greatest when there were four variables in the trees, regardless of the

cluster. We computed the parameter importance for MAP goodness prediction

using the mean decrease in accuracy for each cluster. The results for the top 3

parameters per cluster are shown in Table 6.

Table 6: Most important parameters for the three clusters based on query

features

Cluster 1 Cluster 2 Cluster 3

1st TrecQueryTags process retrieving model retrieving model

2nd retrieving model TrecQueryTags process TrecQueryTags process

3rd trec qe model trec qe model trec qe model

First of all, for all three clusters, the most important parameters are the

same, however in different order (retrieving model, TrecQueryTags process



and trec qe model). Moreover, these parameters are basically the same as the

ones we obtained with clusters based on query difficulty (see Section 4.1.3).

Therefore, it seems the kind of clustering we use does not have a significant

influence on what the most important search parameters are. Alternatively, it

could also mean that it is not necessary to divide queries into clusters, in order

to know what parameters are the most important.

From the 10,000 observations used in the random forest we randomly choose

7,000 as a test set to check the prediction quality of our model. The error rates

obtained from the confusion matrices are high, especially with ”good” and ”bad”

predictions (0.74-0.76).On the other hand, for the ”average” predictions the error

rates are around 0.50.

This difference between errors is due to the greater number of ”average” AP

results in the training set. Therefore, it is easier for the model to predict ”avg”

results. However, even for average AP results, the error rates are still very high.

For this reason, it will not be possible to know for sure what parameter values

should be used in order to get good AP values.

Figure 9: Mosaic plots for Cluster 1 crossed with retrieving model and

TrecQueryTags process

To get a graphical idea of what values to choose, we use mosaic plots on

the training set predictions. Therefore, for a given search parameter, we can

compare the proportions of each value in every AP goodness category. If the

proportion of a specific algorithm in the predictions ”good” is much greater

than its proportion in the ”average” and ”bad” predictions, it could mean that

this algorithm gives better AP results, or at least it does so for the computed

model. Mosaic plots are only reported with the two previous most important

variables: retrieving model and TrecQueryTags process for each of the three

clusters (see Figure 9 for the first cluster).



From Figure 9, one can notice that, in the ”good” predictions of Cluster 1,

there are more InL2 algorithms than for the other levels of satisfaction. On the

other hand, there are less DirichletLM algorithms than in ”avg” and ”bad”

results (see the graph on the left). It could mean that InL2 is an algorithm that

works better for queries that belong to the first cluster and that it would be good

to avoid the DirichletLM algorithm. Of course there are parameters and config-

urations that yield bad results no matter what query type is involved. However,

it is still important to know which configuration to avoid, by query type, since

some combinations are dangerous for certain query types and beneficial for oth-

ers. Results are less obvious on the right side graph (TrecQueryTags process).

There might be a little bit more TITLE and TITLE,DESC in the predictions

predictions ”good” than in the others, but we could say for sure that there are

many more NARR fields used in the ”bad” predictions. Therefore, it is probably

a good idea to avoid using this field in order not to get too bad AP values.

Using the same kind of arguments, it is possible to identify a few algorithms,

for each cluster, that seem to be more present in the predictions ”good”. These

conclusions are summarized in Table 7.

Table 7: Parameters values giving ”good” predictions and parameters to avoid

Cluster 1 Cluster 2 Cluster 3

Parameters values giving ”good” predictions

retrieving model InL2 BB2 and InB2 BB2 and InB2

TrecQueryTags process T and T,D T and T,D T

Parameters to avoid

retrieving model DirichletLM, DFRee DirichletLM DirichletLM, DFRee

TrecQueryTags process N and T,N N and T,N N and T,D,N

We can notice from Table 7 that parameter values were very similar between

the three clusters. Hence, it would seem like, to get good AP results, the system

should use the TITLE field (maybe also the DESC field) and avoid NARR. More-

over, retrieving algorithms InL2 and InB2 seem to give better results whereas it

would be better to avoid DirichletLM algorithm.

The results are to be considered in the light of error rates which were rela-

tively high, although they could represent a lead for new studies.

5 Conclusion

Search engines are tuned to perform well over queries. However, IR research has

shown that there is not an optimal system that would answer the best on any



query. Rather, system variability has been shown. The objective of this work is

to characterize query types and learn which system configuration is best for each

query type. If we were able to do so, when an unseen query is submitted by the

user, we would be able to decide which system configuration should process it.

This implies first to define query types, then to learn the best system for each

query type. In this paper we defined two different types of query clustering. One

is post-evaluation and based on the system effectiveness on each query measured

by AP. The second one is pre-evaluation and based on query features (including

query difficulty predictors). On each of these types, we analyzed which search

parameters influence the most AP and tried to find what values these parameters

should be.

From a massive data set of more than 80,000 system configurations, we found

that two parameters (retrieving model and TrecQueryTags process) were

frequently the most influential. One could expect such results as these two pa-

rameters are major components of IR process even if they are not the only

ones; stemming and query expansion could also have been highlighted. However,

when considering post-evaluation approach, we showed that retrieving model

is the most influential parameter for easy queries while TrecQueryTags process

is for hard queries. This result confirms the assumption that for hard queries,

the system should manage to obtain more information on the user’s intention,

since the description part of a TREC topic capture the user’s intention for his

search. To make these results useful for real applications, we intend to draw same

kind of conclusions on a pre-evaluation basis. Unfortunately, the current query

features do not allow to cluster queries to identify differences in the influential

parameters. Indeed, whatever the cluster determined on query features, the most

influential parameters are the same. Nevertheless, some important trends have

been identified for both pre- and post-evaluation approaches: it seems easier to

determine the system configurations that lead to bad performances than to good

ones.

Regarding our future work, this study highlights the need to define new query

features which allow the system to determine the best configuration to deal with

a query and thus implementing a selective IR process. Following another lead,

this study has used the AP as the system performance measure for a query. This

measure is used when global evaluation is made. However, some other measures

are more task oriented. For example, high precision measures the precision when

considering the top retrieved documents, while some other measures are more

recall oriented. It would be interesting to analyze if when considering different

goals (recall/precision or other) results differ.
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