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Security patterns modeling and formalization for

pattern-based development of secure software systems

B. Hamid, S. Gürgens and A. Fuchs

Abstract Pattern-based development of software systems has gained more atten-
tion recently by addressing new challenges such as security and dependability.
However, there are still gaps in existing modeling languages and/or formalisms
dedicated to modeling design patterns and the way how to reuse them in the au-
tomation of software development. The solution envisaged here is based on combin-
ing metamodeling techniques and formal methods to represent security patterns
at two levels of abstraction to fostering reuse. The goal of the paper is to advance
the state of the art in model and pattern-based security for software and systems
engineering in three relevant areas: (1) develop a modeling language to support
the definition of security patterns using metamodeling techniques; (2) provide a
formal representation and its associated validation mechanisms for the verification
of security properties; and (3) derive a set of guidelines for the modeling of security
patterns within the integration of these two kinds of representations.
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1 Introduction

1.1 Motivation and background

During the last decades, the systems have grown in terms of complexity and con-
nectivity. In the past security was not such a critical concern of system development
teams, since it was possible to rely on the fact that a system could be easily con-
trolled due to its limited connectivity and, in most of the cases, its dedicated focus.
However, nowadays, systems are growing in terms of complexity, functionality and
connectivity. The aforementioned challenges in modern system development push
the Information and Communication Technologies (ICT) community to search for
innovative methods and tools for serving these new needs and objectives. Regard-
ing system security, in the cases of modern systems, the “walled-garden” paradigm
is unsuitable and the traditional security concepts are ineffective, since they are
based on the fact that it is possible to build a wall between the system and the
outer world.

Application developers usually do not have expertise in security. Hence captur-
ing and providing this expertise by way of security patterns [1,2] has become an
area of research in the last years. Security patterns shall enable the development
of secure and dependable applications while at the same time liberating the de-
veloper from having to deal with the technical details. On the other hand, Model
Driven Engineering (MDE) [3,4] provides a very useful contribution for the design
of secure and trusted systems: It allows to reduce time/cost of understanding and
analyzing system artefacts description due to the abstraction mechanisms, and it
reduces the cost of the development process; thanks to the generation mechanisms.
Hence security pattern integration has to be considered at some point in the MDE
process.

When security requirements are determined, architecture and design activities
are conducted using modeling-techniques and tools for higher quality and seamless
development. Often, formal modeling is used as a complementary approach when
verification is needed. On the other hand, the integration of security features using
this approach requires high expertise in developing the architecture and the design
and demands both application domain-specific knowledge and security expertise.
Hence capturing and providing this expertise by means of security patterns can
enhance systems development by integrating them in the different development
life-cycle stages [5,6].

Security solutions can be described as security patterns, and the use of these
patterns results in products that are already established in the respective domains,
usually in the form of COTS components. Patterns define best practices and their
idea is to be reused and thus to support help designers reuse them in new designs.
Security requirements are specified independently from patterns and technological
products at a very early stage of system design and then refined using the sys-
tem model until they can be matched with existing security patterns. The main
problem for the developer is to select and connect the security patterns to be
used with the rest of the application. Stating more precisely some aspects of the
pattern description would make these aspects more convenient. Even if a pattern
requires tailoring, starting from a precise description facilitates its selection and
application.



Security patterns are still not widely adopted in system and software security
engineering due to the weakness/lack of appropriate methods and tools to assist
the designer/developer to use them during the system engineering life cycle. The
application and composition of patterns are still achieved as an ad-hoc process
(eg., search, select, apply, validate). A security pattern targets some particular
properties that characterize it, and the integration, composition and application
of a security pattern should maintain these properties. A rigorous treatment of
security properties needs to be based on clear formal semantics that enable sys-
tem developers to precisely specify security requirements. Thus, the precise but
flexible specification and description of security patterns are pre-requisites to their
successful integration and composition for their application.

In this paper, we propose a new design framework for the specification and
the validation of security patterns intended for software development automation
in the context of systems with stringent security requirements. In our vision, a
security pattern is a subsystem exposing pattern functionalities through interfaces
and targeting security properties. The associated pattern design framework pro-
vides two additional and complementary types of representations: a semi-formal
representation through metamodeling techniques and a rigorous formal represen-
tation through a prefix-closed formal language. We explain in particular how the
formalization and the validation help the specification of security patterns and
the specification of guidelines for their correct usage. In addition, we discuss the
integration of pattern definition and application development processes towards a
correct-by-construction Pattern-Based system and software Security Engineering
(PBSE) approach. The proposed integrated modeling and formal framework is
illustrated through an example of a secure communication pattern.

To provide a concrete example, we will investigate a case study from Intelligent
Transport Systems (ITS). In particular, electric vehicles provide new interesting
use cases related to charging and reverse charging. Indeed, due to the connection
with smart grids, the full infrastructure has to be adapted to arising new needs.

Fig. 1 Interconnection between an Electric Vehicle and a Smart Grid

The case study chosen in this paper and presented in Fig. 1 illustrates the
different connections within a smart grid related to cars. The grid can sell energy
to a car (i.e., charging mode) but can also buy energy from the car (i.e., reverse
charging mode). To this end, data such as prices, parking time slot or banking in-
formation must be exchanged between the car and the grid through brokers. Hence
the communication channels between the assets must be trustworthy, i.e. satisfy
strong requirements in terms of authenticity and confidentiality. In the Intelligent



Transport Systems (ITS) domain, the ISO/IEC 15118 highly recommends to use
TLS [7] for ensuring security properties.

1.2 Intended contribution

The basis formulation of the approach presented in this article has been previously
published in a research paper at the International ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems (MODELS’11) [8].
This work extends ideas described in this earlier paper and presents a holistic ap-
proach for the design, formalization and validation and integration of the modeling
and formal approach for the definition of security patterns. Specifically, we pro-
vide a more comprehensive and complete description of our approach. The work
presented in this paper has the following aspects:

– Modeling: We propose a semi-formal modeling framework using MDE tech-
niques to specify patterns for security properties and constraints independently
from end-development applications and execution platforms.

– Verification: For security pattern verification, we apply the techniques for for-
mally proving security properties of systems provided by the Security Modeling
Framework SeMF developed by Fraunhofer SIT, following the abstraction lev-
els of the application development process.

– Integration: We derive a set of guidelines for the correct usage of security
patterns using the semi-formal representation of the pattern and its associated
proof in tandem.

1.3 Organization of the contribution

The rest of this paper is organized as follows. In Section 2, we review related
works addressing pattern specification and validation. An overview our modeling
approach including a set of definitions is presented in Section 3. Then, Section 4
presents in detail the pattern modeling language and illustrates the pattern mod-
eling process in practice. Section 5 presents the formal validation process, and
Section 6 shows its application to a specific domain-independent and a domain-
dependent pattern, respectively. Then, Section 7 presents the integrated framework
and the process for security patterns definition. In Section 8, we discuss our con-
tribution and explain in particular how the formalization helps the specification of
security patterns and their usage as building blocks for secure system and software
engineering. Finally, Section 9 concludes this paper with a short discussion about
future works. We investigate some open issues, mainly the issues of generalization
and implementation including the usability of the proposed modeling framework.

2 Related work

Design patterns constitute a solution model to generic design problems, applicable
in specific contexts. Several tentatives exist in the security design pattern litera-
ture [1,9–13]. They allow to solve very general problems that appear frequently



as sub-tasks in the design of systems with security and dependability require-
ments. These elementary tasks include secure communication, fault tolerance, etc.
Particularly, [1] presented a collection of patterns to be used when dealing with
application security. [11] describes a hybrid set of patterns to be used in the de-
velopment of fault-tolerant software applications. An extension to the framework
presented in [11] for the development of dependable software systems based on
a pattern approach is proposed in [12]. The pattern specification consists of a
service-based architectural design and deployment restrictions in form of UML
deployment diagrams for the different architectural services.

2.1 Pattern modeling approach -abstraction

To give a flavor of the improvement achievable by using specific languages, we look
at the pattern formalization problem. UMLAUT [14] is an approach that aims to
formally model design patterns by proposing extensions to the UML meta model
1.3. They used OCL language to describe constraints (structural and behavioral)
in the form of meta collaboration diagrams. In the same way, Role-Based Meta

modeling Language (RBML) [15] is able to capture various design perspectives
of patterns such as static structure, interactions, and state-based behavior. The
framework LePUS [16] offers a formal and visual language for specifying design
patterns. It defines a pattern in an accurate and complete form of formula with a
graphical representation. A diagram in LePUS is a graph whose nodes correspond
to variables and whose arcs are labeled with binary relations.

While many security patterns have been designed, still few works propose gen-
eral development techniques for security patterns. A survey of approaches of secu-
rity patterns is proposed in [10]. For the first approach of this kind [17], design
patterns are usually represented by diagrams with notations such as UML object,
annotated with textual descriptions and examples of code. There are some well-
proven approaches [18] based on Gamma et al. However, this kind of techniques
does not allow to reach the high degree of pattern structure flexibility which is
required to achieve our target. The framework promoted by LePUS [16] is in-
teresting but the degree of expressiveness proposed to design a pattern is too
restrictive.

2.2 Pattern composition and application

With regard to the usage of security patterns in secure software systems develop-
ment, the Design Pattern Modeling Language (DPML) [19] allows the incorporation
of patterns in UML class models. In [20], the authors explained how pattern in-
tegration can be achieved by using a library of precisely described and formally
verified solutions. Another attempt has been made in [21] which creates a meta-
model for both the problem and the design pattern. Then, a mapping between
the two models enables to create an integrated model using model transforma-
tions. The work of [9] reports an empirical experience regarding the adoption and
elicitation of security patterns in the Air Traffic Management (ATM) domain,
and shows the power of using patterns as a guidance to structure the analysis of
operational aspects when they are used at the design stage. In [22], the authors



introduced an approach for the composition of web services using so-called secure
service orchestration (SESO) patterns. These patterns express primitive (e.g., se-
quential, parallel) service orchestrations, which are proven to have certain global
security properties if the individual services participating in them have themselves
other security properties. Hence SESO patterns determine the criteria (security,
interface and functional) that should be satisfied by the services that could instan-
tiate them. These criteria are used to drive a discovery process through which the
pattern can be instantiated.

2.3 Model-driven security engineering

With regard to the modeling of security and dependability in model-driven de-
velopment, UMLsec [23], SecureUML [24] and [25], to name a few, and our
proposal are not in competition but they complement each other by providing dif-
ferent views to a secure information system. The importance of models and MDE in
security engineering has been highlighted in [26–28] and confirmed recently in [29].
The modeling of basic concepts related to security and software architecture re-
quirements are established and well-know. There are several security risk analysis
methods that exist such as EBIOS [30], CORAS [31] and security-HAZOP [32].
In these methods, a threat and a risk analysis is executed using methods like the
threat modeling with attack trees as described in [33]. The output of these meth-
ods is a set of recommendations and guidelines to detect possible risks, evaluate
them and then mitigate them.

2.4 Formal methods for security engineering

In system and software engineering formal methods are used for the precise spec-
ification of the modeling artefacts across the development life cycle for validation
purposes [34], particularly in the development of security critical systems [35,
36]. A number of works have considered the composition of security policies and
developed solutions for particular areas like access control or Web services [37–39].
Formal methods rely on mathematically rigorous procedures to search through the
possible execution paths of a model for test cases and counterexamples. Regarding
the verification of security properties, early work discusses the verification of cryp-
tographic protocols and is based on an abstract (term-based) representation of
cryptographic primitives that can be automatically verified using model checking
and theorem proving tools. One research line in this category is authentication
logics, the first of these logics being the BAN Logic [40]. The Inductive Approach
by Paulson [41] started another research line. Early work in the area of model
checking can be traced back to [42], see [43] for a survey. One of the more recent
approaches is AVISPA [44] which provides the High Level Protocol Specification
Language (HLPSL [45]) and four different analysis tools. Another approach [46]
has been used to find security flaws in a number of key exchange, authentication
and non-repudiation protocols and has more recently been applied to analyze cer-
tain scenarios based on Trusted Computing [47]. To the best of our knowledge,
none of the above-described approaches is able to integrate the security solution
validation into the MDE refinement process of the application. In contrast, in [48],



a first approach of our validation method was conducted, using it to prove certain
security properties being provided by the architecture for automotive on-board
networks of the project EVITA.

2.5 Positioning

To summarize, in software engineering, design patterns are considered effective
tools for the reuse of specific knowledge. However, a gap between the develop-
ment of systems using patterns and the pattern information still exists. This be-
comes even more visible when dealing with specific concerns namely security and
dependability for several application sectors. A modeling framework that brings
semi-formal and rigorous representation concepts all together in a unified manner,
to best of our knowledge, does not exist yet.

In concept, our modeling framework is similar to the one proposed in [20].
Nevertheless they used a rigid structure (a pattern is defined as a quadruplet)
and consequently their approach is not usable to capture specific characteristics of
patterns for several domains. Although we found similarities between the approach
in [21] and ours, we want to go further than the transformation by defining a full
process for a proven integration, and be able, within this defined process, to leave
the user free to alter the automatic result, while always checking the correctness
at the end.

In contrast to other formal security engineering methods, the used formal se-
curity framework, referred to as SeMF [49], is not following the attack nor the risk
based approaches. Its basis are a set of desired security properties and associated
assumptions. With SeMF it is possible to validate if properties like trust, authen-
ticity or confidentiality hold under given assumptions. The side benefit is case a
stated assumption does not hold is that possible consequences in regard to security
properties can be estimated. The proof itself is conducted mostly with pencil and
paper and the resulted proof artifacts will be utilized by the designer as input to
the pattern-based development process. See Section 5.1 for a short introduction
to SeMF.

From a different point of view, we agree with the argumentations given in [50]
to justify why the precise specification and formalization of a pattern by definition
restricts its ”degree of freedom for the design”, and hence there are no success
stories of works dealing with pattern development. This is not only related to
security patterns. Note however, that these works do not address the validation
activity which is an important issue in any design activity and more particularly
in security engineering. We claim that security is subject to rigorous and precise
specification and the proposed literature (to the best of our knowledge) fails to
meet these two objectives. To remedy these contradictory needs, we support the
specifications of security patterns at two levels of abstractions, domain independent
and domain specific, in both a semi-formal and formal representation through
metamodeling techniques and a rigorous formal representation through a formal
approach. This allows to support some variability of the pattern.



3 Conceptual model

In this section, we present our conceptual model. The goal of this model is to
illustrate the addressed problems and to have a common understanding of all the
concepts used in this paper.

In software engineering, separation of concerns promotes the separation of
general-purpose services from implementations. In our context, we target the sepa-
ration of the general purpose of a pattern from the mechanisms used to implement
it. This is an important issue to understand the use of patterns in the scope of
security engineering. The layer in which patterns and their related mechanisms are
integrated depends on the assurance a client has in the services of other concerned
layers. We begin with a motivating example.

3.1 Informal description of the motivating example

Since messages passing across any public network can be intercepted and manip-
ulated, the problem we address in our example is how to ensure that the data is
secure in transit, in particular how to guarantee data authenticity. We show the
feasibility of our approach through the example of Secure Communication Pat-
tern (SCP). On domain-independent level, this pattern uses abstract send and
receive actions and abstract communication channels that are assumed to provide
authenticity. However, on domain-specific level, SCPs are slightly different with
regard to the application domain. A system domain may have its own mechanisms
and means, protocols that can be used to implement this pattern range from SSL,
TLS, Kerberos, IPSec, SSH, to WS-Security. In summary, they are similar in the
goal, but different in the implementation issues. This is the motivation to handle
the modeling of security patterns by following abstraction. As an example, on the
domain-specific level we use the TLS mechanism [7] as a concrete implementation
of the SCP.

The TLS mechanism is composed of two phases: The TLS Handshake that
establishes a secure channel, and the TLS Record in which this channel can be used
to exchange data securely. The client initiates the TLS handshake by providing the
server with a random number and information about the cryptographic algorithms
it can handle. The server replies by choosing the actual algorithm to use, optionally
requiring the client to authenticate itself, and by sending a random number of its
own and its certificate issued by some Certification Authority trusted by both the
server and the client.

For authenticating itself, in the final handshake message the client includes its
own certificate, a signature on all three handshake messages generated with the
client’s private key, and a third random number encrypted using the server’s public
key contained in the server’s certificate. After having verified the certificates and
signature, both client and server use the exchanged random numbers to generate
session keys for generating and verifying message authentication codes (MACs)
and for encrypting and decrypting messages during the TLS record phase.

Since the key used by the client for generating a MAC/encrypting a message is
used by the server only for MAC verification/decryption and vice versa, and since
these keys are based on one random number confidential for the client and the



server, the keys establish a channel that provides authenticity and confidentiality
for both client and server.

3.2 Definitions and concepts

Security patterns are not only defined from a platform independent viewpoint (i.e.,
they are independent from the implementation), they are also expressed in a way
consistent with domain-specific models. Particularly a security pattern at domain-
independent level exhibits an abstract solution without specific knowledge on how
the solution is implemented with regard to the application domain. The objective
is to reuse the generic model artifacts for several different industrial application
domain sectors and also to enable their customization regarding domain-specific
knowledge and requirements to produce the respective domain-specific artifacts.
Thus, the question of how to support these concepts should be captured in the
specification languages.

Definition 1 (Domain) A domain is a field or a scope of knowledge or activity
that is characterized by the concerns, methods, mechanisms, etc., employed in the
development of a system. The actual clustering into domains depends on the given
group/community implementing the target methodology.

In our context, a domain may include knowledge about protocols, processes,
methods, techniques, practices, OS, HW systems, measurement and certification
related to the specific domain. For example, in the group of Safety Standards, IEC
61508 is a domain-independent standard and EN 50126, EN 81 and ISO 26262 are a
railway domain-specific standard, an elevator domain standard and an automotive
domain standard, respectively.

To specify security patterns, we build on a metamodel for representing these
patterns in the form of a subsystem providing appropriate interfaces and target-
ing security properties to enforce the security system requirements. The so-called
external interfaces will be used to make the pattern’s functionality available to
the application, while the technical interface supports interactions with security
primitives and protocols of the application domain, including HW platforms. We
capture the security capabilities of the pattern through a novel concept called
Property.

The proposition presented in this paper is based on a Model-Driven Engineer-
ing (MDE) approach and on three levels of abstraction: (i) Pattern Specification
Metamodel (SEPM), (ii) Domain-Independent Pattern Model (DIPM) and (iii)
Domain-Specific Pattern Model (DSPM). This decomposition aims at allowing
the design of multi-concerns applications in the context of safety by avoiding the
great complexity normally introduced when combining extra-functional concerns
and domain-specific artifacts, and targets overcoming the lack of formalism of the
classical textual pattern form.

4 Pattern specification metamodel (SEPM)

The System and Software Engineering Pattern Metamodel (SEPM), as depicted in
Fig. 2, defines a new formalism for describing patterns and constitutes the base of



our pattern modeling language. Such a formalism describes all the concepts (and
their relations) required to capture all the facets of patterns. These patterns are
specified by means of a domain-independent generic representation and a domain-
specific representation.

Our representation of both domain-independent and domain-specific patterns
is based on GoF template style [17] (informal representation), but extends this
approach to fit with the security and dependability needs. We keep the template
elements in the form of attributes and deeply refine them by defining new concepts
in order to fit with the aforementioned needs.

The principle classes of the metamodel and their links with the property models
are described with a UML class diagram in Fig. 2. For the semi-formal representa-
tion one may use the property and constraint modeling languages presented in [51,
8], or equivalent [52,53]. These approaches use security property models as model
libraries to define the security properties and constraints of the pattern. In this
paper we focus on a formal representation of security properties based on a rigor-
ous semantics in order to enable precise specification and validation processes. In
the following, we depict in more details the meaning of principle concepts used to
rewrite a pattern by means of the SEPM language.

– SepmPattern. An SepmPattern is a subsystem describing a solution for a par-
ticular recurring security design problem that arises in a specific design context.
As we shall see, we keep these descriptions as attributes of the subsystem in
the form of textual data. Additionally we derived a set of concepts to support
automatic pattern specification and to ease pattern classification, identification
and validation.

– placeHolderAppEntity. It represents the application element to be used dur-
ing the pattern integration-application in the designs. In other words, such a
pattern element will be replaced with one element from the application design,
or created if it exists in the pattern but not in the application. Moreover, it
will be used to reason about the pattern properties and its provided design
solution.

– SepmDIPattern. This is an SepmPattern denoting some abstract represen-
tation of a security pattern at domain-independent level. This is the key entry
artifact to model pattern at domain independent level (DIPM). The behavior
of an SepmDIPattern is defined in terms of provided and required interfaces.
An SepmDIPattern serves as a type whose conformance is defined by these
interfaces. Larger pieces of a system’s functionality may be assembled by in-
tegrating patterns into an encompassing pattern or an assembly of patterns.
An SepmDIPattern may be manifested by one or more artifacts which in turn
may be deployed in their execution environment.

– externalInterface. A subsystem (pattern) provides/requires appropriate in-
terfaces to exhibit pattern functionality in order to manage its application. An
SepmDIPattern interacts with its environment (application) with external-

Interfaces.
– SepmProperty. A SepmProperty is a particular characteristic of a pattern

related to the concern the pattern is dealing with and dedicated to capture its
intent in a certain way. ecurity and dependability properties for example are
SepmProperties. The concept is used to describe the security aspects of the
subsystem to enforce the security system requirements. An SepmProperty is



Fig. 2 The SEPM metamodel- Overview



defined through a name, a semantic, a kind and an expression. The set of possible
kinds is defined in the enumeration S&DpropertyCategory. As we shall see
in Section 5, each property of a pattern will be validated at the time of the
pattern validating process, and hence the expression is formalized and refined
to match the expected semantic.

– SepmConstraint. A constraint is a condition that holds or must hold during
the application of a pattern. It is based on the notion of pre and post condi-
tion specification as commonly used in many formal methods. In our context,
the assumptions derived during the formalization and validation processes of
the pattern will be compiled as a set of constraints. For instance, resource
constraints which will have to be satisfied by the domain application before
the pattern application can be performed and after the pattern is applied.
A SepmConstraint is also defined through a name, a semantic, a kind and
an expression. The set of possible kinds is defined in the enumeration Rcon-

straintCategory.
– SepmDSPattern. It is an SepmPattern and a refinement of an SepmDIPat-

tern. This is the key entry artifact to model patterns at domain specific level
(DSPM). Since most known techniques that deal with security and depend-
ability are cryptography-based and redundancy-based models, respectively, we
introduce the SepmDSPattern with a mechanism attribute to make abstrac-
tion of such notions in the SepmDIPattern model. In the example introduced
in Section 3.1, TLS is one technique to achieve secure communication, and
there are alternative ways to achieve the same goal. In addition to the inter-
faces of an SepmDIPattern, a SepmDSPattern has TechnicalInterfaces to
interact with the platform representing the application domain.

– technicalInterface. These interfaces allow implementing interaction with the
platform. In addition, they support interactions with security and dependabil-
ity primitives and protocols. For instance, at a domain-specific level, it is pos-
sible to define links with software or hardware modules for the cryptographic
key management. Please note that an SepmDIPattern does not have a Tech-

nicalInterface.
– placeHolderTechnicalEntity. It represents the platform element to be used

during the pattern integration-application in the designs. In other words, such
a pattern element will be replaced with one element from the application do-
main, or created if it exists in the pattern but not in the application. A set of
attributes (technicalAttribute) may be defined to describe its characteris-
tics.

4.1 Generic property metamodel (GPRM)

The Generic PRoperty Metamodel (GPRM) [51], which is depicted with Ecore
notations in Fig. 3, is a metamodel defining a new formalism (i.e. a language)
for describing property libraries including units, types and property categories.
This metamodel allows to make the typing of properties and constraints of the
patterns (i.e. SepmProperty, SepmConstraint) and other artifacts extensible in-
stead of being limited by predefined type enumerations. For instance, security and
dependability attributes [54] such as authenticity, confidentiality and availability
are defined as categories. These categories require a set of measure types (degree,



metrics, . . . ) and units (boolean, float,. . . ). To this end, we instantiate the appro-
priate type library and its corresponding unit library. These models are used as
external model libraries to type the properties of the patterns. Especially during
the editing of the pattern we define the properties and the constraints using these
libraries.
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Fig. 3 The (simplified) GPRM Metamodel

4.2 Pattern model specification process: overview

The first step in our specification process is the understanding of the pattern’s in-
formal representation. The target representation is the SEPM metamodel, simpli-
fied in Figure 2 for the purpose of our study (semi-formal and formal representation
of security pattern). For instance, the informal description given in the previous
Section reflects our understanding of the representation of secure communication
patterns given in the literature [55]. At the DIPM level, this description gives rise
to specifying the following elements: interfaces of type SepmExternalInterface

and security properties of type SepmProperties. At the DSPM level, the descrip-
tion involves the following elements: interfaces of type SepmExternalInterface

and SepmTechnicalInterface and security properties of type SepmProperties.
The description with varying levels of abstraction is managed by inheritance. Once



there is a good understanding of the pattern informal representation structure, the
pattern can be specified using the SEPM metamodel.

The first step (A1) is to create a basic pattern subsystem P as an instance of
the SepmPattern, as shown in Fig. 4. The instance is given a name and set of
attributes representing the pattern. In our example, an instance of SepmPattern

is created and named ’SecureCommPattern’.
Once the basic pattern subsystem has been specified, the designer starts the

pattern artifact development process (the structured activity A2). It consists of the
following procedures: (1) the specification of the pattern P at domain-independent
level, denoted by PDI , by inheritance, (2) the refinement of PDI to specify one
of the pattern P representations at domain-specific level, denoted by PDS , by
inheritance and a refinement. For each of these two procedures, interfaces are added
to expose some of the pattern’s functionalities. For each such interface, an instance
of SepmExternalInterface is added to the pattern’s interfaces collection.

The next step after creating interfaces is (3) the creation of property instances:
For every security property to be provided by the pattern, an instance is created
in the pattern’s properties collection. A property is given a name and an expres-
sion in terms of the external interfaces in a property language (GPRM). During
this activity the pattern artifacts are built conforming to the SEPM specification
language.

The next activity to be performed (A3) concerns to syntactically check the
design conformity of the pattern to its metamodel (SEPM). Then, activity (A4)
deals with the pattern validation. It reflects the formal validation of a pattern
using the process introduced in Section 5, resulting in a set of validation artifacts.
At this point, the pattern designer may generate documentation (A6). If the pat-
tern has been correctly defined, i.e. conforms to the pattern modeling language,
and formally validated, the pattern is ready for publication into the model-based
repository (A7). Otherwise, the issues causing the validation to fail are identi-
fied and the pattern is re-built (A5) by correcting and/or completing its relevant
constructs, taking the found issues into account.

The DIPM and DSPM level constructions concerning the secure communi-
cation pattern example are described below. For the sake of simplicity, we only
specify those elements of activity A2 Develop pattern artifacts that we need in order
to explain our proof (see Section 5).

4.3 Modeling pattern at DIPM

At DIPM level, the security pattern subsystem and its related elements are created
by inheritance. The first activity is to set the pattern key words (secure channel,
communication) to ease the future search of the pattern. The next activity specifies
the external interfaces of the pattern exposing its functionalities through function
calls. In our example, we identified two external interfaces, one for the client and
one for the server, providing the following functions:
– establCh(P, ch(P,Q)) : P establishes a channel ch(P,Q) with Q,
– send(P, ch(P,Q),m) : P sends message m to Q on the channel ch(P,Q),
– recv(P, ch(P,Q),m) : P receives and accepts message m from Q on the channel ch(P,Q),
– closeCh(P, ch(P,Q)) : P closes the channel ch(P,Q) shared with Q.

with P ∈ {C1, . . . , Cn} and Q = S or Q ∈ {C1, . . . , Cn} and P = S, ch(C, S) =
ch(S,C) denotes the communication channel of a client C ∈ {C1, . . . , Cn} and the
server S, and m a message.



Fig. 4 Pattern development process

The next concern of the process is the definition of the pattern properties
and constraints. The supporting activities require the availability of a set of prop-
erty libraries. For a security property, after the instantiation of the appropriate
libraries, one instance is created for each library. This instance remains active for
the complete duration of the process. The imported model libraries will be used
during the definition of the properties to type the category. For the example of
Secure communication pattern, we specify the security property:“authenticity of
sending and receiving”. To type the category of this property we use a category
from the ones defined in the security category library “Authenticity”.

4.4 Modeling pattern at DSPM

At DSPM level, the security pattern and some of its related elements are also
created by inheritance. Once a SepmDSPattern is created, every pattern external
interface is identified and modeled as a refinement of the SepmExternalInterface
in the pattern’s interfaces collection. Then, following the pattern’s description of
the particular solution the pattern shall represent, each of the pattern’s technical
interfaces is identified and modeled by an instance of SepmTechnicalInterface

in the pattern’s interfaces collection. The next step is the specification of proper-
ties. Each property is represented by an instance of SepmProperty in the pattern’s
properties collection. A property is given a name and an expression in terms of
the pattern’s external and technical interfaces in a property language (GPRM).

The external interfaces are defined as a refinement of the DIPM external inter-
faces. In addition to the refinement of the concepts used at DIPM, the process in-



volves the definition of technical interfaces. These two activities are complementary
and can be mutually reinforcing when undertaken simultaneously. For instance,
the establishment of a channel using the TLS mechanism is a refinement of the
DIPM action establCh(P, ch(P,Q)): We add the random numbers generated by P

and Q, respectively, using the corresponding technical interfaces (genRnd(P,Q)),
which results into establCh(P, ch(P, rndP , preMSP , Q, rndQ)).

A subset of the functions provided by the external interfaces are:

– establCh(P, ch(P, rndP , preMSP , Q, rndQ)): P establishes a channel ch(. . .) with
Q,

– send(P, ch(P, rndP , preMSP , Q, rndQ),m,mac(preMSP , . . . ,m)): P sendsm and
the corresponding MAC to Q on the channel ch(. . .),

– recv(P, ch(P, rndP , preMSP , Q, rndQ),m,mac(preMSP , . . . ,m)): P receives m

and the corresponding MAC from Q on the channel ch(. . .),
– closeCh(P, ch(P, rndP , preMSP , Q, rndQ)) : P closes the channel ch(. . .) shared

with Q.

with P,Q as defined above, rndP and preMSP denoting a random number
and the premaster secret, respectively, generated by P , m denoting a message
and mac(preMSP , . . . ,m) the message authentication code generated using the
premaster secret.

The technical interfaces are defined as a set of functions related to the use
of TLS to refine the secure communication pattern. A subset of the functions
provided by the internal interfaces are:

– genRnd(P, rndP ) : P generates a random number rndP ,
– getCert(P, cert) : P has access to its certificate,
– getKey(P, PuKCA) : P has access to the CA′s public key,
– verifyCert(P, PuKCA, cert): P verifies the certificate cert,
– genMac(P, ch(P, rndP , preMSP , Q, rndQ),m,mac(preMSP , . . . ,m)): P generates

the message authentication code (MAC) for a message using its own TLS
shared secret for MAC generation

The interfaces (external and technical) with the required libraries of proper-
ties are then used in the next activity for specifying the pattern properties and
constraints. The pattern interfaces specified above are likely those a developer
will start with. However, the proof presented in Section 6 will show that these
interfaces need to be refined.

5 The formalization and validation process

In this section, we introduce our approach for pattern validation based on our
Security Modeling Framework SeMF. The next section gives a brief overview of the
underlying formal semantics, Section 5.2 introduces the validation artifacts that
will be applied in Section 6 where we prove the secure communication example
both on DIPM and DSPM level.

5.1 The security modeling framework SeMF

In SeMF, the specification of any kind of cooperating system is based on a prefix-
closed formal language whose alphabet is composed of the actions that can happen



in the system. More specifically, we use a set of agents (where the term “agent”
denotes any entity acting in the system such as a human being, a device, a part of
a device like an embedded system, etc.), and a set Σ of actions performed by the
agents (the letters of the alphabet). The system’s behavior can then be formally
described by a prefix closed formal language B ⊆ Σ∗, i.e. by the set of its possible
sequences of actions. The actions of the DIPM to be introduced in Section 4.3
can for example be derived from its external interface: EstablCh(. . .),Send(. . .),
Recv(. . .), and CloseCh(. . .). We denote the set of letters in a word ω ∈ Σ∗ by
alph(ω) and the number of occurrences of any action of a set Γ ⊆ Σ in a word ω

by card(Γ, ω). If Γ consists of only one action a, we simply say card(a, ω).

Different formal models of the same application/system are partially ordered
with respect to different levels of abstraction. Formally, abstractions are described
by so-called alphabetic language homomorphisms that map action sequences of a
more concrete abstraction level to action sequences of a more abstract level while
respecting concatenation of actions.

We further extend the system specification by two components: agents’ initial
knowledge about the global system behavior and agents’ local views. The initial
knowledge WP ⊆ Σ∗ of agent P about the system consists of all traces P initially
considers possible, i.e. all traces that do not violate any of P ’s assumptions about
the system. Every trace that is not explicitly excluded is assumed to possibly
happen in the system. An agent P may assume for example that a message that
was received must have been sent before leading to all sequences containing receive
actions without prior send actions to be excluded.

In a running system P can learn from actions that have occurred. Satisfaction of
security properties obviously also depends on what agents are able to learn. After
a sequence of actions ω ∈ B has happened, every agent P can use its local view λP
of ω to determine the sequences of actions it considers to have possibly happened.
Examples of an agent’s local view are that an agent can see only its own actions, or
that an agent P can see the message that was sent over a network bus but cannot
see who sent it, in which case e.g. λP (send(sender,message)) = send(message).

Security properties can now be defined in terms of a system specification, i.e.
in terms of actions, agents, the agents’ initial knowledge and local views. Note that
system specification does not require a particular level of abstraction. Further, it
does not contain the specification of malicious behavior. In contrast to e.g. model
checking approaches that explicitly specify an adversary’s capabilities and try to
prove that still the system cannot reach an undesired state, our approach works
from the opposite: Based on the formal semantics of our framework, we specify
the basic properties of the system that can be assumed to hold and use these
and adequate SeMF Building Blocks (SeBBs, see below) to prove that the system
satisfies specific security requirements. In the following section we will introduce
our validation artifacts.

5.2 Validation artifacts

Security properties. One important set of artifacts is of course the security proper-
ties a system shall provide. In the following we will explain the basic ideas of those
properties that are relevant for this paper without going into the formal details.



For more information about our formal framework and the formal definitions of
security properties we refer the reader to [49], [56], and [57].

We call a particular action a ∈ Σ authentic for an agent P (after a sequence
of actions ω has happened) if in all sequences that P considers to have possibly
happened a must have happened.

In many cases we require a particular instantiation of this property to hold:
auth(a,b,P) denotes that whenever a particular action b has happened, it

must be authentic for agent P that action a has happened as well. Whenever an
agent has for example verified a digital signature using a specific public key (action
b), in any of the sequences the agent considers possible, the owner of the private
signature key must have generated the signature (action a).

precede(a,b) holds if all sequences of actions in B that contain an action b

also contain an action a. Since this holds in particular for those that end on b and
B is prefix closed, a happens before b. The usage of a random number for session
key generation for example (action b) must always be preceded by the generation
of the random number (action a).

not-precedes(a,b) denotes the contrary: it holds if all sequences of actions in
B that end with b do not contain a. For instance, the verification of a digital sig-
nature using a specific agent’s public key (action b) is never preceded by signature
generation performed by an agent other than the owner of the respective private
signature key (action a).

not-happens(a) specifies the obvious: action a does not happen in the system.
In order to capture that some action happens at a particular point in time we

use the concept of a phase class Φ. This is essentially a part of the system behavior
that is closed with respect to concatenation. Maximal words v ∈ Φ in a phase class
are those for which every continuation leads out of the phase class, i.e. for which
holds va 6∈ Φ for all a ∈ Σ. Note that in general the word of a phase class need not
be a word in B. In our proof, we will use a particular phase class Φ(St, T ) that
is defined by its starting actions St and terminating actions T : any action in St

starts the phase class, and the first occurrence of any action in T terminates it.
An authentication protocol for example can be described by a phase class: it may
start with the sending of a random number, and possible termination actions can
be signature verification and timeout.

Based on the concept of phase classes, we can express a specific action b happen-
ing within, e.g. an authentication phase is (authentically for some agent) preceded
by another action a:

precede-wi-phase(a,b,Φ) holds if for all sequences of actions in the phase
class Φ, if action b is contained in the sequence, then a is contained as well.

auth-wi-phase(a,b,P,Φ(B↑WP) holds if for all sequences of actions ω of the
system that contain b, any sequence x of actions that agent P cannot distinguish
from ω and considers possible satisfies the following property: If x contains a word
v of the phase class Φ(B↑WP ) (denoting Φ extended to P ’s initial knowledge WP )
(i.e. x = uvz) which in turn contains b, then this word v also contains a. If for
instance an agent verifies a message authentication code within a TLS session, it
is authentic for this agent that it has been generated within this session by the
agent with which the session was established.

Our concept of parameter confidentiality expresses that an agent R shall not
know the actual value of a particular parameter. This means that if the agent
monitors any sequence of actions ω in which this parameter occurs, it cannot dis-



tinguish the actual value from any other possible value of this parameter. Whether
or not R can recognize the parameter value depends to a great extend on R’s
initial knowledge and its local view. Let A(par) denote the set of actions (the con-
text) in which par shall be confidential, and let who denote a set of agents. Then
conf(A(par),par,who) denotes that for all agents not in who, the parameter par

is parameter confidential with respect to A(par), i.e. agents not in who consider
all parameter values possible whenever an action of A(par) occurs. Our concept of
parameter confidentiality is actually more complex than the above explanations
disclose; however its full expressiveness is not needed in this paper, we refer the
interested reader to [58].

Parameter confidentiality is obviously violated if an agent that is not allowed
to know a specific parameter value excludes possible parameter values a priori
or can deduce its value from other actions that need not even contain the pa-
rameter. If for example an agent knows that a specific system’s random number
generator produces random numbers of a restricted range, parameter confiden-
tiality is violated (brute force attacks might reveal the random number). Hence
all-values-possible(who,par,M) holds if all agents R 6∈ who do neither exclude
any value of parameter par ∈ M in their initial knowledge WR nor are able to
deduce the value from other actions. The two formal properties captured by this
predicate can be used to prove one of our main SeBBs (SeBB.2, see below), we
refer the interested reader to [57].

We use two more concepts derived from the above notion of parameter confi-
dentiality:

restricted-conf(A(par),par,who,Γ) requires parameter confidentiality only
to hold for all words in the set Γ ⊆ Σ∗.

conf -during-phase(A(par),par,who,Φ(B)) requires parameter confidential-
ity to hold for all words ω ∈ B which extend into the phase class Φ(B). Note that
parameter confidentiality may not hold for a proper prefix of such a word, hence
this predicate can be used to express that some data may be known until a specific
point in time (the starting action of the phase class) and then forgotten.

trust: Finally we introduce our notion of trust which allows to capture basic
trust assumptions (like trust in a public key infrastructure) and to reason about
these. Trust is a relation between an agent and a property: trust(P,prop) denotes
that agent P trusts a property prop to hold in the system if the property holds in
the agent’s conception of the system, i.e. in the agent’s initial knowledge WP . P ’s
conception of the system may defer from the actual system. P may for example
not have all information about the system behavior and believe more sequences of
actions to be possible than B actually contains. Note that trust of an agent in a
property is again a property.

Assumptions. Any validation of a security property holding in a system must make
use of some assumptions. In order to prove for example that the TLS Handshake
results in authentic shared secrets for both the client and the server, we need to
assume that the public key of the certification authority is authentic for both of
them. In SeMF, these assumptions are again specified as security properties.

SeMF building blocks. A SeMF Building Block (SeBB) is essentially a visualization
of a proof, concerning either a formal implication between security properties or



a security mechanism. Hence, a SeMF Building Block consists of three different
parts:

– The internal properties (assumptions) that are assumed to be satisfied by the
system the SeBB shall be applied to.

– The mechanism or instrument that makes use of the internal properties. There
are two different types: F-SeBBs which constitute a formal proof within SeMF,
based on the formal definitions of the internal properties, and M-SeBBs whose
proof is performed by means of our framework but is additionally based on as-
sumptions external to SeMF, capturing expert knowledge about security mech-
anisms like protocols and cryptographic primitives. Such knowledge may for
example concern the fact that a digital signature must have been generated
using a specific signature key, i.e. cannot be guessed or generated by other
means.

– The external properties are those that are proven to hold for the overall system,
given that the internal properties hold.

An example for an F-SeBB is the transitivity of precedence: precede(a, b) and
precede(b, c) imply precede(a, c). An example for an M-SeBB captures the RSA
signature mechanism: If the private key is confidential for its owner (internal prop-
erty), then a signature verification action using the respective public key is always
authentically for the verifier preceded by the respective signature generation action
by the owner of the private key (external property).

SeBBs can be used to prove that a particular pattern provides a particular
property. The assumptions that need to be satisfied in order for the pattern to
provide the desired security property represent the internal properties of one or
more SeBBs. By consecutively applying appropriate SeBBs we then search for
a proof path that ends with the property provided by the pattern as external
property. We identify all assumptions that are included in the security pattern to
be verified. For a pattern describing TLS, for example, we may have the assumption
that the server’s private key be confidential for the server. For each of the security
requirements the pattern is supposed to provide, we then search for a way to
repeatedly apply appropriate SeBBs leading from a (sub)set of the assumptions
identified by the pattern to the respective security requirement. The (sub)set of
assumptions serves as internal properties for the first round of SeBB application
which produces a set of external properties. These are taken as internal properties
for the next application of SeBBs, etc., until the last step in which the desired
security requirement is (one of) the external propertie(s) of the applied SeBB.

For pattern development, we use SeBBs in the reverse way, starting with the
property provided by the pattern as external SeBB property and deriving the pat-
tern assumptions as internal SeBB properties by consecutively applying adequate
SeBBs. Formally, this constitutes a proof that given the assumptions hold, the
pattern provides the desired property. The application of SeBBs will be explained
in more detail in Section 6.

F-SeBBs can be applied on all abstraction levels and are thus domain indepen-
dent, while M-SeBBs are concerned with particular security mechanisms, hence
can be considered domain specific.

In the following we present the most important F-SeBBs that we will use in our
proof. For simpler F-SeBBs (such as the one regarding transitivity of precedence)
and the proofs we refer the reader to [57].



Deriving authenticity within a phase class (SeBB.1)

External Property:

auth-wi-phase(a, c, P, Φ(B↑WP ))

Internal Property:

trust(P, precede-wi-phase(a, b, Φ(B)))

∧auth-wi-phase(b, c, P, Φ(B↑WP ))

This SeBB is analogous to SeBB.3.1.13 handling authenticity with respect to
a phase class (see [57]) and can be proven analogously. We will use it in the first
step of proving that the example DIPM pattern provides a specific authenticity
property related to a phase class.

Extending restricted parameter confidentiality (SeBB.2)

External Property:

restricted-conf (A(par), par, who, {ωa})

Internal Property:

restricted-conf (A(par), par, who, {ω})

∧all-values-possible(who, par,M)

∧ωa ∈ B

∧∀R 6∈ who : λR does not reveal par in a

This SeBB essentially states that restricted parameter confidentiality is not
violated by actions that do neither reveal the parameter nor allow to draw con-
clusions about its value.

Our idea of security pattern validation is now the following: In order to prove
that a particular DIPM model provides a specific property, only F-SeBBs will be
applied. As a result we identify a set of assumptions that need to hold in order for
the security property to hold within the DIPM model.

For each of the assumptions in this set, we have two options: either we can
argue that the DIPM model satisfies the respective assumption, or we need a
pattern on DSPM level that provides the respective security property. We then
use appropriate F-SeBBs and further those M-SeBBs that capture the particular
security mechanisms that are used in the DSPM pattern (e.g. generation and
verification of message authentication codes) to prove that the DSPM pattern
provides the desired security property. Again, our proof results in a set of basic
assumptions which the DSPM model needs to satisfy in order for the pattern to



provide the desired security property. Hence we need to find arguments why the
model does satisfy these assumptions.

We then have a (set of) DSPM pattern that provides a particular security
property prop given a set of assumptions holds, and a DIPM pattern that provides
the desired security property we started with, given that an adequate representa-
tion of prop holds. What remains to be proven is that the two respective systems
are related. This can be done by using a homomorphism that preserves prop and
will be explained in the next paragraph.

Security property preserving homomorphisms. As explained in Section 5.1, a homo-
morphism is an abstraction that maps a concrete system to an abstract one by
preserving concatenation of actions. For defining a particular homomorphism, we
specify which of the concrete actions are mapped onto which of the abstract actions
and onto the empty word, respectively. Under certain conditions a homomorphism
can preserve specific properties: if the conditions hold, and if the property holds
in the abstract system, the respective property also holds in the concrete system.
For the formal proof of sufficient conditions for preserving authenticity and confi-
dentiality, we refer the reader to [59] and [60], respectively, conditions concerning
the preservation of phase classes are presented in [61].

This idea can now be applied to relate DIPM and DSPM models. For each
of the assumptions that we need to hold in order for the DIPM pattern to work
correctly, we do the following: We specify an adequate homomorphism that maps
the DSPM model onto the DIPM model. We then prove that this homomorphism
preserves the security property represented by the assumption which implies that
the homomorphism “transports” this security property into the DSPM model. We
finally prove that the respective property in terms of the DSPM model is identical
to the property we have proven for this model to hold.

6 Validating secure communication patterns

In this section, we will show how the validation artifacts introduced in the previous
section can be used for pattern validation. Exemplarily we will apply them to the
example domain DIPM and DSPM patterns for secure communication introduced
in Sections 4.3 and 4.4, respectively. We will explain how a proof can be conducted
that each time the server side of the communication channel receives a message
on the channel, for the server it authentically originates from the client side of the
channel.

6.1 Formalizing the DIPM secure communication pattern

The agents of the formal model that corresponds to the DIPM interfaces intro-
duced in Section 4.2 are a set of clients {C1, . . . , Cn} and server S, the actions Σ∗

DI

correspond to the DIPM pattern functions presented in Section 4.3.
We assume that each agent can only see its own actions. The security property

provided by the pattern can be expressed as follows: Each time the server receives
a message m on a channel it has established with client C, it is authentic for the
server that this client has sent this message after it has established the channel



(i.e. within the word of a phase class that starts with the client establishing the
channel and ends with the server closing it). Formally:

auth-wi-phase(send(C, ch(C, S),m), Recv(S, ch(S,C),m), S,

Φ({EstablCh(C, ch(C, S))}, {CloseCh(S, ch(C, S))})(B↑WS))
(P-DI)

6.2 Proving the DIPM solution

For the first step of our proof, we need a SeBB whose external property is authen-
ticity within a phase class. We use SeBB.1 introduced in Section 5, instantiating
action a of the SeBB with the send action by the client, b and c with the re-
ceive action by the server, and the phase class Φ(B) with the one represented by
establishing and closing, respectively, the abstract communication channel.

Thus we conclude that property P-DI holds if the following two assumptions
hold:

trust(S, precede-wi-phase(Send(C, ch(C, S),m), Recv(S, ch(S,C),m),

Φ({EstablCh(C, ch(C, S))}, {CloseCh(S, ch(C, S))})(B)))
(A-DI1)

auth-wi-phase(Recv(S, ch(S,C),m), Recv(S, ch(S,C),m),

S, Φ({EstablCh(C, ch(C, S))}, {CloseCh(S, ch(C, S))})(B↑WS))
(A-DI2)

We first prove property A-DI2. For this we note that the server sees its own
actions, thus in particular the action of receiving a message is authentic for the
server itself. Further, the server will never accept a message on a channel it has
already closed. When trying to formalize this assumption, we encounter the prob-
lem that in our formalization of the abstract communication channel used by the
client and the server (see Section 4.3) we use a constant: ch(C, S) never changes for
client C. So we cannot formalize directly that every receive action for a particular
message m occurs within an active channel, i.e. within a word of the phase class,
as there may be two actions Recv(S, ch(C, S),m) in a word, one occurring in the
phase class, the other one occurring in a word belonging to a newly established
channel, and our formalization does not allow to distinguish between the two.

This gives rise to a change in our interface specification that allows to distin-
guish between different channels which enables us to formalize that channels are
not established twice. This change furthermore corresponds to the idea of chan-
nels representing a specific period of time within the system behavior. The new
interface specification and resulting set of actions is thus as follows:

EstablCh(P, chk(P,Q)) P establishes a channel chk with Q.
Send(P, chk(P,Q),m) P sends message m on the channel chk

shared with Q.
Recv(P,Q, chk(P,Q),m) P receives and accepts message m on

the channel chk shared with Q.
CloseCh(P, chk(P,Q)) P closes the channel chk shared with

Q.



with P ∈ {C1, . . . , cn} and Q = S or vice versa, chk(C, S) = chk(S,C) and
k ∈ IN. We can now formalize that a server receive action never occurs without an
active channel as follows:

No message acceptance without active channel: (Ass.1)

Recv(S, chk(S,C),m) ∈ alph(ω) ⇒

∃v ∈ Φ({EstablCh(C, chk(C, S))}, {CloseCh(S, chk(C, S))})(B)), u, z ∈ Σ
∗

DI :

ω = xvz ∧Recv(S, chk(S,C),m) ∈ alph(v)

Thus, receipt and acceptance of a message by the server occur authentically
for the server within the phase class that corresponds to the active channel being
established and closed, respectively. Hence we do not need a further mechanism
to enforce this authenticity property.

Regarding property A-DI1, we note that there is no reason that would allow
us to just assume that the server trusts into the precedence of its receive action by
a client send action within the phase class corresponding to the abstract commu-
nication channel. So the next step of a proof is to find another F-SeBB with this
property as external property. In a more complex model with for example more
actions in between the send and receive action we would certainly be able to apply
other F-SeBBs (e.g. the one that captures the transitivity of precede). However, in
this simple example model, no other F-SeBB can be applied. Hence this concludes
our proof with respect to the abstract model.

We now have to consider a concrete solution, i.e. we have to find and validate
a domain-specific secure communication pattern that provides an equivalent prop-
erty. There exist various different possibilities for such patterns that refine the
abstract communication channel and thus the abstract pattern. One possibility is
e.g. to execute a Diffie Hellman based key exchange algorithm. Another possibility
that we will focus on in the next section is the establishment of a TLS channel.

6.3 Formalizing the DSPM secure communication pattern

We refine the DIPM model by using TLS [7]. The formal model corresponding to
the TLS pattern discussed in Section 4.2 contains the same set of agents, namely
clients C1, . . . , Cn (n ∈ IN) and server S. Its action set ΣDS constitutes a refinement
of ΣDI , containing the DIPM actions with additional parameters and new actions
modeling additional TLS operations. These actions together correspond to the
external and technical interface function calls presented in Section 4.4, taking into
account the findings discussed in the previous section. They comprise both the
TLS Handshake and Record phase. However, for brevity we disregard some of the
actions as they are not relevant for our proof.

The following description of the TLS Handshake protocol is an abstraction of
the protocol as specified in [7] that focuses on the security relevant messages. For
example, all server hello messages sent by the server are subsumed into one send
action, other messages (e.g. changeCipherSpec) are omitted. We further assume
that the premaster secret is directly used for session key generation, abstracting



from the fact that TLS uses a master key derived from the premaster secret for this.
We finally abstract from implementation issues such as the actual agents that are
acting in a TLS protocol (e.g. client browser, TLS library, and Networking Stack).
However, we use a TCP channel to represent the intended receiver and assumed
sender, respectively, of a message.

The table below lists those actions that are important for our proof. One
possible and desired sequence of actions of a client C and server S that results, as
we will show in Section 6.4, in establishing a secure TLS channel, will be presented
in the appendix.

genRnd(P, rndP ) Agent P generates a random number.
We do not model implementation de-
pendent details such as how client and
server link random numbers to server
and client to establish a channel with
and simply assume this link to be pro-
vided.

send-hs(P, tcpj ,m Agent P sends a message (e.g. its ran-
dom number and some information
about the possible algorithm and key
lengths etc.), using a particular TCP
channel tcpj established for (not yet
secure) communication.

recv-hs(P, tcpj ,m) Agent P receives the message on the
TCP channel tcpj .

verifyCert(C,PuKCA,

cert(PrKCA, PuKS , IDS)) The client verifies the server’s certifi-
cate with the CA’s public key and ex-
tracts the server’s public key.

encrypt(C,PuKS , preMSC ,

cipher(PuKS , preMSC)) The client encrypts the pre-master se-
cret using the server’s public key.

establCh(P, SKmac(rndC , preMSC , rndkS))
The client/server uses the three ex-
changed random numbers to gener-
ate its session key for MAC genera-
tion/verification, thereby establishing
a secure channel.

finished(P, tcpj , HMAC(preMSC , label(C), hash(m1,
m2,m3))) Agent P signals having finished the

TLS Handshake. The message is com-
posed of an HMAC including the
premaster secret and the hash of
all Handshake messages excluding
this finished message (denoted by
m1, . . . ,m3).

As a symmetric algorithm, both MAC generation and verification use the
same symmetric key, so both the client and the server generate the same key



SKmac(rndC , preMSC , rndkS). Since we focus on MAC generation and verification,
respectively, we disregard the fact here that other keys, e.g. for encryption and de-
cryption of messages are generated as well. The establishment of a channel is a re-
finement of the respective abstract action: We first add the random numbers gener-
ated by C and S, respectively, which results into establCh(P, chk(C, rndC , preMSC ,

S, rndkS)). We can then simplify this action by disregarding the index k of the pa-
rameter chk (since it is contained in rndkS), by removing the channel parameters C
and S (since these are represented by the respective random numbers), and by re-
moving rndC , as it is not relevant for our proof. We finally exchange ch for SKmac

in order to emphasize that on the domain-specific level the abstract channel is rep-
resented by the TLS session key. Hence in the following we denote the client MAC
generation and server MAC verification key by SKmac(preMSC , rndkS).

After having established the TLS channel, the TLS Record protocol can be
used to exchange messages via this channel. The following describes one possible
sequence of actions:

genMac(C, SKmac(preMSC , rndkS),m,mac(SKmac(preMSC , rndkS),m))
The client generates the message authentication code (MAC) for message
m using its own TLS shared secret for MAC generation.

send(C, tcpj , SKmac(preMSC , rndkS),m,mac(SKmac(preMSC , rndkS),m))
The client sends m and the corresponding MAC to the server using the
TLS channel SKmac(preMSC , rndkS).

recv(S, tcpj , SKmac(preMSC , rndkS),m,mac(SKmac(preMSC , rndkS),m))
The server receives m and corresponding MAC on the TLS channel.

verifyMac(S, SKmac(preMSC , rndkS),m,mac(SKmac(preMSC , rndkS),m))
The server verifies, using its shared secred for verification, that the message
authentication code for m is correct and originates from the client.

closeCh(S, SKmac(preMSC , rndkS))
This action corresponds to the close notify action as specified in [7] with
which the server closes the TLS session related to preMSC and rndkS .

We now need to specify the security property that the TLS pattern provides.
Obviously, the authenticity property provided by the HMAC mechanism refers to
the generation and verification of an HMAC, so instead of using the send and re-
ceive actions as parameters of the property (in equivalence to the actions used to
specify the abstract authenticity property P-DI), we use the actions of MAC gen-
eration and verification. Hence the security property that corresponds to the trust
property assumed to hold for the abstract communication model (this correspon-
dence will be proven in Section 6.5) is that the server trusts into the precedence of
its own verification action by the MAC generation action of the client within the
phase class that starts with the client establishing the TLS channel (i.e. generating
the MAC key) and ends with the closure of the TLS session:



trust(S, precede-wi-phase(

genMac(C, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)),

verifyMac(S, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)),

Φ({establCh(C, SKmac(preMSC , rnd
k
S))},

{closeCh(S, SKmac(preMSC , rnd
k
S))})))

(P-DS)

6.4 Proving the TLS mechanism

In order to prove that the TLS mechanism provides this property, we first introduce
some TLS specific SeBBs and assumptions and discuss why they are appropriate.

6.4.1 Assumptions and M-SeBBs

We assume the server’s private RSA key for decryption to be confidential for the
server:

Confidentiality of the server’s private key: (Ass.2)

conf(A(PrKS), P rKS , {S})

Considerations regarding random numbers and premaster secret

The first two random numbers that are generated are sent in plain-text, so they
are considered known by all agents. Regarding knowledge of the premaster secret
preMSC , we assume that client and server do not make it available other than
through the Handshake messages. That is to say, the session keys are generated on
the basis of the premaster secret exchanged; thus their confidentiality is violated
if the premaster secret gets known. Hence we assume that the premaster secret is
not known by any agents prior to generation and only to the client until directly
after its generation. One mechanism to satisfy this property is to use a random
number as premaster secret. Hence we assume that the client indeed generates a
random number as premaster secret (the client could very well use an already ex-
isting one). Random numbers are generated “virtually unique” which is formalized
by the following assumption about their “absolute uniqueness”:

Random number generation only once: (Ass.3)

∀ω ∈ B∀rnd ∈ IN : card({genRnd(P, rnd) |P ∈ P}, ω) ≤ 1



We assume a random number to be confidential for the agent that generates it
from system start until its generation. Note that this assumption only holds if the
agent uses an appropriate random number generator that provides both confiden-
tiality and non-predictability of random numbers (see Assumption Ass.3). This
leads to

Confidentiality of random number until generation: (Ass.4)

restricted-conf (A(rnd), rnd, ∅, {ω ∈ B | genRnd(P, rnd) 6∈ alph(ω)}

∧restricted-conf (A(rnd), rnd, {P}, {pre(ω) ∈ B | suf1(ω) = genRnd(P, rnd)}

with pre(ω) denoting the set of prefixes of ω and suf1(ω) denoting its last
action.

Session key generation

We assume that a session key cannot be guessed, so before using the session
key for MAC generation, it has to be established:

Session key generation before usage: (Ass.5)

precede(establCh(P, SKmac(preMSC , rnd
k
S)),

genMAC(Q,SKmac(preMSC , rnd
k
S),m,mac(SKmac(preMSC , rnd

k
S),m)))

In other words, if agent R knows the session key, it has either generated it, or
received it from the server or the client. This, however, would render the whole
protocol useless. So we assume that neither the session keys nor the premaster
secret are leaked or made available deliberately.

We assume that the session key generation algorithm in [7] is secure in the
sense that it requires knowledge of the premaster secret. Since we further assume
that session keys are not made available other than (potentially) after ending the
TLS session, we have the following assumption:

Confidentiality of session keys: (Ass.6)

conf-during-phase(A(preMSC), preMSC , who, Φ(St, T ))

⇒

conf-during-phase(A(SKmac(preMSC , rnd
k
S)), SKmac(preMSC , rnd

k
S), who,

Φ(St, T ))

A session key involving a specific random number, in particular the premaster
secret, cannot be generated before the random number has been generated.

Session key generation: (Ass.7)



precede(genRnd(P, preMSC), establCh(Q,SKmac(preMSC , rnd
k
R)))

A MAC is generated and verified, respectively, with the same session key that
must be known to both the client and the server. Assuming that the server acts
correctly, it will never deliberately use the client’s MAC generation key to generate
a MAC and will only use this key to verify a MAC. Hence the only reason that
a server’s MAC verification action is preceded by an action in which the server
itself generates this MAC is that the server’s MAC generation key is identical to
the one of the client. According to [7], the key generation algorithm is based on
all random numbers exchanged in the Handshake: the client’s one sent in the first
message, the server’s one sent in the second message, and the premaster secret
sent again by the client in the third message. So even if the client violates the
protocol specification and uses old numbers, the fact that the server’s random
number is used guarantees that each of the session keys are different to session
keys generated in any other TLS session before. While the client can establish the
channel (i.e. session key) based on the server’s random number arbitrarily often,
each time producing the same key and thus the same channel, for simplicity we
assume that it happens only once:

Session key generation only once: (Ass.8)

∀ω ∈ B∀k ∈ IN : card(establCh(C, SKmac(preMSC , rnd
k
S)), ω) ≤ 1

Further, the key generation algorithm guarantees that all session keys are dif-
ferent from each other. Hence we can assume that the server never accidentally
uses the client’s MAC generation key to generate a MAC, even more, it does not
use it for anything but verifying a client’s MAC. Formally:

MAC generation key not used by server: (Ass.9)

not-happens(genMac(S, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)))

Rather than using this assumption, a more low level analysis would formulate
low level assumptions and SeBBs in order to formally prove Assumption Ass.9.
However, this would constitute a verification of the internal TLS implementation.
Though possible this is out of the scope of the work described here.

Closing of sessions

The TLS session can be terminated by either the client or the server by sending
a close notify message. The recipient must respond with a close notify of its own.
Of course, if an adversary intercepts a close notify message for example sent by
the client, the server will never receive it. So with no additional measures taken,
the protocol would allow a situation in which the server considers the TLS session
still valid while the adversary retrieves the session keys or premaster secret (by



some cryptanalysis algorithm). This would allow the adversary to impersonate the
client. Hence an appropriately implemented protocol will include a timeout action
by the server (and the client, respectively) that terminates any TLS session before
the respective premaster secret and session keys can get known. We abstract from
this by assuming that a close action will always happen in due time, i.e. before the
session keys and premaster secret can get known. Since we want to investigate the
TLS protocol from the server’s point of view, for simplicity we further disregard
the fact that the client can close the session and assume that it is always the server
who terminates it. We then assume that after the server has closed a session, the
respective premaster secret and session keys are potentially known to all agents.
Accordingly, we assume that the server never accepts a message sent on a channel
it has already closed:

Message acceptance within active channels: (Ass.10)

verifyMac(S, SKmac(preMSC , rnd
k
S),m,mac(SKmac(preMSC , rnd

k
S),m))

∈ alph(ω) ⇒

∃v ∈

Φ({establCh(C, SKmac(preMSC , rnd
k
S))}, {closeCh(SKmac(preMSC , rnd

k
S))}),

u, z ∈ Σ
∗

DS : ω = uvz ∧ verifyMac(S, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)) ∈ alph(v)

Note that since in this document we address authenticity rather than confiden-
tiality of messages, we do not discuss the question when exactly a session key can
get known, i.e. at which point in time after the closure of a session the respective
session key may be known by an adversary and confidentiality of messages sent in
this session is violated.

For technical reasons within the formal proof, we further assume that the server
does not close a session that has not yet started:

No close of not existing session: (Ass.11)

not-precedes(closeCh(SKmac(preMSC , rnd
k
S)), establCh(C, SKmac(preMSC , rnd

k
S)))

Agents’ local views

We further assume that spying on the client’s or server’s platform is not possi-
ble, and assume typing of messages, i.e. we assume that each of the TLS messages
contains enough information to recognize its particular role in the protocol (the
protocol step and session it is meant to be used for). Thus we can disregard prob-
lems that could occur if some TLS message can be misinterpreted and used in a
different step or session of TLS.

The set A(preMSC) of actions in the context of which the premaster secret
shall be confidential contains all actions that have a parameter preMSC (see the



appendix for the full set of actions):
A(preMSC) := {genRnd(C, . . .), establCh(C, . . .), encrypt(C, . . .), sign(C, . . .),

send-hc(C, . . .), finished(C, . . .), recv-hc(S, . . .), verifySig(S, . . .),
decrypt(S, . . .), establCh(S, . . .), finished(S, . . .), closeCh(S, . . .)}

However, since we assume that spying on the server’s or client’s platform is not
possible, all actions processed completely within a platform cannot be monitored
by an adversary, i.e. an adversary’s local view of these actions is the empty word.
For the send and receive actions performed by the client and the server, respec-
tively, we note that the premaster secret is encrypted. Consequently, no agent,
when looking at these actions, can actually see the premaster secret. The equiva-
lent holds for the finished messages that include the premaster secret only in the
HMAC (we assume here that an HMAC is a one-way function), and for the closeCh

message that contains preMSC as a parameter of the channel. This implies that
the local views λR of agents R other than the client and server do not reveal the
premaster secret in these actions. Trivially, λR does not reveal any parameter of
an action a if λR(a) = ε. We define

A♯(preMSC) := A(preMSC) \ {genRnd(C, preMSC),
encrypt(C,PuK, preMSC , cipher(PuK, preMSC))}

Local views do not reveal preMSC : (Ass.12)

∀R ∈ P \ {C, S} : a ∈ A♯(preMSC) ⇒ λR does not reveal preMSC in a

Agent’s initial knowledge regarding possible values of premaster secret

The actions of a TLS session that contain the premaster secret can be used
in different orders (e.g. the client can generate the premaster secret before or af-
ter actually sending the first message to the server). There may even be different
actions used in different types of sessions. The actions could for example contain
the operating system of the device they are performed on. If there was a known
weakness in random number generation of one of the possible operating systems,
the particular type of a TLS session would indeed have an influence on its security.
However, since we assume a properly working random number generator, confiden-
tiality of the premaster secret does not depend on the particular order of actions
or type of session that is being used. Consequently, we need not differentiate be-
tween different types of TLS sessions, hence our model does not contain any such
differentiation. This does not hold in general as there may very well be weaknesses
of a protocol, e.g. the generation of a not sufficiently long random number that
occurs only in specific types of sessions.

Additionally, when using a properly working random number generator, i.e. a
pseudo random number generator with a secure seed, even if an agent knows one
random number (e.g. a malicious server that had some time in the past a TLS ses-
sion established with the client), it will not be able to deduce previously generated
random numbers or to predict future ones. This is formalized by assuming that
there is no relation between the values of premaster secrets in different sessions.
Hence in our model an agent has no way to conclude the value of one premaster
secret by knowing the value of another one. This is again not true in general: if a
protocol for example uses a sequence number, even if it is confidential for agent
R, R knows that the sequence numbers are simply incremented which constitutes



a relation between different sessions. In fact, it even violates confidentiality in the
case R itself is involved in one session. TLS that is based on a random number
generator that does not provide unpredictability suffers from the same security
flaw. Hence the quality of the random number generator is of paramount impor-
tance for the security of TLS. Abstracting from the relation between different TLS
sessions implies that an agent R observing the system must assume that in any of
the sessions, any parameter value in the range of the premaster secret can occur.

In view of the above considerations and considering all activities that consti-
tute the TLS protocol, we note that there is no action, containing or not containing
the premaster secret, that narrows the range of its values that agent R considers
possible. Since we further assume that a priori all agents R 6= C, S assume all
values of preMSC in the given range to be possible, we conclude the following
assumption with M(preMSC) denoting the range of random number values of the
premaster secret:

Agents’ initial knowledge does not exclude parameter values: (Ass.13)

all-values-possible({C, S}, preMSC ,M(preMSC))

6.4.2 Domain specific mechanisms

If client or server make the premaster secret available deliberately, this is equivalent
to making all the session keys themselves available. As said above, this in turn
would render the whole protocol useless. So we assume that neither the session keys
nor the premaster secret are made available deliberately. Hence the only actions
that operate on the premaster secret are the ones specified in the TLS Handshake.
In particular, the first action that makes the premaster secret available to the
outside world is the one in which it is sent encrypted.

The effect of encrypting preMSC is modeled by the following RSA encryption
SeBB. Only an agent that owns the particular private key corresponding to the
public key used for encryption can decrypt the cipher-text and thus may know
the plain-text. For technical reasons we consider preMSC potentially known by
all agents owning the decryption key already in the moment when it is encrypted.
Note that this SeBB implicitly assumes that no agent P 6∈ who can actually see
the parameter at the moment of encryption.



RSA encryption (SeBB.3)

External Property:

restricted-conf (A(par), par, who ∪ {Q}, {ωa})

Internal Property:

restricted-conf (A(par), par, who, {ω})

∧a = encrypt(P, PuKQ, par, cipher(PuKQ, par))

∧ωa ∈ B

∧conf(A(PrKQ), P rKQ, {Q})

For the proof of this and the other M-SeBB presented in this section, we refer
the reader to the appendix.

With the same arguments as above we assume that the client encrypts each
premaster secret only with one public key, i.e. does not encrypt it using different
public keys, because this again would constitute a deliberate violation of confiden-
tiality. Note that this assumption can only be safely made if the server’s public key
is only used within TLS protocol runs. Since the client wants to establish a TLS
session with server S, we can further assume that it only uses PuKS for encrypting
the premaster secret.

No double encryption of premaster secret: (Ass.14)

encrypt(C,PuK, preMSC , cipher(PuK, preMSC)) ∈ alph(ω)

⇒ PuK = PuKS

A premaster secret that has not yet been generated cannot be encrypted:

No operation on not existing premaster secret: (Ass.15)

∀ω ∈ BDS :

genRnd(P, preMSC) 6∈ alph(ω)

⇒ ω encrypt(P, PuK, preMSC , cipher(PuK, preMSC)) 6∈ BDS

Finally, the following SeBB captures the nature of a MAC mechanism which
guarantees that a MAC verification action is always preceded by a MAC genera-
tion action. If further the key used to generate the MAC is generated after some
particular action starting a phase class, then MAC verification happening within
this phase class implies that the MAC generation must also have happened within
this phase class.



MAC generation and verification (SeBB.4)

External Property:

precede-wi-phase(genMac(P, key,m,mac(key,m)),

verifyMac(Q, key,m,mac(key,m)), Φ({s}, T )(B))

Internal Property:

conf-during-phase(A(key), key, {P,Q}, Φ({s}, T )(B))

∧not-precedes(genMac(Q, key,m,mac(key,m)),

verifyMac(Q, key,m,mac(key,m)))

∧precede(s, genMac(P, key,m,mac(key,m)))

∧verifyMac(Q, key,m,mac(key,m))) ∈ alph(ω) ⇒

∃v ∈ Φ({s}, T ), u, z ∈ Σ
∗ :

ω = uvz ∧ verifyMac(Q, key,m,mac(key,m))) ∈ alph(v)

∧∀ω ∈ B : card(s, ω) ≤ 1

6.4.3 The proof

The security property that we want to prove for the TLS pattern and that cor-
responds to the trust property assumed to hold for the DIPM model (this corre-
spondence will be addressed in the next section) is that the server trusts into the
precedence of its own verification action by the MAC generation action of the client
within the TLS session starting with session key generation by the client. Formally,
this phase class is specified as Φ({establCh(C, SKmac(preMSC , rndkS))}, {closeCh(S,
SKmac(preMSC , rndkS))}. Hence the property we want to prove for the TLS mech-
anism can be formally specified as

trust(S, precede-wi-phase(

genMac(C, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)),

verifyMac(S, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)),

Φ({establCh(C, SKmac(preMSC , rnd
k
S))},

{closeCh(S, SKmac(preMSC , rnd
k
S))})))

(P-DS)

As explained in Section 5.2, trust of S into the above precede property means
that this property holds in the server’s conception of the system. More precisely, if
S trusts this property to hold, precedence of MAC verification by MAC generation
holds within the phase class being extended into the respective one within what



S believes to be the system behavior (formally denoted by WS , see Definition 15
of [62] for more information). In order to facilitate the proof, we, therefore, first
prove that the precede property holds in BDS , using the assumptions introduced
in Section 6.4.1. We then argue that S trusts all these assumptions to hold, hence
the respective assumptions hold in WS which allows us to perform an equivalent
proof within this system.

So we need to prove the following:

precede-wi-phase(genMac(C, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)),

verifyMac(S, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)),

Φ({establCh(C, SKmac(preMSC , rnd
k
S))},

{closeCh(S, SKmac(preMSC , rnd
k
S))}))

(P-DS1)

We do this by applying SeBB.4.The last two properties required by SeBB.4 are
assumed to hold (assumptions Ass.5 and Ass.8, and Ass.10, respectively). Hence
it remains to prove the following two internal properties:

conf-during-phase(A(SKmac(preMSC , rnd
k
S)), SKmac(preMSC , rnd

k
S),

{C, S}, Φ({establCh(C, SKmac(preMSC , rnd
k
S))},

{closeCh(S, SKmac(preMSC , rnd
k
S)}))

(P1)

not-precedes(genMac(S, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)),

verifyMac(S, SKmac(preMSC , rnd
k
S),m,

mac(SKmac(preMSC , rnd
k
S),m)))

(P2)

Proving property P2 is trivial: since by Ass.9 the server never generates a MAC
using SKmac(preMSC , rndkS), this action does not precede any other action of the
system, in particular it does not precede the server’s MAC verification action. So
it remains to prove the confidentiality of SKmac(preMSC , rndkS).

Proving confidentiality of SKmac(preMSC, rndk

S
)

We start proving confidentiality of the session key by first proving that the
premaster secret that it is based on is confidential during the TLS session. Confi-
dentiality of the session key then follows with Ass.6. Hence we need to show

conf-during-phase(A(preMSC), preMSC , {C, S},

Φ({establCh(C, SKmac(preMSC , rnd
k
S))},

{closeCh(S, SKmac(preMSC , rnd
k
S))}))

(P5)



In order to prove this, we first prove confidentiality of the premaster secret
during the phase class starting with its generation and then show the above prop-
erty.

Let preMS∗

C and rnd∗S be fixed but arbitrary premaster secrets and random
numbers, respectively, and let C ∈ {C1, . . . , Cn}. For ease of reading the follow-
ing proof, we use the abbreviation Φ(preMS∗

C , rnd∗S) := Φ({genRnd(C, preMS∗

C)},
{closeCh(S, SKmac(preMS∗

C , rnd∗S))}). We start with focusing on words that end
with generating this particular premaster secret. Let Ω(preMS∗

C) denote all words
ω ∈ BDS that continue with client C generating the premaster secret, i.e. Ω(preMS∗

C) :=
{ω ∈ BDS | suf1(ω

−1(BDS)) = {genRand(C, preMS∗

C)} where ω−1 denotes the set
of all continuations of ω in BDS . Since we assume the client to generate a random
number as premaster secret, Ass.4 implies

restricted-conf (A(preMS
∗

C), preMS
∗

C , {C},

pre({ωv ∈ BDS |ω ∈ Ω(preMS
∗

C)), v = genRnd(C, preMS
∗

C)})
(P6)

This trivially implies

restricted-conf (A(preMS
∗

C), preMS
∗

C , {C, S}, Γ ) (P7)

with Γ = pre({ωv ∈ BDS |ω ∈ Ω(preMS∗

C)), v = genRnd(C, preMS∗

C)}. Note
that the words for which confidentiality of the premaster secret holds are the
prefixes of those that extend into the phase class Φ(preMS∗

C , rnd∗S) by just the
starting action. From this we then deduce restricted confidentiality for the prefixes
of all arbitrary words that extend into this phase class. We do this by induction
over the length of such words.

1. Induction basis: by property P7.
2. Induction hypothesis: let property P7 hold for Γ0 = {pre(ωv0) ∈ BDS | ω ∈

Ω(preMS∗

C), v0 ∈ ω−1(BDS) ∩ Φ(preMS∗

C , rnd∗S)}.
3. Induction step: let ω ∈ Ω(preMS∗

C), a ∈ ΣDS with v0a ∈ ω−1(BDS)∩Φ(preMS∗

C ,

rnd∗S).

(a) a 6∈ A(preMS∗

C). Then trivially, λR does not reveal preMS∗

C for any agent
R 6= C, S. Hence Assumption Ass.13 together with SeBB.2 implies

restricted-conf (A(preMS
∗

C), preMS
∗

C , {C, S},

{pre(ωv0a) ∈ BDS | ω ∈ Ω(preMS
∗

C), v0a ∈ ω
−1(BDS)∩

Φ(preMS
∗

C , rnd
∗

S)})

(P9)

(b) a ∈ A♯(preMS∗

C). By Assumption Ass.12, the local views of agents other
than C and S do not reveal the premaster secret, hence again, Assump-
tion Ass.13 together with SeBB.2 implies property P9 to hold. If further a =
closeCh(S, SKmac(preMSC , rndkS)), then v0a is maximal in Φ(preMS∗

C , rnd∗S)
and confidentiality of preMS∗

C within the phase class is proven.
(c) a = encrypt(P, PuK, preMS∗

C , cipher(PuK, preMS∗

C)). Since genRnd(C, pre−
MSi) ∈ alph(ωv0a), Ass.3 implies genRnd(P, preMS∗

C) 6∈ alph(ωv0a) for all
P 6= C, and with assumption Ass.15 it follows ωv0encrypt(P, PuK, preMS∗

C ,

cipher(PuK, preMS∗

C)) 6∈ BDS for all P 6= C. Ass.14 implies a = encrypt(C,



PuKS , preMS∗

C , cipher(PuKS , preMS∗

C)). Then SeBB.3 together with as-
sumption Ass.2 implies that the owner of the private key corresponding to
PuKS , i.e. the server S, can be added to the set of agents allowed to know
preMS∗

C (which we formally have done already for property P7), i.e. we
can again conclude that property P9 holds.

(d) a = genRnd(P, rnd) As explained above, by Ass.3 an agent other than the
client cannot have generated preMS∗

C , hence no other agent’s local view
reveals preMS∗

C . Further, generation of a different random number does
not reveal knowledge of preMS∗

C , formalized by Ass.13, thus property P9
holds.

Since property P9 holds for the prefixes of all arbitrary words that extend into
the phase class Φ(preMS∗

C , rnd∗S) = Φ({genRnd(C, preMS∗

C)}, {closeCh(S, SK-
mac(preMS∗

C , rnd∗S)}))(BDS), it holds in particular for the prefixes of all maximal
words, hence confidentiality during this phase class holds:

conf-during-phase(A(preMS
∗

C), preMS
∗

C , {C, S},

Φ({genRnd(C, preMS
∗

C)}, {closeCh(S, SKmac(preMS
∗

C , rnd
∗

S))})(BDS)
(P10)

By Ass.7, the premaster secret must be generated before channel establishment.
Then using Ass.11, it can easily be proven that property P5 holds. With Ass.6 it
follows that property P1 holds.

Concluding the proof

Having shown that properties P1 and P2 hold, SeBB.4 implies that property
P-DS1 holds.

As explained at the beginning of our proof, we now assume that S trusts all
assumptions to hold. This includes in particular that the server has to trust that
the client uses an appropriate random number generator. This is a strong assump-
tion, considering that deficiencies of operating systems (e.g. Debian) have been
detected that used a random number generator with insufficiently large output.
The problem is further increased since the server usually has no means to au-
thentically identify the client’s operating system. Nevertheless, if the server does
not trust the quality of the random numbers, it can simply refuse to establish a
TLS channel with the client. If now the server trusts all assumptions to hold, this
implies that all assumptions hold in what the server believes to be the system
i.e. with respect to its initial knowledge WS . Since this is in itself a system, and
assuming all assumptions to hold in this system, the analogous proof can be per-
formed for WS . This in turn implies that property P-DS1 holds in WS , which by
our notion of trust as introduced in Section 5.2 implies that property P-DS holds
in BDS .

The approach is described and applied in more detail in [48]. For more infor-
mation on the used notion of trust please refer to [56,63].

6.4.4 Other properties of TLS

Note that TLS provides more properties than the ones discussed here. What we
have proven so far is that after MAC verification, the server may trust that the
MAC was generated by the client with whom it has established the TLS channel,
given the server trusts in the assumptions about the client behavior. This does not



say anything about this client’s identity yet. However, if the client authenticates
itself, TLS does not only provide authenticity of the MAC generation by some

client to the server but also allows the server to know which client generated the
MAC. In order to prove this we would need more assumptions, e.g. concerning
the server’s trust in the CA’s private key being confidential for the CA. These
assumptions would allow us to reason about the client’s certificate and signature
related to the Handshake messages and also to base the assessment of trust in the
client behavior onto the reputation it has with the CA for certificate issuing. This
is subject of future work.

6.5 Correspondence between DIPM and DSPM

We have now achieved proofs that (i) assuming that Ass.1 and property A-DI1
hold, the DIPM model provides property P-DI, and (ii) assuming that assump-
tions Ass.2 to Ass.15 hold, the DSPM model provides property P-DS. In the final
proof step, we have to show that the DIPM model is an abstraction of the DSPM
model that preserves property A-DI1, and that this property, transfered to the
DSPM model, is identical to property P-DS.

In order to show this, we use an appropriate homomorphism that maps the
actions of the TLS model onto the actions of the abstract communication model,
and then show that this homomorphism preserves trust in precede within the
phase class corresponding to establishing and closing, respectively, the abstract
communication channel.

Since the aim of this homomorphism is to relate the trust properties P-DI and
P-DS, an obvious mapping is the one that on the one hand relates the actions
relevant for the abstract and concrete precede properties, and on the other hand
relates the abstract and concrete phase classes. Hence we define the following
homomorphism:

h(establCh(P, SKmac(preMSC , rndkS))) = EstablCh(P, chk(S,C))

h(genMac(C, SKmac(preMSC , rndkS),m,

mac(SKmac(preMSC , rndkS),m))) = Send(C, chk(C, S),m)

h(verifyMac(S, SKmac(preMSC , rndkS),m,

mac(SKmac(preMSC , rndkS),m))) = Recv(S,C, chk(C, S),m)

h(closeCh(S, SKmac(preMSC , rndkS))) = CloseCh(S, chk(C, S))

(P ∈ {S,C}) and map all other actions onto the empty word ε.

In order to preserve trust in precedence, the homomorphism needs to satisfy
h(WS) ⊆ W ′

S , i.e. the image of a sequence of actions that S considers initially
possible in the DSPM model must again be considered possible by S in the DIPM
model (see [62] for a proof). This can easily be proven by induction, making use of
the fact that h(ω) 6∈ W ′

S implies h(ω) to contain an action Recv(S, chk(C, S)) hap-
pening outside the channel chk(C, S) which in turn contradicts assumption Ass.1.
Hence h preserves trust into precedence.

In [62] we have shown that with Φ({EstablCh(C, chk(C, S))}, {closeCh(S, chk(C,
S))}) a phase class in the domain independent pattern system, Φ({h−1(EstablCh(C,
chk(C, S)))}, {h

−1(CloseCh(S, chk(C, S)))}) = Φ({EstablCh(C, SKmac( preMSC ,

rndkS))}, {CloseCh(S, SKmac(preMSC , rndkS))}) is a phase class in the domain-
specific pattern system. This in turn is the phase class the precedence property



transfered by the homomorphism refers to. This implies that property A-DI1 trans-
fered to the TLS model is identical to property P-DS which concludes our proof.

7 Integration of modeling techniques and formal validation methods

In our vision, a security pattern is a subsystem exposing pattern functionalities
through interfaces and targeting security properties. It is an ideal development
context for integrating metamodeling techniques and formal approaches.

7.1 Towards a unified modeling and formal design framework for security pattern
definition

At high level of abstraction, security properties are derived from security require-
ments with clear semantics, albeit with informal description. At the semi-formal
description level, the link of these requirements to the pattern is supported by the
pattern properties documentation and categories. Security categories for instance
may be provided as external model libraries targeting specific domains. The docu-
mentation of a specific security property belonging to a specific category includes a
semantic description to support the decision of whether a specific pattern actually
fulfills this particular security property. At the formal description level, the actions
of the formal models representing DIPM and DSPM, respectively, are derived from
the patterns’ external and technical interfaces.

Hence, the proposed accompanying formalization and validation framework
that supports precise specification of patterns will be used to prove a particular
property and a particular parameter of a system. The resulting validation artifacts
may mainly (1) complete the definitions of, and (2) provide formal semantics for
the pattern interfaces and properties in the context of security. This way, validation
artifacts are linked with the patterns and can be used for pattern integration and
validation.

The domain refinement is applied during the formal validation process for
the specification and validation of patterns. As it follows the MDE paradigm for
system’s design, using patterns on different levels of abstraction, it allows for
integration into the system’s design process, hence supports this process. To this
end, the proposed representation takes into account the simplification and the
enhancement of activities such as patterns selection/search, based on the classified
properties, and pattern integration, based on a high level description of interfaces.

When developing a pattern by rewriting it using the SEPM modeling language
and its accompanying formal SeMF model, integrated modeling and formal tech-
niques will be applied to achieve an elegant correct-by-construction process. We
now present an overview of our development process. Along this description, we
will give the main keys to understand why our process is based on a general and
constructive approach. The procedure described in the following is executed un-
til the pattern subsystem is successfully validated against its provided security
properties. This may include several iterations. Once the procedure is finished,
the resulted SeMF model, including the pattern formal specification and the proof
artifacts, can be transformed to an SEPM model, with some of the artifacts just



being appended to the model in the form of guidelines as documentation for the
pattern usage. The procedure consists of the following steps:

– Step 1. Specify a pattern using the SEPM representation, as described in Sec-
tion 4.2.

– Step 2. From SEPM metamodel to SeMF. The SEPM metamodel represents
concepts of a security pattern at both domain-independent and domain-specific
level. SeMF can express structural and behavioral computing systems in the
form of agents, actions and security and dependability properties. These con-
cepts can be used to represent similar concepts of the SEPM metamodel such
as using actions to express functions calls of the pattern’s interfaces, prop-
erties and assumptions to express pattern’s properties etc. The transforma-
tion/mapping from an SEPM model to an SeMF model is generic and al-
lows to transform each interface of the metamodel to a set of actions, a func-
tion call to an action with the corresponding signature, and the properties to
the corresponding SeMF properties (auth, precede, conf etc, see Section 5.2).
The level of details of the SeMF models follows the two levels of abstrac-
tions of the SEPM metamodel (DIPM and DSPM). For instance, the func-
tion call send(C, ch(C, rndC , preMSC , S, rndS),m,mac(preMSC , . . . ,m)) from
the SEPMmodel is transformed to action send-hs(C, tcpj , SKmac(preMSC , rndkS),

m,mac(preMSC , rndkS),m)) as part of the SeMF model.
– Step 3. Validation-Proof process. Using the generated SeMF model (as a result

of Step 2 or Step 4, see below) as input, we start the validation-proof process
in the SeMF framework to produce a first assessment on the validity of the
pattern specification against its security and dependability properties.
(i). If there exists such a proof, and the formal specification is an extended
version of the one generated from the semi-formal one (Step 2 or Step 4), the
proof process stops, and the procedure is continued with Step 5.
(ii). Otherwise, the procedure is continued with Step 4.

– Step 4. The proof and specification process continues (Finding issues). If the
proof fails and reasons for this can be found, the description of interfaces and
the properties have to be completed/modified. In Section 6.2, when trying to
prove the first version of the DIPM pattern, we have already shown a proof
that failed and gave rise to a change in the abstract interface specification.
Another possible proof failure could be caused by modeling the server’s public
key by PuK instead of PuKS , with the argument that there is only one server
involved in our model. However, in the induction step of the proof, part (c), we
need to deduce that the action of encrypting the premaster secret reveals this
secret only to the server. This implies that the client does not use any other
agent’s public key for encryption which is expressed by Ass.14. However, not
being able to distinguish the server’s public key from any other public key that
might exist in the system would not allow to express this assumption, hence
the need to change the interface specification accordingly.

– Check if the description of actions’ signatures and their use in the spec-
ification of the basic SeMF properties are appropriately representing the
formal definition. For instance, a function call from SEPM model may need
an additional parameter.

– Check if the formalized security properties are an appropriate refinement
of the semantics of the formal ones.



After having regenerated the SeMF model, the procedure resumes with Step 3.
– Step 5. From SeMF to SEPM metamodel. To perform this transformation

we require the user to analyze the proof and extract information about all
the necessary interface’s functions calls and security properties from actions’
signatures and assumptions from the SeMF model. This information will be
used to instantiate SEPM concepts to improve the corresponding SEPMmodel.
Note, however, that this transformation is quite restricted and does not support
full SeMF notations and expressiveness.

In the following, we will deal with examples on how to derive guidelines to cover
the non-captured information, lost during the SeMF to SEPM transformation, to
assist the developer in correctly using the validated patterns.

When using the pattern, an application developer will be concerned with the
security requirements expressed in terms of the external interface, i.e. in terms
of the function calls used by the application. So any formal proof needs to refer
to these function calls. On the other hand, the solution described in a respective
DSPM pattern must be modeled in terms of refined function calls. Stored in a
repository, validated security patterns are then made available to be integrated
into an MDE process to develop secure applications for various different domains.
Beyond this, we store in the repository associated validation artifacts i.e. properties
and assumptions. At this point, we propose a set of guidelines for how to correctly
use the validated patterns.

Intuitively, we propose to handle the assumptions that the proof is based on as
a set of constraints that need to be satisfied in order for the pattern and the solution
it specifies to provide the proven pattern properties in terms of its interfaces. In
other words, we execute the different steps of the proof and the related assumptions
as requirements on the external and technical interfaces.

7.2 Revisiting the motivating example

In order to prove for example that the TLS handshake results in authentic shared
secrets for both the client and the server, we need to assume that both own the
authentic public key of the certification authority. We now exemplarily introduce
some constraints derived from the assumptions used in the proof of the TLS Hand-
shake that the application developer needs to verify in order to ensure that the
pattern used indeed provides the required authenticity and trust properties:

– Implementation of sender and receiver (i.e. client and server) application enti-
ties. The sender application entity must be implemented adhering to assump-
tion Ass.14 which states that the client does not encrypt the premaster secret
with two different public keys (it might encrypt it twice using the same key).
The receiver application entity must be implemented in compliance with as-
sumption Ass.1, i.e. must not accept a message after having closed the respec-
tive channel.

– Key Handling. The HMAC algorithm works with shared secrets. These shared
secrets must be deployed in such a way that they are only known to the sender
and the receiver application entities (see Ass.12, Ass.6). Further, it must be
assured that the receiver will not use the shared secret of the sender to compute



HMACs as expressed through Ass.9. This also means that the same shared
secret must not be used for bi-directional transmissions.

– Random number generation. The sender application entity must ensure that it
uses a random number as basis for the premaster secret and that the random
number generator produces unpredictable random numbers (see e.g. Ass.4).

8 Synthesis and discussion

In this paper, we have proposed a new framework that enables the specification
and validation of domain-independent security and dependability and their cus-
tomization towards specific domains. In contrast to the informal representation of
security patterns introduced in [17], we propose two additional and complemen-
tary types of representations: a semi-formal representation through metamodeling
techniques and a rigorous formal representation through the formal Security Mod-
eling Framework SeMF. However, we keep the template elements in the form of
attributes and we deeply refine them by the definition of new concepts in order to
fit with security engineering needs.

8.1 Recapitulation and perspectives

The DIPM pattern exhibits an abstract solution without specific knowledge on how
the solution is implemented with regard to the application domain. Following an
MDE process, the domain-independent model of a pattern is then refined towards a
domain-specific level, taking into account domain artifacts, concrete elements such
as mechanisms to use, devices that are available, etc. Consequently, a security
pattern at domain-specific level contains the respective information. These two
levels of abstractions are captured using new concepts related to the different
kind of knowledge described by the pattern, rather than using existing software
constructs.

In our work, we used the MDE philosophy. We do not use the software concepts
(object or component constructs) recommended by Model-Driven Architecture
(MDA), for example. However, the SEPM language is capable to target specific
software modeling languages such as those recommended by MDA, using model
transformation techniques. Regarding the well known MDA levels (PIM and PSM),
there is an overlap between these levels and our two abstraction levels. For example,
in the Intelligent Transport Systems (ITS) domain, the ISO/IEC 15118 highly
recommends to use TLS for ensuring security properties, and we can find different
platforms supporting the respective DSPM pattern.

The documentation and implementation prototype developed in the course of
our work includes an EMF editor that can be used to specify security patterns and
allows the user to publish the patterns in a repository and to retrieve them again.
Further the editor provides a number of guidelines that will facilitate (1) the popu-
lating of the repository with further security patterns, and (2) the transformation
of the security patterns into platform dependent specifications.

Mainly, the results of our work contribute to the following:



1. Security pattern modeling framework to get a common representation of pat-
terns for several domains (1) to capture the essence of the pattern, (2) to pro-
vide enough detail to enable the usability of the pattern by a non-specialist,
(3) to provide sufficient information to be validated, (4) to provide sufficient
explanation to enable the usability of the pattern in domains other than the
one in which the pattern was defined.

2. Repository of integrated models (security patterns, resource models, trust mod-
els, engineering process models,. . . ).

3. Repository access tool allowing application designers to capitalize on the MDE
even if they are not experts in modeling.

4. Patterns are formally validated when they are saved in the repository. This for-
mal validation supports the application developer when integrating the pattern
and is thus an important means to guarantee the correctness of this step.

5. When a pattern has been formally validated, implementations with automati-
cally derived guidelines for platform dependent implementation of the patterns
will be available.

6. In order to integrate a pattern in a system (application), some significant ad-
ditional information about the pattern is required, for instance, the interfaces
and their requirements. The goal is to capture how the pattern interacts with
the system (that may include other patterns), especially when dealing with
software and hardware components.

On the other hand, the proposed pattern and property specification languages
supports the specification of security patterns and their related properties, mainly
security and resource properties. In addition to that, the languages may be used to
specify other kind of patterns. For instance, memory, concurrency and distributed
patterns [64].

In a wider scope, new requirements and their related artifacts can be addressed.
For instance integration, composition, analysis, simulation and instantiation are
important needs that we can consider in our framework to serve for systematic
construction of large complex systems with multiple concerns.

8.2 Revisiting the use case

Finally, the SCP pattern studied in this paper is very relevant for electric vehicle
connected to smart grids. Indeed, due to normative restrictions, TLS based com-
munication has to be implemented. Since this application is not dedicated to power
control systems, car makers do not use usual operating systems such as OSEK. For
telematic and infotainment applications, Linux is mainly chosen. Finally, this kind
of application is written in Java or C. In this case study, Linux and C language is
used. For the security functions, the OpenSSL library is chosen.

The SCP pattern defines internal and external interfaces. The internal inter-
faces are provided by the OpenSSL library. The external interface is related to
ISO/IEC 15118 and defines send and receive functions. In both methods, the pro-
totype is composed of client and server addresses, a MAC and a message. From the
point of view of the ISO/IEC 15118 standard, the charging spot and the electric
vehicle are respectively the server and the client.

The ISO/IEC 15118 standard only defines different messages written in XML.
In other words, the send and receive functions of the pattern are not specified at



the standard level. The developer can directly use the external interface of the
pattern and focus on the message definition. Therefore, the development cost and
the necessary expert knowledge is reduced due to the reusability of the pattern and
thus the expert knowledge. Moreover, security properties are ensured by formal
validation in the both cases.

8.3 Integrating pattern and application development

The ultimate goal of our work is to promote a correct-by-construction pattern-
based system and software security engineering approach. Depending on the level
of details the system developer starts with, he/she may use either DI or DS pat-
terns. Here we discuss briefly the interaction with and the impact on the applica-
tion development process regarding these two possibilities.

In the overall process there are three sets of the independent parallel processes:
(i) an overall functional architecture and platform development process responsi-
ble for delivering new system functionality and platforms, (ii) pattern development
processes which deliver a set of patterns that provide security and dependability
functions, and (iii) the product development process which is basically an integra-
tion process.

In the very early requirement and design phases, one important activity is to
analyze the possibility of realizing the solutions that will meet system require-
ments. In a pattern-based approach this implies that it is necessary to analyze
whether these requirements can be fulfilled by available patterns. This means that
the system developers must be aware of DI and DS patterns to use. Some extra ac-
tivities are required when system developers fail to identify appropriate DI and/or
DS patterns.

A system developer having the necessary expertise can just use the pattern
design process introduced in this paper to develop their own solutions. This also
holds in case there is no DS pattern available that specifies the security solution
to be used.

If an appropriate DI pattern is not available, one possibility that is compliant
with our pattern-based approach is to negotiate the requirements and modify them
to be able to use the existing DS patterns.

If an appropriate DI pattern as well as DS patterns are available, the system
developer needs to identify those DS patterns that indeed represent a refinement of
the DI pattern. There are again various possibilities. The system developer herself
can verify that there is a homomorphism preserving the DI pattern’s security
property and mapping the DS model onto the DI model. This may reduce to
checking some conditions to hold for the DI and DS model, respectively. To find
such conditions depends on the security property in question and is subject to
future work. Another possibility is to adapt an approach introduced by the project
SERENITY (see [65]) and include in the DS pattern another artifact that specifies
a DI pattern’s interfaces and their refinement towards those of the DS pattern.



9 Conclusion

Application developers usually do not have expertise in security and dependabil-
ity. Hence capturing and providing this expertise by way of security patterns has
become an area of research in the last years. Security patterns shall enable the
development of secure and dependable applications while at the same time liber-
ating the developer from having to deal with the technical details. Model-driven
engineering (MDE) provides a very useful contribution for the design of secure and
trusted systems, since it bridges the gap between design issues and implementation
concerns. Hence Security pattern integration has to be considered at some point
in the MDE process.

In this paper, we have proposed an approach for security pattern modeling
and validation that follows the MDE paradigm. Our approach is based on meta-
modeling techniques that allow to specify and validate security patterns at differ-
ent levels of abstraction. A security pattern at domain-independent level allows
the application developer to identify security requirements and select a respec-
tive abstract solution without specific knowledge on how the solution is designed
and implemented. Thus a DIPM pattern can easily be integrated into the over-
all abstract system specification. Following the MDE process, the system model
is then refined towards a domain-specific level, taking into account domain arti-
facts, concrete elements such as mechanisms to use, devices that are available, etc.
Consequently, a security pattern at domain-specific level contains the respective
information.

Pattern validation follows these two abstraction levels, i.e. we validate a DIPM
pattern and possible DSPM instantiations independently. However, the additional
final validation step proves that the latter is indeed a refinement of the former
which in turn proves that the overall application system indeed satisfies the secu-
rity requirements initially specified by the application developer. This process may
significantly reduce the cost of engineering the system, since it enables to address
security issues early in the system development process while at the same time
relieving the developer from the technical details.

The proposed integrated modeling and formal framework is illustrated through
an example of a secure communication pattern. By this, we point out the feasibility
and effectiveness of the proposed specification and design frameworks. The SEPM
modeling language provides an environment where a designer can model patterns
at DIPM and DSPM and the security modeling framework SeMF provides an
environment for the validation of a pattern at DIPM and DSPM levels against its
security and dependability properties.

Furthermore, we walk through a prototype as a set of Eclipse plug-ins1, as a
proof of concept. All used metamodels are specified using Eclipse Modeling Frame-
work (EMF). The approach presented here has been evaluated in the context of
the TERESA project2 resulting in the development of a repository with more than
30 security patterns. The conformance validation tool embedded in the tool suite
helps designers to rectify the problems in models and correct them with adequate
measures if such problems occur, while the manually performed formal validation
gives rise to feedback in the form of guidelines for the pattern application.

1 http://www.semcomdt.org
2 http://www.teresa-project.org/



The next step of this work consists in defining a correct-by-construction pattern-
based security engineering process. It aims at providing the correct-by-construction
integration of a design pattern into an application while offering a certain degree
of liberty to the designer using it. In order to be able to validate the integration,
we must have a formal specification of the pattern, i.e., its properties, constraints
and related validation artifacts, as input to the pattern-based development pro-
cess. Yet an important task remains to be performed when integrating a security
pattern into an application: It has to be ensured that the assumptions used for
proving the correctness of the DSPM pattern are indeed satisfied by the particu-
lar environment of the application. While so far these assumptions are specified
in terms of formal security properties, future steps consist in transforming them
into environment constraints through external model libraries (i.e., security and
resource properties).

Another objective for the near future is to provide automated tool support
for pattern-based development, preferably based on a widely known and accepted
model-based approach in industry such as UML [66]. For that, we plan to in-
vestigate the possibility to transform our design artifacts into UML and their
corresponding validation artifacts into OCL [53]. More precisely, we will on the
one hand specify sufficient conditions of language homomorphisms for preserving
further security properties (e.g. trust). On the other hand, we will investigate the
transformation of these conditions into other modeling domains. For example, we
will refine, where possible, security properties representing assumptions for pat-
terns into very basic properties and formulate these as OCL constraints referring
to a UML model of specific application domains.
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14. A. L. Guennec, G. Sunyé, J.-M. Jézéquel, Precise modeling of design patterns, in: In
Proceedings of UML’00, Springer-Verlag, 2000.

15. D.-K. Kim, R. France, S. Ghosh, E. Song, A UML-based meta-modeling language to specify
design patterns, in: Patterns, Proc. Workshop Software Model Eng. (WiSME) with Unified
Modeling Languages, 2004.

16. E. Gasparis, J. Nicholson, A. H. Eden, LePUS3: An Object-Oriented Design Description
Language, in: In: Gem Stapleton et al. (eds.) DIAGRAMS, LNAI 5223, 2008, pp. 364–367.

17. E. Gamma, R. Helm, R. E. Johnson, J.Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

18. B. P. Douglass, Real-time UML: Developing Efficient Objects for Embedded Systems,
Addison-Wesley, 1998.

19. D. Mapelsden, J. Hosking, J. Grundy, Design pattern modelling and instantiation using
DPML, in: CRPIT ’02: Proceedings of the Fortieth International Conference on Tools
Pacific, Australian Computer Society, Inc., 2002, pp. 3–11.

20. D. Serrano, A. Mana, A.-D. Sotirious, Towards Precise and Certified Security Patterns,
in: Proceedings of 2nd International Workshop on Secure systems methodologies using
patterns (Spattern 2008), IEEE Computer Society, 2008, pp. 287–291.

21. G. E. boussaidi, H. Mili, Representing and applying design patterns: what is the prob-
lem?, in: Proceedings of the ACM/IEEE 8th International Conference on Model Driven
Engineering Languages and Systems (MODELS), Springer, 2005, pp. 186–200.

22. A. Maña, E. Damiani, S. Gürgens, G. Spanoudakis, Extensions to Pattern Formats for
Cyber Physical Systems, in: Proceedings of the 31st Conference on Pattern Languages of
Programs (PLoP 14), 2014.

23. J. Jürjens, UMLsec: Extending UML for Secure Systems Development, in: Proceedings of
the 5th International Conference on The Unified Modeling Language, UML ’02, Springer-
Verlag, London, UK, 2002, pp. 412–425.

24. T. Lodderstedt, D. Basin, J. Doser, SecureUML: A UML-Based Modeling Language for
Model-Driven Security, in: Proceedings of the 5th International Conference on The Unified
Modeling Language, UML ’02, Springer-Verlag, London, UK, 2002, pp. 426–441.

25. B. Hamid, A. Radermacher, A. Lanusse, C. Jouvray, S. Gérard, F. Terrier, Designing fault-
tolerant component based applications with a model driven approach, in: IFIP Workshop
on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS 2008),
Vol. 5287 of Lecture Notes in Computer Science, Springer, 2008, pp. 9–20.

26. D. Basin, J. Doser, T. Lodderstedt, Model driven security: From UML models to ac-
cess control infrastructures, ACM Transactions on Software Engineering and Methodology
(TOSEM) 5 (1) (2006) 39–91.

27. D. Basin, M. Clavel, J. Doser, M. Egea, Automated Analysis of Security-Design Models,
Information and Software Technology 51 (2009) 815–831.

28. J. Jensen, M. G. Jaatun, Security in Model Driven Development: A Survey, in: Proceedings
of the 2011 Sixth International Conference on Availability, Reliability and Security. ARES
’11, IEEE Computer Society,, 2011, pp. 704–709.

29. L. Lucio, Q. Zhang, P. H. Nguyen, M. Amrani, J. Klein, H. Vangheluwe, Y. L. Traon,
Advances in Model-Driven Security, Advances in Computers 93 (2014) 103–152.

30. J. McDonald, N. Oualha, A. Puccetti, A. Hecker, F. Planchon, Application of EBIOS for
the risk assessment of ICT use in electrical distribution sub-stations, in: In PowerTech
(POW- ERTECH), IEEE, 2013, pp. 1–6.

31. F. Braber, I. Hogganvik, M. Lund, K. Stølen, F. Vraalsen, Model-based security analysis
in seven steps - a guided tour to the CORAS method, BT Technology Journal 25 (1)
(2007) 101–117.

32. T. Srivatanakul, J. A. Clark, F. Polack, Effective security requirements analysis: HAZOP
and use cases, Information Security, Lecture Notes in Computer Science (3225) (2004)
416–427.

33. B. Schneier, Attack Trees, Modeling Security Threats, Dr. Dobb’s Journal.
34. M. Rodano, K. Giammarc, A Formal Method for Evaluation of a Modeled System Archi-

tecture, Procedia Computer Science 20 (2013) 210–215.



35. C. E. Landwehr, Formal Models for Computer Security, ACM Computing Surveys 13
(1981) 247–278.

36. P. Devanbu, S. Stubblebine, S. S. Premkumar, T. Devanbu, Software engineering for secu-
rity - a roadmap, in: Proceedings of the Conference on The Future of Software Engineering,
ICSE ’00, ACM, 2000, pp. 227–239.

37. A. J. Lee, J. P. Boyer, L. E. Olson, C. A. Gunter, Defeasible security policy composition for
web services, in: Proceedings of the fourth ACM workshop on Formal methods in security,
ACM, 2006, pp. 45–54.

38. G. Bruns, D. S. Dantas, M. Huth, A simple and expressive semantic framework for policy
composition in access control, in: Proceedings of the 2007 ACM workshop on Formal
methods in security engineering, ACM, 2007, pp. 12–21.

39. G. Bruns, M. Huth, Access control via belnap logic: Intuitive, expressive, and analyzable
policy composition, ACM Transactions on Information and System Security (TISSEC)
14 (1) (2011) 1–27.

40. M. Burrows, M. Abadi, R. Needham, A Logic of Authentication, ACM Transactions on
Computer Systems 8.

41. L. Paulson, Proving Properties of Security Protocols by Induction, Tech. Rep. 409, Com-
puter Laboratory, University of Cambridg (1996).

42. G. Lowe, An Attack on the Needham-Schroeder Public-Key Protocol, Information Pro-
cessing Letters 56 (3) (1995) 131–133.

43. B. Roscoe, P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, The modelling and Analysis of
Security Protocols, Addison Wesley, 2000.

44. AVISPA, The HLPSL tutorial, a beginner’s guide to modelling and analysing internet
security protocols, http://www.avispa-project.org.

45. Y. Chevalier, L. Compagna, J. Cuellar, D. P. Hankes, J. Mantovani, S. Mdersheim, L. Vi-
gneron, A high level protocol specification language for industrial security-sensitive proto-
cols, in: Workshop on Specification and Automated Processing of Security Requirements
(SAPS 2004), 2004.

46. S. Gürgens, C. Rudolph, Security analysis of efficient (un-)fair non-repudiation protocols,
Formal Asp. Comput. 17 (3) (2005) 260–276.

47. S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts, R. Plaga, Security evaluation of sce-
narios based on the TCG’s TPM specification, in: J. Biskup, J. Lopez (Eds.), Computer
Security - ESORICS 2007, Vol. 4734, 2007.

48. A. Fuchs, and S. Gürgens and L. Apvrille and G. Pedroza, D3.4.3 - On-Board Architecture
and Protocols Verification, Tech. rep., EVITA-Project (2010).
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Appendix

Example of establishing a secure TLS channel. In the following, we present one
possible and desired sequence of actions of a client C and server S that result, as
we have shown in Section 6.4, in establishing a secure TLS channel. Note that the
actions need not occur in exactly this order, other orders are possible to achieve
the same result. Further, some of the actions may not be needed at all or may
be implemented differently within particular implementations. Keys to be used
for encryption for example may be passed from the calling application or may be
accessible directly. Since our proof focuses on authenticity of the client we disregard
all actions that are concerned with server authentication.

genRnd(C, rndC) The client generates a random num-
ber. We do not model implementa-
tion dependent details such as how the
client (and vice versa the server) links
random numbers to the server (client)
to establish a channel with and simply
assume this link to be provided.

send-hs(C, tcpj , rndC , info(C)) The client sends its random num-
ber and some information about the
possible algorithm and key lengths
etc. to the server, using a particular
TCP channel tcpj established for (not
yet secure) communication with the
server.

recv-hs(S, tcpj , rndC , info(C)) The server receives the client’s mes-
sage on the TCP channel tcpj .

genRnd(S, rndkS) The server generates a random num-
ber to be used subsequently to estab-
lish a session with client C.

getCert(S, cert(PrKCA, PuKS , IDS)) The server retrieves its certificate for
its public key.

send-hs(S, tcpj , rnd
k
S , cert(PrKCA, PuKS , IDS),

info(S)) The server sends its certificate and
information about the possible algo-
rithms and a request for client authen-
tication to the client on TCP channel
tcpj .

recv-hs(C, tcpj , rnd
k
S , cert(PrKCA, PuKS , IDS),

info(S)) The client receives the server’s mes-
sage on TCP channel tcpj .

getKey(C,PuKCA) The client retrieves the CA’s public
key.

verifyCert(C,PuKCA,

cert(PrKCA, PuKS , IDS)) The client verifies the server’s certifi-
cate with the CA’s public key and ex-
tracts the server’s public key.



genRnd(C, preMSC) The client generates the pre-master se-
cret.

encrypt(C,PuKS , preMSC ,

cipher(PuKS , preMSC)) The client encrypts the pre-master se-
cret using the server’s public key.

establCh(C, SKmac(rndC , preMSC , rndkS))
The client uses the three exchanged
random numbers to generate its ses-
sion key for MAC generation.

send-hs(C, tcpj , cipher(PuKS , preMSC)) The client sends the encrypted pre-
master secret to the server.

finished(C, tcpj , HMAC(preMSC , label(C), hash(m1,
m2,m3))) The client signals having finished the

TLS Handshake to the server. The
message is composed of an HMAC in-
cluding the premaster secret and the
hash of all Handshake messages ex-
cluding this finished message (denoted
by m1, . . . ,m3).

recv-hs(S, tcpj , cipher(PuKS , preMSC)) The server receives the encrypted pre-
master secret.

decrypt(S, PrKS , cipher(PuKS , preMSC))The server decrypts the premaster se-
cret.

establCh(S, SKmac(rndC , preMSC , rndkS))
The server uses the three exchanged
random numbers to generate its ses-
sion key for MAC verification.

finished(S, tcpj , HMAC(preMSC , label(S), hash(m1,
m2,m3))) The server signals having finished the

TLS Handshake to the client. The
message is composed of an HMAC in-
cluding the premaster secret and the
hash of all Handshake messages ex-
cluding this finished message.

Proof of SeBB.3

Proof Trivially, if for a specific sequence ω of actions, all agents in P\who consider
all values of par possible, then all agents in the smaller set P \ (who ∪ {Q}) still
consider all values of par possible, i.e. restricted-conf (A(par), par, who, {ω}) implies
restricted-conf (A(par), par, who ∪ {Q}, {ω}). If ω is continued by encrypting par

with an RSA public key, then the security property provided by RSA encryption
ensures that nobody but the owner of the public key can gain knowledge about
the value of par, hence restricted-conf (A(par), par, who ∪ {Q}, {ωa}) holds.

Proof of SeBB.4

Proof Let ω ∈ B and verifyMac(Q, key,m,mac(key,m)) ∈ alph(ω). Then it follows
that exists v ∈ Φ({s}, T ), x, z ∈ Σ∗ with ω = uvx and verifyMac(Q, key,m,mac(key,



m)) ∈ alph(v). Further, by the nature of the MAC algorithm, a MAC verification
action is always preceded by a MAC generation action, hence genMac(R, key,m,

mac(key,m)) ∈ alph(ω) for some R ∈ P. Since the MAC generation action in turn is
preceded by the start action s of the phase class, it follows genMac(R, key,m,mac(key,
m)) ∈ alph(v). Further, since s is the only phase class start action in ω, there is no
other word v′ contained in ω with verifyMac(Q, key,m,mac(key,m)) ∈ alph(v′).
Finally, the key key is confidential for P and Q during this phase class, thus
R ∈ {P,Q}, and since Q never itself generates a MAC before having verified it, it
follows that P has done so and, therefore, the assertion.




