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Abstract. Virtual machines (VM) are used in cloud computing environ-
ments to isolate different software. Virtualization enables live migration,
and thus dynamic VM consolidation. This possibility can be used to
reduce power consumption in the cloud. However, consolidation in cloud
environments is limited due to reliance on VMs, mainly due to their mem-
ory overhead. For instance, over a 4-month period in a real cloud located
in Grenoble (France), we observed that 805 VMs used less than 12 % of
the CPU (of the active physical machines). This paper presents a solu-
tion introducing dynamic software consolidation. Software consolidation
makes it possible to dynamically collocate several software applications
on the same VM to reduce the number of VMs used. This approach can
be combined with VM consolidation which collocates multiple VMs on
a reduced number of physical machines. Software consolidation can be
used in a private cloud to reduce power consumption, or by a client of
a public cloud to reduce the number of VMs used, thus reducing costs.
The evaluation was performed using both the SPECjms2007 benchmark
and an enterprise LAMP benchmark on both a VMware private cloud
and Amazon EC2 public cloud. The results show that our approach can
reduce the energy consumed in our private cloud by about 40 % and the
charge for VMs on Amazon EC2 by about 40.5 %.

Keywords: Cloud · Consolidation · Energy saving · Virtualization

1 Introduction

In recent years, cloud computing has emerged as one of the best solutions to
host applications for companies or individual users. For these cloud customers
(hereafter called clients), its pay-per-use model reduces the cost compared to



using internal IT resources. For cloud providers (hereafter called providers) one
of the main challenges is limiting power consumption in their data centers.
In 2010, for example, data centers consumed approximately 1.1–1.5 % of the
world’s energy [14]. Power consumption can be minimized by limiting the num-
ber of active physical machines (PM) through sharing the same PM between
several software applications and providing dynamic software consolidation (fill-
ing unused resources by grouping software). This helps to balance the variable
workload due to the departure of some software.

In this paper, we considered a SaaS/PaaS-based cloud model (e.g.
RightScale [5]). This type of cloud provides a fully customizable environment,
allowing clients, e.g. companies, to focus on applications. The cloud provider
offers a software catalogue. Clients can select an application and request its
start in a virtualized data center. The data center may belong either to the
cloud provider (private cloud), or be part of a public cloud; alternatively it can
be a mixture of the two (hybrid cloud). The cloud provider is responsible for
managing the clients’ software (scalability, highly-available, failover, etc.) while
efficiently managing resources to reduce data center costs: power consumption
when relying on its own private cloud, or resource charged for when using a
public cloud.

Advances in virtualization make transparent dynamic consolidation possible
in the cloud. Based on this technology, the cloud runs each software application
on a separate virtual machine (VM). Many studies [12,16,23] have described
algorithms providing software consolidation through the consolidation of VMs.
However, this approach is not sufficient since an infinite number of VMs cannot
be packed into a single PM, even when the VMs are underused and the PM has
sufficient computation power. Indeed, as argued by [20], VM packing is limited
by memory. In this paper, we therefore propose a solution consolidating

software onto VMs. This solution is complementary to VM consoli-

dation. Rather than dedicating one VM to each software, we propose that the
same VM be shared between several software applications. This will fill the gaps
remaining inside the VM, as mentioned earlier. This strategy also reduces

the total number of VMs. This is very important in a commercial

cloud to reduce the charge for VMs.
Software consolidation raises two main challenges that need to be addressed:

– Software isolation. Isolation ensures that if a software application fails it does
not compromise the execution of another software application, it also stops
software from “stealing” the resources allocated to another application.

– Software migration. Migration involves moving software from its current node
to another node without interrupting the service offered by the software, and
while avoiding Service Level Agreement (SLA) violations on the migrated
software.

In this paper we focus only on the live software migration and consolidation. For
software isolation, we rely on Docker [2]. We present a solution to consolidate
software on VMs (Sect. 2) based on a Constraints Programming (CP) solver.
The genericity of the solution allows the integration of a range of



live software migration mechanisms since this operation is specific to

software. We evaluated our approach using the SPECjms2007 benchmark [6]
and an enterprise Internet application benchmark (Sect. 4) in the context of a
SaaS offering messaging and Internet software on a private VMware cloud and on
the Amazon EC2 cloud. These evaluations showed that: (1) our approach results
in reduced power consumption and costs; and (2) the efficient live migration
algorithms implemented for JMS messaging and Internet web servers are viable.
For the specific workload assessed, our solution reduces the power consumption
in our private cloud by about 40 % when software consolidation is combined
with VM consolidation. Running the same workload on Amazon EC2 leads to a
reduction in VMs charged of about 40.5 %. The paper ends by presenting related
work in Sect. 5 and a conclusion is provided in Sect. 6.

2 Software Consolidation

Like VMs, software consolidation is an NP-hard [13] problem. We presents a
solution that allows software consolidation for SaaS/PaaS platform.

2.1 Solution Overview

We focus on software consolidation and migration. VM placement at start time
is part of the consolidation problem. Figure 1 presents the key components of
the system studied. Applications are isolated within VMs using Docker contain-
ers [2]. QuotaComputer determines the amount of resources required by each
application. MonitoringEngine is responsible for gathering statistics for both
VM and software from all MonitoringAgents. The ConsolidationManager imple-
ments an online, reactive consolidation algorithm which acts as an infinite loop.
It periodically:

1. Gets VMs and software status (quota consumption, which is an average of
the most recent values) from the MonitoringEngine.

2. Checks if there are applications which need more resources and provides for
them (relocation Algorithm 1).

3. Computes software assignment on VMs to minimize the number of VMs
required to support all the software running. It also computes the recon-
figuration plan (a set of software migrations) that must be performed for the
ideal assignment to be achieved (Sect. 2.2).

4. And finally, runs (through the LocalManager) the reconfiguration plan.

At the end of each loop, VMs not running any software are terminated, either
immediately in the case of a private cloud, or when its uptime is close to a
multiple of Θ (the payment time unit) in a public cloud. In the latter case, a
timer is started for each VM to be terminated so that it stops it before a new
payment time unit starts. The timer is disabled when the VM is eligible to host
a running application.

Before presenting our solution in detail, there follows a list of the notations
used:



– S= {S1,S2,...,Sm} is the set of software types offered by the cloud.
– S̄i = {Sk,...} is the set of software, instances of which are collocate-able with

an instance of Si. This can be used to protect sensitive software from other
potentially dangerous applications.

– For each VM vmi, we consider three types of resources: cpu (vmu
i ), memory

(vmm
i ) and IO bandwidth (vmo

i ).
– vm

γ
i is the cost of running the VM for a payment time unit Θ. This is con-

sidered when the SaaS/PaaS is placed on a public cloud.
– vmst

i is the start time of vmi.
– An instantiated VM is assigned an identifier (an integer). svm

i is the identifier
of the VM running software si.

– len(vmi) is the number of applications on vmi.
– Like VMware does for VMs, we consider two levels of resource reservation for

a software: the minimum quota and the maximum quota. sumin

i and sumax

i are,
respectively, the minimum and the maximum cpu (or memory or IO) quota.
The software starts with s∗min

i and increases stepwise until it reaches s∗max

i .
s∗cur

i denotes the current quota. Note that * is u, m or o.
– sT

i is the acceptable service degradation threshold defined at start time for
software si. It corresponds to its SLA.

The relocation algorithm described in Algorithm 1, checks if the current
resources available for each application are insufficient, excessive or sufficient.
If not, the software acquires more resources within its maximum quota. This
operation can cause the software to be relocated to another VM (an existing one
or a new one). On the other hand, if the software is wasting resources, its quota is
reduced; the algorithm includes a clause to avoid the frequent transitions (yo-yo
effect). The choice of the destination VM (on which software is to be relocated)
does not need to be optimal. Indeed, the consolidation manager will correct the
placement. This will be discussed in the next section, where the formalization of
the software placement problem as a Constraint Satisfaction Problem (CSP) [9]
is presented.

2.2 Software Placement as a CSP

Definition : A CSP [9], C, is a set of constraints, L, acting on a set of variables,
∆ = {A1, A2, ..., An}, each of which has a finite domain of possible values, Di.
A solution to L is an instantiation of all of the variables in ∆ such that all of
the constraints in C are satisfied.

We used the ChocoCP library [19] to solve CSP. Choco aims to minimize or
maximize the value of a single variable, while respecting a CSP definition. To
do this, it uses an exhaustive search based on a depth-first search. We used two
CSPs to resolve the consolidation problem. The first CSP was used to deter-
mine the minimum number of VMs nnew needed to run all software; we call
this the MinVMToUse problem. But nnew can be provided by several configu-
rations (software mapping onto VMs). Therefore, the second CSP chooses the
appropriate configuration and generates the reconfiguration plan to reach that



Fig. 1. Architecture of our software consolidation system

Algorithm 1. Software relocation
Begin

1: for each software si of the SaaS/PaaS do

2: for each resource type r (u, m, or o) do

3: if srcur

i
is insufficient and srcur

i
< srmax

i
then

4: Increase the quota of si

5: else

6: if srcur

i
is excessive and srcur

i
�= s

rmin

i
then

7: if The last quota decrease time is enough to avoid yo − yo effect then

8: Decrease the quota of si

9: end if

10: end if

11: end if

12: end for

13: if The actual V M of si does not have enough resources for − the new quota then

14: DestinationVM← The Best-Fit VM which can host si with its new quota
15: if DestinationV M == NULL then

16: DestinationVM←Allocate a new VM
17: else

18: Disable any timer on DestinationVM
19: end if

20: Compute the docker container for si on DestinationVM
21: Migrate si to DestinationV M
22: else

23: Update the docker container for si on its current VM
24: end if

25: end for

End



configuration; this is called the RightConfiguration problem. We modeled these
problems as a mixed-integer non-linear optimization problem. The inputs are a
list of VMs with their total resources, a list of software (for each VM) with their
current resource quota and status (service level they provide).

The MinVMToUse Problem. If no deployment request has been submitted,
the number of VMs in use after application of the ConsolidationManager should
decrease or remain the same. This should be done while avoiding resource over
commitment. This is expressed in the following inequality:

∑

sucur

j ≤ vmu
i ∧

∑

smcur

j ≤ vmm
i ∧

∑

socur

j ≤ vmo
i , (1)

where svm
j = i, ∀ V M vmi

We also allow the user to specify collocation requirements for each software. The
following equation expresses that:

| svm
i − svm

j | +Col(si, sj) �= 0, ∀ couple of software (si, sj), i �= j (2)

where Col(si, sj) =

{

1 if si and sj are collocate − able

0 otherwise

The variable X minimizing the number of VMs is defined as follows:

X =
∑

((len(vmi) == 0)?0 : 1) (3)

Speeding Up the Consolidation Process. We improved the consolidation
process to reduce the solver execution time. First, we reduced the search domain
for X by bounding it. In the best case, the minimum number of VMs is the sum of
the resource quotas needed by all the software divided by the resource capacity
of the biggest VM (we choose the most restrictive resource type). In the worst
case, there will be no consolidation. This improvement is formalized as follows:

max(

⌈

∑

sucur

i

max(vmu
j )

⌉

,

⌈

∑

smcur

i

max(vmm
j )

⌉

,

⌈

∑

socur

i

max(vmo
j)

⌉

) ≤ X ≤ n, (4)

where n is the current number of VMs.
Second, some VMs or software may be equivalent in terms of resources or

collocation constraints. If the resources offered by a VM, vmi, are insufficient to
host software sj , then they are also insufficient to host any software sk which has
the same requirements. In addition, software sj cannot be hosted by any other
VM vmk having the same characteristics as vmi. With regard to the collocation
constraint, if a VM, vmi, runs software sj which cannot be collocated with
software sk, then vmi cannot host any software of the same type as sk.



The RightConfiguration Problem. For correct configuration, the solver only
considers configurations using the number of VMs determined by the first prob-
lem. The reconfiguration operation likely to affect the software SLA is live migra-
tion. The impact of this process could be a degradation of the service offered by
the migrated software. Three factors affect live migration: network utilization,
remaining computation power on both source and destination VM, and efficiency
of the implementation of the live migration itself. Considering this, we call sI

i

the function calculating the impact of migrating software si for a given triplet
of factors. Thus, if se

i represents the current service level provided by si before
migration, then se

i *sI
i is the service level during migration. We define the cost

of migrating a software si as s∆
i = se

i − se
i ∗ sI

i . The correct configuration is the
one minimizing K,

K =
∑

s∆
i , ∀ software si to be migrated (5)

while avoiding SLA violations:

se
i ∗ sI

i < sT
i , ∀ software si to be migrated (6)

3 Use Cases

This work was conducted conjointly with two industrial groups: Scale Agent and
Eolas. The former provides an implementation of the JMS specification, while
the latter is a SaaS provider offering Internet services. We used our solution to
manage a SaaS offering both a messaging service (such as IronMQ [3]) provided
by Joram [4] software, and an Internet service based on a LAMP architecture.

Migrating a running software serving requests raises two main challenges that
we had to address:

– (C1) Avoid loss of requests and state during migration.
– (C2) Make the migrated software available and accessible on the destination

node after migration. This should be transparent for the clients.

Due to space limitation for this article, we present only the migration algorithm
for the JMS server. Joram ensures that any message will reach its addressee
within a configurable time window. We relied on this feature to complete the
initial part of the first challenge (C1). For the second part of (C1), at runtime
a Joram server keeps a persistence basis containing its entire state: processing
messages, messages in transit, and processed messages. Therefore, a Joram server
can be made available with the same state on the destination node by copying
this basis from the source node to the destination node. With regard to (C2), in
contrast to live migration of VMs, where the migrated VM keeps its IP address
on the destination node, migrating software results in a new IP address (the
IP address of the destination node). How can remote clients be transparently
informed of this new address? In our system this is resolved by forcing clients to
use the DNS name when dealing with the Joram servers. Thus, the accessibility



of the migrated server is provided by (1) dynamically updating the DNS server
and (2) rebinding the JMS client to the DNS server. This is transparent to
the client because the JMS client is implemented to automatically resolve new
addresses after several attempts.

Immediate copy of the persistence basis can have an important impact on
the service offered by the migrated Joram server when this file is very large.
To avoid this problem, we have optimized the algorithm to transmit the log
file block by block to the destination node. This optimization was inspired by
the copy-on-write mechanism used for live VM migration. We customized the
Joram implementation to dynamically integrate and evolve its state at runtime
when receiving new persistence information. A timer, which is triggered at the
beginning of the migration process, ends the copy to limit the duration of the
whole process. This optimization is currently being integrated into the official
implementation of Joram on the OW2 [4] open source platform.

4 Evaluations

We evaluated our solution to show the benefits of software consolidation on
top of VM consolidation. These benefits are shown in terms of energy and cost
savings. The efficiency and scalability of CSP-based consolidation methods were
evaluated in [10,12].

4.1 Testbed Overview

The cloud testbed integrates both a private and a public platform. Our private
cloud is a part of the Eolas data center. It is composed of 8 DELL PowerEdge
R510 equipped with Xeon E5645 2.40 Ghz processors (one with a 12-core CPU,
and the others with 8-core CPU), 32 Gb memory and 2 NICs at 1 Gbps. They
are connected through a gigabyte network switch. The virtualized layer is pro-
vided by VMware VCenter 5.1.0 (ESXi 5) with the VM consolidation module
DRS/DPM [1] enabled: a PM for the VCenter, a PM with an NFS server to
host VM images and user sessions, and 5 PMs as ESXi to host VMs. The last
PM hosts our system (including the DNS server) and the agents simulating the
Joram and web server users. The cloud provides a single type of VM: 1 vcpu
running at 2.4 GHz and 1 Gb memory. The public cloud used was Amazon EC2
in the M1, medium VM, configuration.

SPECjms2007 [6] was used to bench the Joram servers. It includes seven
interactions. Thus 7 Joram servers (7 VMs) are needed to run it. The second
use case was based on real traces of the Internet service (LAMP) offered by the
Eolas SaaS.

4.2 Power Saving in the Private Cloud

We simultaneously ran 15 SPECJms2007 and 6 LAMP scenarios (up to 37 VMs)
in two situations. In the first situation (noted WSC (With Software Consolida-
tion)) we ran the experiment with both software and VM consolidation enabled,



Fig. 2. Power saving in the private cloud: Utilization of PMs

while in the second situation (noted WOSC (WithOut Software Consolidation))
we disabled software consolidation (but maintained VM consolidation). The sce-
narios were configured to provide a varied workload over 30 h: a mix of constant,
ascending and descending phases. Figure 2 presents (1) the occupancy (in terms
of the number of VMs) of each PM in the private cloud, and (2) the number
of PMs in use during the 25 h of observation. We see that the first situation
results in 3 PMs (PM2, PM3 and PM5) being freed, while 1 PM (PM2) was
freed in the second situation. Software consolidation accelerates VM consolida-
tion. The bottom right curve in Fig. 2 shows that this improvement represents
an approximately 40 % power saving with this particular workload.

4.3 Cost Saving in a Public Cloud

We repeated the previous experiments with VMs configured to run for an hour
(before termination because they were empty) on Amazon EC2. We used M1,
medium VMs instances, which are charged at $0.120 per VM per hour. Figure 3
presents the total number of VMs used over the 25 h of observation, and the
total cost of the experiments. The number of VMs is seen to drastically decrease
thanks to software consolidation, resulting in an approximate 40.5 % saving: from
about $1300 (without software consolidation) to $800 (with software consolida-
tion).

5 Related Work

Memory Footprint Improvements. Significant research has been devoted to
improving workload consolidation in data centers. Some studies have investi-
gated reducing the VM memory footprint to increase the VMs’ consolidation,
when a VM is dedicated to a single software. Among these, memory compres-
sion and memory over commitment ([8,15,22]) are very promising. In the same



Fig. 3. Cost saving on Amazon EC2: (top) nb. of VMs per hour, (bottom) VMs charged

vein, [21] extends the VM ballooning technique to software to increase the den-
sity of software collocation on the same VM. [7] presented VSwapper, a guest-
agnostic solution to reduce the effect of memory ballooning. Xen offers what it
called “stub domain”1. This is a lightweight VM which requires very few memory
(about 32 MB) for its execution. As our solution, all these works try do mini-
mize the footprint of a VM in order to increase the number of VMs that can
be collocated on top of the same physical machine. Therefore, they result to the
same result as us in terms of energy saving. However, they do not minimize the
total number of VMs as we do in order to reduce VMs charged for the clients
when considering of a commercial cloud.

VM Consolidation Algorithms. In our previous work [23], we proposed a couple
of this sort of VM relocation and collocation algorithms. [18] treats the VMs
consolidation problem using a heuristic algorithm which minimizes the number
of live migrations in the reconfiguration plan. An SLA-aware VMs consolidation
system is presented in [11]. Like with our proposal, it formalizes the problem
of minimizing the operating cost for a private cloud while also minimizing SLA
violations for services offered by software. Our formalization can be extended
by considering this work. [17] presents a VM consolidation strategy based on a
predictive approach. Since the placement problem is NP-hard, it is not possible
to develop a solution running within an acceptable time. [24] presents DejaVu,
a consolidation system which takes into consideration the interference between

1 http://wiki.xen.org/wiki/StubDom.



consolidated VMs. Based on hardware counters, it proposes a metric for char-
acterizing workloads which are collocatable. In this paper, we do not focus on
VM consolidation. We bring the same idea at software level (software within
VMs). Therefore, any VM consolidation algorithm presented in this section can
be applied to software consolidation. In this paper, we base on a solver to resolve
the problem.

Software Consolidation. The main problem with previous solutions is that they
are limited by the footprint of the VMs consolidated (they are all operating
systems). Execution of a VM requires a set of minimum resources, even if the
application it runs is idle. Thus, we propose a solution which dynamically packs
software into VMs to effectively use the overall VM resources while respecting
the individual requirements of the different software applications. With current
knowledge, [10] is the only previous work that studies dynamic software con-
solidation on the same OS; however, it does not rely on VMs. [10] focuses on
the MySQL database software and provides a live migration algorithm for that.
This algorithm can be plugged into our framework. [10] (as well as Entropy [12])
describes a consolidation algorithm based on a CSP. Thus, no previous study
has investigated software consolidation onto VMs. In this paper, we developed a
working prototype and showed that it can achieve high VM utilization to provide
cost and power-saving benefits.

6 Conclusion

In this paper we proposed a solution to consolidate software onto VMs to reduce
power consumption in a private cloud and the number of VMs charged for in
a public cloud. We focused on the algorithms for live migration and consolida-
tion. Although the proposed solution can integrate other live software migration
algorithms, we have provided a migration algorithm for JMS messaging. The
consolidation algorithm is based on a Constraint Satisfaction Problem (CSP)
approach. Evaluations with realistic benchmarks on a messaging and web appli-
cations SaaS cloud showed that our solution (1) reduces the power consumed by
our industrial cloud partner by about 40 % when combined with VM consolida-
tion, and (2) reduces the charge for VMs used on Amazon EC2 by about 40.5 %.
Future work will include extended analysis of how best to coordinate software
consolidation on VMs with VM consolidation on physical machines in order to
further improve power gains.
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