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Abstract. Rule-based argumentation systems are developed for reasoning about

defeasible information. They take as input a theory made of a set of strict rules,

which encode strict information, and a set of defeasible rules which describe

general behaviour with exceptional cases. They build arguments by chaining such

rules, define attacks between them, use a semantics for evaluating the arguments,

and finally identify the plausible conclusions that follow from the rules.

One of the main attack relations of such systems is the so-called undercutting

which blocks the application of defeasible rules in some contexts. In this paper,

we show that this relation is powerful enough to capture alone all the different

conflicts in a theory. We present the first argumentation system that uses only un-

dercutting and fully characterize both its extensions and its plausible conclusions

under various acceptability semantics.

Keywords: Rule-based argumentation, Undercutting, Acceptability semantics.

1 Introduction

Rule-based argumentation systems are developed for reasoning about defeasible infor-

mation. As a major feature, they take as input a theory made of a set of facts, a set of

strict rules, which encode strict information, and a set of defeasible ruleswhich describe

general behaviour with exceptional cases. They build arguments by chaining such rules,

define attacks between them, use a semantics for evaluating the arguments, and finally

identify the plausible conclusions that follow from the rules. Examples of such systems

are ASPIC [2], its extended version ASPIC+ [14], Delp [8] and the system developed

in [11]. Some of these systems satisfy the rationality postulates proposed in [3]. How-

ever, the plausible conclusions of any of these systems have never been characterized.

Besides that, systems like Delp use rebuttal as attack relation between arguments.

Rebuttal captures the fact that the conclusions of two arguments are inconsistent. Sys-

tems like ASPIC [2] and Pollock’s system [13] use, in addition to rebuttal, undercut

which blocks the application of defeasible rules in particular contexts. Let us illustrate

this relation by an example borrowed from [13]. Consider the following argument a:

“The object is red (or) because it looks red (lr)”.

This argument uses of the defeasible rule lr ⇒ or (meaning that generally, if an object
looks red, then it is red). Assume now another argument b which states the following:



“The rule lr ⇒ or cannot be applied because the object is illuminated by a red
light”.

The argument b undercuts a and the conclusion (or) of a is not drawn from the theory.

Undercut deals with the exceptions of defeasible rules. Indeed, every exception of a

defeasible rule gives birth to an attack from any argument supporting the exception

toward any argument using the rule. In the example, being illuminated by a red light is

a specific case where the rule lr ⇒ or cannot be applied.
In this paper, we argue that undercut can do more than dealing with exceptions

of defeasible rules. It can also perfectly play the role of rebuttal, and deal thus with

inconsistency. The basic idea is the following: if a theory contains a defeasible rule

x ⇒ y and ¬y follows from the same theory, then the rule should be blocked. We

propose the first rule-based argumentation system that uses undercutting as its single

attack relation. We show that it satisfies the rationality postulates discussed in [3] under

naive, stable and preferred semantics. From a conceptual point of view, this system is

much simpler than existing ones that combine rebuttal and undercut. Indeed, the latter

require different variants of rebuttal for satisfying the basic postulates under different

semantics. Our system satisfies the postulates under all semantics. Moreover, restricted

rebut, one of the variants of rebuttal, is based on assumption which may appear not

intuitive. Indeed, this relation compares only the rules whose heads are inconsistent, and

neglects the remaining structures of the arguments. For instance, it considers that the

argument (x1, x1 ⇒ y1, y1 → z) attacks the argument (x2, x2 → y2, y2 ⇒ ¬z) since z
follows from a strict rule while ¬z follows from a defeasible one. Note that the converse

is not true even if the the first rule of the first argument is defeasible while that of the

second argument is strict. In our system, we do not make such assumptions. The second

main contribution of the paper consists of providing the first and full characterizations

of the extensions as well as the set of plausible conclusions of our system under naive,

stable and preferred semantics proposed in [7].

The paper is organized as follows: The next section defines the rule-based system

we are interested in. Then, we analyse its properties and characterize its extensions and

set of plausible conclusions in subsequent sections.

2 Rule-based systems

As in [1], three kinds of information are distinguished: Facts representing factual infor-

mation like ‘Tweety is a bird’, strict rules representing strict information like ‘Penguins

do not fly’ and defeasible rules describing general behavior with exceptional cases like

‘Birds fly’. In what follows, L is a set of literals, i.e. atoms or negation of atoms, rep-

resenting knowledge. The negation of an atom x from L is denoted ¬x. L′ is a set of

atoms used for naming rules. The two sets satisfy the constraint L ∩ L′ = ∅. Every
rule has a single name and two rules cannot have the same name. Throughout the paper,

rules are named r, r1, r2, . . . . The function Rule(ri) returns the rule whose name is ri.

Facts are elements of L.

Defeasible rules are of the form x1, . . . , xn ⇒ x and x, x1..., xn are literals in L.



Strict rules are of the form x1, . . ., xn → x where x1, . . ., xn are literals of L and
{

x ∈ L or

x ∈ L′ and Rule(x) is defeasible.

Note that the names of rules cannot appear in bodies of (strict or defeasible) rules.

This means that it is not possible to represent information of the form “if rule r is

applied (or is blocked), then y holds”. Moreover, strict rules cannot be blocked. By

default, any defeasible rule can be applied, unless explicitly mentioned in the language

by strict rules x1, . . ., xn → x with x ∈ L′. Such a rule is read as follows: If x1, . . . , xn

hold, then the defeasible rule x is always not applicable.

Definition 1 (Theory). A theory is a triple T = (F ,S,D) where F ⊆ L is a set of

facts and S ⊆ L′ (respectively D ⊆ L′) is a set of strict (respectively defeasible) rules.

Notations: For each rule x1, . . . , xn → x (as well as x1, . . . , xn ⇒ x) whose name is r,
the head of the rule is Head(r) = x and the body of the rule is Body(r) = {x1, . . . , xn}.
Let T = (F ,S,D) and T ′ = (F ′,S ′,D′) be two theories. We say that T is a sub-

theory of T ′, written T ⊑ T ′, iff F ⊆ F ′ and S ⊆ S ′ and D ⊆ D′. The relation ❁

is the strict version of ⊑ (i.e., it is the case that at least one of the three inclusions is

strict). Finally, Defs(T ) = D.
Let us now show how new information is produced from a given theory. This is

generally the case when (strict and/or defeasible) rules are fired in a derivation schema.

Definition 2 (Derivation schema). Let T = (F ,S,D) be a theory and x ∈ L ∪ L′. A

derivation schema for x from T is a finite sequence d = 〈(x1, r1), . . . , (xn, rn)〉 s.t.

xn = x

for i = 1 . . . n,
xi ∈ F and ri = ∅, or

ri ∈ S ∪ D and Head(ri) = xi and Body(ri) ⊆ {x1, .., xi−1}

Seq(d) = {x1, . . . , xn}.
Facts(d) = {xi | i ∈ {1, . . . , n}, ri = ∅}.
Strict(d) = {ri | i ∈ {1, . . . , n}, ri ∈ S}.
Def(d) = {ri | i ∈ {1, . . . , n}, ri ∈ D}.
CN(T ) denotes the set of all literals that have a derivation schema from T .

It is clear from the definition that CN is monotonic.

Example 1 Let T1 = (F1,S1,D1) be a theory such that F1 = {p, b}, S1 = {(r1) p →
¬f} and D1 = {(r2) b ⇒ f}. From T1, we have the following minimal derivations:

d1 = 〈(p, ∅)〉

d2 = 〈(b, ∅)〉

d3 = 〈(p, ∅), (¬f, r1)〉

d4 = 〈(b, ∅), (f, r2)〉



A notion of consistency and another of coherence are associated with this logical

language.

Definition 3 (Consistency–Coherence). A set X ⊆ L is consistent iff ∄x, y ∈ L such

that x = ¬y. It is inconsistent otherwise.
A theory T = (F ,S,D) is consistent iff CN(T ) is consistent. It is coherent iff CN(T ) ∩
D = ∅.

The set of strict rules should be closed under transposition. This is required for

ensuring the rationality postulates proposed in [3].

Definition 4 (Closure under transposition). Let S be a set of strict rules. For all rule

r = x1, . . . , xn → x with x ∈ L, r′ is a transposition of r iff r′ = x1, . . ., xi−1, ¬x,
xi+1, . . ., xn → ¬xi for some 1 ≤ i ≤ n.
We define Clt(S) as the minimal set such that:

S ⊆ Clt(S), and

If r ∈ Clt(S) and r′ is a transposition of r then r′ ∈ Clt(S).

We say that S is closed under transposition iff Clt(S) = S.

Throughout the paper, we will consider undercut for capturing all the possible con-

flicts between arguments. Thus, undercut will be used both for blocking general rules in

presence of exceptions of such rules, and also for handling inconsistency. For that pur-

pose, the theory should be closed, that is for each defeasible rule r, the theory should
contain the strict rule ¬Head(r) → r. This closure captures the fact that Head(r) and
¬Head(r) cannot hold at the same time.

Definition 5 (Closed theory). A theory T = (F ,S,D) is closed iff

S is closed under transposition, and

for all r = x1, . . . , xn ⇒ x ∈ D, ¬x → r ∈ S.

Example 1 (Cont) The closed version of T1 is T ′
1 = (F1,S ′

1,D1) such that S ′
1 =

{(r1) p → ¬f, (r3) f → ¬p, (r4) ¬f → r2}.

The backbone of an argumentation system is naturally the notion of arguments.

They are built from a closed theory using the notion of derivation schema as follows.

Definition 6 (Argument). Let T = (F ,S,D) be a closed theory. An argument defined
from T is a pair (d, x) s.t.

x ∈ L ∪ L′

d is a derivation schema for x from T

∄T ′
❁ (Facts(d), Strict(d), Def(d)) s.t. x ∈ CN(T ′)

An argument (d, x) is strict iff Def(d) = ∅.



Unlike ASPIC and ASPIC+ systems, arguments are minimal in our system. An

argument may have several sub-parts, each of which is called sub-argument.

Definition 7 (Sub-argument). An argument (d, x) is a sub-argument of (d′, x′) iff

(Facts(d), Strict(d), Def(d)) ⊑ (Facts(d′), Strict(d′), Def(d′)).

Notations: Arg(T ) denotes the set of all arguments built from theory T in the sense
of Def. 6. If a = (d, x) is an argument, Conc(a) = x and Sub(a) is the set of all its
sub-arguments. For a set E of arguments, Concs(E) = {x | (d, x) ∈ E} and Th(E) is a
theory such that:

Th(E) = (
⋃

(d,x)∈E

Facts(d),
⋃

(d,x)∈E

Strict(d),
⋃

(d,x)∈E

Def(d)).

The undercutting relation is defined as follows:

Definition 8 (Undercutting). Let T = (F ,S,D) be a closed theory and (d, x), (d′, x′) ∈
Arg(T ). (d, x) undercuts (d′, x′), denoted by (d, x) Ru (d′, x′), iff x ∈ Def(d′).

Let us illustrate this relation by some examples.

Example 1 (Cont) The set Arg(T ′
1 ) contains:

a1 : (〈(b, ∅)〉, b) a2 : (〈(p, ∅)〉, p)

a3 : (〈(p, ∅), (¬f, r1)〉,¬f)

a4 : (〈(p, ∅), (¬f, r1), (r2, r4)〉, r2)

a5 : (〈(b, ∅), (f, r2)〉, f)

a6 : (〈(b, ∅), (f, r2), (¬p, r3)〉,¬p)

a4 undercuts a5, a6 since r2 ∈ Def(d5), r2 ∈ Def(d6).

Strict arguments cannot be attacked using this relation.

Proposition 1. Let T = (F ,S,D) be a theory. For all argument a ∈ Arg((F ,S, ∅)),
∄b ∈ Arg(T ) s.t. bRua.

Throughout the paper, we study the following rule-based argumentation system.

Definition 9 (Argumentation system). An argumentation system (AS) defined over a

closed theory T = (F ,S,D) is a pair H = (Arg(T ),Ru) where Ru ⊆ Arg(T ) ×
Arg(T ).

Arguments are evaluated using extension-based semantics [7]. These semantics are

based on two key notions:

Conflict-freeness: A set E of arguments is conflict-free iff ∄a, b ∈ E s.t. aRub.

Defence: A set E of arguments defends an argument a iff for all argument b s.t.
bRua, ∃c ∈ E s.t. cRub.

Definition 10 (Semantics). Let H = (Arg(T ),Ru) and E ⊆ Arg(T ).



E is a naive extension iff it is a maximal (w.r.t. set ⊆) conflict-free set.

E is a preferred extension iff it is a maximal (w.r.t. set ⊆) conflict-free set which

defends all its elements.

E is a stable extension iff E is conflict-free and ∀a ∈ Arg(T ) \ E , ∃b ∈ E such that

bRua.

Notations: Extx(H) denotes the set of all extensions of system H under semantics x
where x ∈ {n, p, s}, n (resp. p, s) stands for naive (resp. preferred, stable). When we

do not need to refer to a particular semantics, we write Ext(H).

The extensions of a system are used for defining the plausible conclusions to be

drawn from the theory over which the system is built. A literal is a plausible conclusion

of a system iff it is a common conclusion to all the extensions.

Definition 11 (Plausible conclusions). The set of plausible conclusions of an argu-

mentation system H is Output(H) = ∅ if Ext(H) = ∅ and

Output(H) =
⋂

Ei ∈ Ext(H)

Concs(Ei) otherwise.

Example 1 (Cont) The argumentation systemH1 = (Arg(T ′
1 ),Ru) has a single stable

extensionwhich is also preferred:E = {a1, a2, a3, a4} and Output(H1) = {p, b,¬f, r2}.

3 Properties of the system

Let us now analyse the properties of the argumentation system defined in the previous

section. We show that it satisfies all the rationality postulates proposed in [3]. Indeed,

every extension (under any of the reviewed semantics) contains all the sub-arguments

of its arguments. The system is also coherent, that is it is not possible for an extension

to use a defeasible rule in one of its arguments, and at the same time to block that rule

by another argument. In addition, for preferred and stable semantics, every extension

returns a consistent set of conclusions (unless the strict part of the theory is inconsistent)

and the set of conclusions of every extension is closed under strict rules (under stable

and preferred semantics), that is it is not possible that an extension supports a conclusion

x and forgets y if x → y ∈ S.

Theorem 1. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T = (F ,S,D) s.t. Ext(H) 6= ∅. For all E ∈ Ext(H), the following hold:

Th(E) is coherent,

for all a ∈ E , Sub(a) ⊆ E ,

Under stable and preferred semantics, consistency and closure under strict rules are

also satisfied.

Theorem 2. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T = (F ,S,D) s.t. Extx(H) 6= ∅ with x ∈ {s, p}. For all E ∈ Extx(H), the
following hold:



Concs(E) is consistent iff CN((F ,S, ∅)) is consistent,

Concs(E) = CN((Concs(E),S, ∅)),

Output(H) = CN((Output(H),S, ∅)).

The following property follows from the previous theorem.

Corollary 1. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T = (F ,S,D) s.t. Extx(H) 6= ∅ with x ∈ {s, p}. Output(H) is consistent iff
CN((F ,S, ∅)) is consistent,

The previous results show that the outcomes of the argumentation system (its ex-

tensions and set of plausible conclusions) satisfy nice properties. However, they do not

say anything about the kind of conclusions the system draws from a theory. We answer

this question in the next section.

4 The outputs of the system

This section provides formal characterizations of the outputs of the system under the

three reviewed semantics. For each semantics, we characterize the extensions in terms

of sub-theories of the theory over which the system is built, delimit the number of

extensions, and fully characterize the set of plausible conclusions.

4.1 Naive semantics

A sub-theory that corresponds to a naive extension is called option and is defined as

follows:

Definition 12 (Option). An option of a closed theory T = (F ,S,D) is a sub-theory

(F ′,S ′,D′) such that

F ′ = F , S ′ ⊆ S and D′ ⊆ D

(F ′,S ′,D′) is coherent

∀r ∈ S ′ ∪D′, Body(r) ⊆ CN((F ′,S ′,D′))

∄S ′′,D′′ such that (F ′,S ′,D′) ❁ (F ′,S ′′,D′′) and (F ′,S ′′,D′′) satisfies the

previous conditions.

Opt(T ) denotes the set of options of the closed theory T .

Thus, an option is obtained by taking all the facts and a maximal (w.r.t set inclusion)

subset of (strict and defeasible) rules so that the sub-theory remains coherent and all the

added rules are applicable. Notice that no priority is given to strict rules over defeasible

ones. This is explained by the fact that naive semantics does not distinguish between

attackers and attacked arguments.



Example 2 Consider the closed theory T3 = (F3,S3,D3):

F3

{

x
y

S3







t → r2 (r4)
u → r1 (r5)
s → r3 (r6)

D3







x ⇒ t (r1)
y ⇒ u (r2)
t ⇒ s (r3)

The theory T3 has three options:

O1 = (F3, ∅, {r1, r2, r3}) CN(O1) = {x, y, t, u, s}

O2 = (F3, {r4}, {r1, r3}) CN(O2) = {x, y, t, s, r2}

O3 = (F3, {r5}, {r2}) CN(O3) = {x, y, u, r1}

Let us now establish the relationship between naive extensions of an argumentation

system and the options of the closed theory over which it is built. Each naive extension

returns one option and two naive extensions cannot return the same option.

Theorem 3. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T .

For all E ∈ Extn(H), there exists a single optionO ∈ Opt(T ) such that Th(E) =

O and Concs(E) = CN(O). We put: Option(E)
def
= O.

For all E , E ′ ∈ Extn(H), if Option(E) = Option(E ′) then E = E ′.

For all E ∈ Extn(H), E = Arg(Option(E)).

The following theorem shows that inversely, each option leads to one naive exten-

sion and two different options do not return the same naive extension.

Theorem 4. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T .

For all O ∈ Opt(T ), Arg(O) ∈ Extn(H).

For all O ∈ Opt(T ), O = Option(Arg(O)).

For all O1,O2 ∈ Opt(T ), if Arg(O1) = Arg(O2), O1 = O2.

Example 2 (Cont) The arguments built from T3 are summarized below.

a1 : (〈(x, ∅)〉, x)

a2 : (〈(y, ∅)〉, y)

a3 : (〈(x, ∅), (t, r1)〉, t)

a4 : (〈(x, ∅), (t, r1), (r2, r4)〉, r2)

a5 : (〈(y, ∅), (u, r2)〉, u)

a6 : (〈(y, ∅), (u, r2), (r1, r5)〉, r1)

a7 : (〈(x, ∅), (t, r1), (s, r3)〉, s)

a8 : (〈(x, ∅), (t, r1), (s, r3), (r3, r6)〉, r3)



Fig. 1. Graph of attacks built from the theory T3

The graph of attacks is depicted in the figure 1 below:

The argumentation system H3 = (Arg(T3),Ru) has three naive extensions E1 =
{a1, a2, a3, a5, a7}, E2 = {a1, a2, a3, a4, a7} and E3 = {a1, a2, a5, a6} which capture
the options O1, O2 and O3 respectively. Indeed, Th(E1) = O1 (resp. Th(E2) = O2,

Th(E3) = O3) and Concs(E1) = CN(O1) (resp. Concs(E2) = CN(O2), Concs(E3) =
CN(O3)).

From the previous correspondence, the number of naive extensions is delimited as

follows:

Corollary 2. LetH = (Arg(T ),Ru) be an argumentation system. It holds that |Extn(H)| =
|Opt(T )|.

The plausible conclusions of the argumentation system under naive semantics are

exactly the literals that follow from all the options of the theory over which the system

is built.

Corollary 3. Let H = (Arg(T ),Ru) be an argumentation system. Output(H) =
⋂

O∈Opt(T ) CN(O).

Example 2 (Cont)Under naive semantics, Output(H) = CN(O1)∩CN(O2)∩CN(O3) =
{x, y}.

4.2 Stable semantics

The sub-theories of a closed theory that capture stable extensions are called strong

options and are defined as follows:

Definition 13 (Strong Option). A strong option of a closed theory T = (F ,S,D) is a
sub-theory (F ′,S ′,D′) s.t.

F ′ = F , S ′ = S and D′ ⊆ D

(F ′,S ′,D′) is coherent

∀r ∈ D′, Body(r) ⊆ CN((F ′,S ′,D′))

∀r /∈ D′ we have: either r ∈ CN(F ′,S ′,D′) or ∃x ∈ Body(r) such that x /∈
CN(F ′,S ′,D′)



SOpt(T ) denotes the set of strong options of theory T .

In a strong option O = (F ,S,D′) it is not necessary that all the strict rules of

S are applicable. Let S′′ be the subset of strict rules that are applicable in O, i.e.,
S ′′ = {r ∈ S | Body(r) ⊆ CN(O)}. Then, the sub-theory O′ = (F ,S ′′,D′) is an
option of T which clearly has the same conclusions as O (i.e., CN(O) = CN(O′)). In
addition, every strict (resp. defeasible) rule r which is kept outsideO′ is not applicable

(resp. is not applicable or is such that r ∈ CN(O′)). This latter constraint does not hold
necessarily for every option. Accordingly, every strong option corresponds to a single

option but the converse is not true.

Thus, in addition to an “internal condition” (coherence) satisfied by both options

and strong options, the latter require an additional “external condition” which consists

of justifying each rule kept outside. Notice, that this idea is not new in non-monotonic

reasoning. We find it namely in the distinction between Reiter’s extensions [15] and

Lukaszewicz’s extensions [12] in default logic as well as between answer sets [10]

and ι-answer sets [9] in logic programming. Let us illustrate strong options and their
relationship with options in our running example.

Example 2 (Cont) The theory T3 has one strong option O = (F3,S3, {r2}). Note that
the only strict rule in S3 which is applicable for O is r5. If we discard from O the

remaining non-applicable strict rules, we get exactly the optionO3 (CN(O) = CN(O3)).
Note also that each rule which is not included in O3 is justified. Namely, the strict

rules r4 and r6 are note applicable (t ∈ Body(r4), t /∈ CN(O3), s ∈ Body(r6), and
s /∈ CN(O3)); the defeasible rule r1 is such that r1 ∈ CN(O3) and the defeasible rule r3
is not applicable (t ∈ Body(r3) and t /∈ CN(O3)). So O3 gives rise to a strong option

by adding all the non-applicable strict rules. This is not the case forO1 andO2. Indeed,

adding the missing strict rules to them leads to incoherent sub-theories.

It is worthy to say that a closed theory may not have strong options. This is not

surprising since as we will show, there is a bijection between the set of stable extensions

and the set of strong options. Indeed, every stable extension gives birth to a strong option

and two stable extensions cannot return the same strong option.

Theorem 5. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T s.t. Exts(H) 6= ∅.

For all E ∈ Exts(H), there exists a single strong option O ∈ SOpt(T ) s.t.

Th(E) ⊑ O and Concs(E) = CN(O). We put SOption(E)
def
= O.

For all E , E ′ ∈ Exts(H), if SOption(E) = SOption(E ′) then E = E ′.

For all E ∈ Exts(H), E = Arg(SOption(E)).

Inversely, every strong option leads to one stable extension and two strong options

cannot lead the same stable extension.

Theorem 6. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T s.t. Exts(H) 6= ∅.



For all O ∈ SOpt(T ), Arg(O) ∈ Exts(H).

For all O ∈ SOpt(T ), O = SOption(Arg(O)).

For all O1,O2 ∈ SOpt(T ), if Arg(O1) = Arg(O2) then O1 = O2.

Example 2 (Cont) Among the three naive extensions of the argumentation system H3

built from T3, the only stable extension is E3 which captures the strong options O.
Indeed, Th(E3) ⊑ O and Concs(E3) = CN(O).

We have seen so far that there is a one to one correspondence between naive (resp.

stable) extensions and options (resp. strong options). We have also shown that every

strong option is a sub-theory of one option. Thus, the number of stable extensions of a

rule-based system is delimited as follows.

Corollary 4. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T . The following holds: 0 ≤ |Exts(H)| = |SOpt(T )| ≤ |Opt(T )|.

Under stable semantics, the plausible conclusions of an argumentation system are

the literals that follow from all the strong options of the theory over which the system

is built.

Corollary 5. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T s.t. Exts(H) 6= ∅. Output(H) =
⋂

O∈SOpt(T ) CN(O).

Example 2 (Cont) O is the only strong option of T3. Thus, Output(H) = CN(O) =
{x, y, u, r1}.

Let us summarize: rule-based argumentation systems may not have stable exten-

sions in which case they miss intuitive conclusions like facts. Systems that do have

stable extensions return exactly the literals that follow from all the strong options of the

closed theory at hand.

4.3 Preferred semantics

We show next that the sub-theories that capture preferred extensions are the so-called

preferred options.

Definition 14 (PreferredOption).A preferred option of a closed theory T = (F ,S,D)
is a sub-theory (F ′,S ′,D′) s.t.

F ′ = F , S ′ = S and D′ ⊆ D

(F ′,S ′,D′) is coherent

∀r ∈ D′, Body(r) ⊆ CN((F ′,S ′,D′))

∀D′′ ⊆ D, if ∃r′ ∈ D′ such that r′ ∈ CN(F ,S,D′′) then ∃r′′ ∈ D′′ such that

r′′ ∈ CN(F ,S,D′)

∄D′′ such that D′ ⊂ D′′ and (F ′,S ′,D′′) satisfies the previous conditions.



POpt(T ) denotes the set of preferred options of theory T .

Preferred options are between options and strong options:

Every strong option of a theory T is a preferred option of T . The converse is not
true.

Every preferred option is a sub-part of an option.More precisely, for every preferred

option O = (F ,S,D′), if S ′′ is the subset of strict rules that are applicable in O,
i.e., S ′′ = {r ∈ S | Body(r) ⊆ CN(O)}, then there is a unique optionO′ such that

O′′ = (F ,S ′′,D′) ⊑ O′ and CN(O) = CN(O′′) ⊆ CN(O′).

Example 2 (Cont) Consider again the closed theory T3. There are three sub-theories
that satisfy the four first conditions of definition 14:Op0 = (F3,S3, ∅),Op1 = (F3,S3, {r2})
and Op2 = (F3,S3, {r1}). The maximal ones (that satisfy also the last condition of

definition 14) are Op1 and Op2. Notice that Op1 is exactly the unique strong op-

tion of T3. The other preferred option Op2 captures a sub-part of the option O2 =
(F3, {r4}, {r1, r3}). Indeed, by keeping in Op2 only the strict rues that are applicable
we obtain:Op′2 = (F3, {r4}, {r1}). We have : Op′2 ⊑ O2 and CN(Op2) = CN(Op′2) ⊆
CN(O2).

Now, we show that every preferred extension leads to a preferred option and two

preferred extensions cannot return the same preferred option.

Theorem 7. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T .

For all E ∈ Extp(H), there exists a single preferred option O ∈ POpt(T ) s.t.

Th(E) ⊑ O and Concs(E) = CN(O). We put: POption(E)
def
= O.

For all E , E ′ ∈ Extp(H), if POption(E) = POption(E ′) then E = E ′.

For all E ∈ Extp(H), E = Arg(POption(E)).

Inversely, every preferred option corresponds to a unique preferred extension and

two preferred options cannot return the same preferred extension.

Theorem 8. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T .

For all O ∈ POpt(T ), Arg(O) ∈ Extp(H).

For all O ∈ POpt(T ), O = POption(Arg(O)).

For all O1,O2 ∈ POpt(T ), if Arg(O1) = Arg(O2) then O1 = O2.

Example 2 (Cont) The system H3 constructed from T3 has two preferred extensions
: Ep1 = {a1, a2, a5, a6} and Ep2 = {a1, a2, a3, a4}. They capture the preferred op-
tions Op1 and Op2 respectively. Indeed, Th(Ep1) ⊑ Op1 (resp. Th(Ep2) ⊑ Op2) and
Concs(Ep1) = CN(Op1) (resp. Concs(Ep2) = CN(Op2)).

The number of preferred extensions of an argumentation system H is exactly the

number of preferred options of the theory over which the system is built.



Corollary 6. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T . It holds that |Extp(H)| = |POpt(T )|.

The plausible conclusions of an argumentation system, under preferred semantics,

are the literals that follow from all the preferred options of the theory at hand.

Corollary 7. Let H = (Arg(T ),Ru) be an argumentation system built over a closed

theory T . Output(H) =
⋂

O∈POpt(T ) CN(O).

Example 2 (Cont) Consider the theory T3. Output(H) = CN(Op1) ∩ CN(Op2) =
{x, y}.

5 Related work

There are a couple of rule-based argumentation systems in the literature. Some of them

like ASPIC and its extended version ASPIC+ are shown to satisfy the rationality pos-

tulates defined in [3], namely the consistency and closure under strict rules of their sets

of plausible conclusions. While this is testimony to some strength of these formalisms,

it does not say anything about the kind of plausible conclusions they draw from a the-

ory. Surprisingly, the outputs of these systems (their extensions and their plausible con-

clusions) have never been characterized. The authors of those systems provide only

examples to show that the outputs are meaningful. This is certainly not sufficient. Our

paper is the first that attempts a systematic study of the outcomes of rule-based systems

under naive, stable and preferred semantics. There are two notable exceptions. The first

work, done in [1], considered a fragment of our logical language and rebuttal as at-

tack relation. Blocking rules was not allowed. Extensions were characterized in terms

of sub-theories. However, some sub-theories may not have corresponding extensions.

Thus, there is no bijection between the two. Our formalism is thus more general and

our characterisations of its outcomes are more accurate since they are one-to-one cor-

respondences. The second work, done in [4], investigated the link between the logic

programming semantics and argumentation ones. The theory over which an argumenta-

tion system is built is a logic program, that is, only one type of rules is used. Thus, the

logical language is very different from ours.

In addition to the characterizations of the system’s outcomes, the other main novelty

of our paper is the exclusive use of undercut for encoding conflicts between arguments.

This relation is used in some existing systems but not alone. It is always coupled with

rebuttal which handles inconsistency. In our paper, we have shown that undercut is

powerful enough to perfectly fulfil the role of rebuttal. Moreover, the system satisfies

all the rationality postulates under any semantics while in ASPIC and ASPIC+, for

each semantics, one should use a different definition of rebuttal in order to satisfy the

postulates.

Regarding the definition of undercut, there are three proposals in the literature and

they are all equivalent. The first definition is the one followed in our paper and in [14].

The idea is to assign a name to every defeasible rule and to allow these names to be

in heads of other rules. Unlike in [14], in our paper, names of rules may only be in

heads of strict rules. The reason is that undercut shows exceptions of defeasible rules,



and exceptions are certain information. For instance, in case of penguin, the rule “birds

fly” is never applicable. The second definition, given in [13] and followed in [3], uses

an objectivation operator which transforms any defeasible rule into a literal. The latter

plays the role of the name of the rule in our system. The last definition, proposed in

[5, 6], extends the logical language by a new form of rules with which one can block

defeasible rules. Whatever the definition is, none of these systems characterized its

outcomes.
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Appendix: Proofs

Proof. of Proposition 1. Follows immediately from the fact that Def(d) = ∅ for all

(d, x) ∈ Arg((F ,S, ∅)).

Proof. of Theorem 1. Let H = (Arg(T ),Ru) be an argumentation system built over

theory T = (F ,S,D).
Coherence: Assume that Ext(H) 6= ∅ and let E ∈ Ext(H). Assume that ∃x ∈
Concs(E) ∩ Defs(Th(E)). Thus, x ∈ L′. Moreover, ∃a, b ∈ E such that Conc(a) = x
and x ∈ Defs({b}). Then, aRub. This contradicts the fact that E is conflict-free.

Closure under sub-arguments: Let E ∈ Ext(H), a = (d, x), b = (d′, x′) ∈ Arg(T )
such that a ∈ E , b /∈ E and b ∈ Sub(a).

Assume that E ∈ Exts(H). There exists c ∈ E such that cRub. Let c = (d′′, x′′).
Then, x′′ ∈ Def(d′) and thus x′′ ∈ Def(d) since Def(d′) ⊆ Def(d). Consequently,
cRua. This contradicts the fact that E is conflict-free.

Assume now that E ∈ Extn(H), then E ∪ {b} is conflicting. Then, there exists

c ∈ E such that cRub or bRuc. Assume that bRuc. Then x′ ∈ L′. Since elements of

L′ cannot be in the body of any rule then a = b, thus aRuc. This contradicts the fact
that it is conflict-free. Assume now that cRub. As above, it follows that cRua and this
contradicts the fact that E is conflict-free.

Assume now that E ∈ Extp(H). Since b /∈ E then there are two cases: i) E ∪ {b}
is conflicting, i.e., there exists c ∈ E such that cRub or bRuc. As above, we get either
cRua or aRuc. In both cases, E is not conflict-free and this contradicts the fact that it is

a preferred extension. ii) E does not defend b. Thus, there exists c = (d′′, x′′) ∈ Arg(T )
such that cRub. Then, x

′′ ∈ Def(d′) and thus x′′ ∈ Def(d) meaning that cRua. Since
E is a preferred extension ∃d ∈ E such that dRuc. Thus, E defends b.

Proof. of Theorem 2. Let H = (Arg(T ),Ru) be an argumentation system built over

theory T = (F ,S,D).
Closure under strict rules: Let E ∈ Extp(H). Assume that x ∈ CN((Concs(E),S, ∅))
and x /∈ Concs(E). Let X = {x1, . . . , xn} be the minimal for set inclusion subset

of Concs(E) such that x ∈ CN((X,S, ∅)). For each xi, there exists ai ∈ E such that

Conc(ai) = xi. There exists a minimal derivation schema for x using a1, . . . , an and

additional strict rules. Let d be that derivation. (d, x) is an argument and (d, x) /∈ E .
There are two cases: i) E ∪ {(d, x)} is conflicting, i.e, there exists b = (d′, x′) ∈ E
such that bRu(d, x) or (d, x)Rub. If bRu(d, x), then Conc(b) ∈ Def(d). However,
Def(d) = ∪Def(ai). Thus, there exists i ∈ {1, . . . , n} such that Conc(b) ∈ Def(ai),
i.e., bRuai. This contradicts the fact that E is conflict-free. If (d, x)Rub, the since E
defends its elements, ∃c ∈ E such that cRu(d, x), i.e., Conc(c) ∈ Def(d). Then, ∃ai ∈
Sub((d, x)) such that cRuai. But, ai ∈ E . ii) E does not defend (d, x). Let b ∈ Arg(T )
such that bRu(d, x). Then, Conc(b) ∈ Def(d). Then, bRai for some ai ∈ Sub((d, x))
and ai ∈ E . Since E defends its elements, then E attacks b. The same reasoning holds
for stable semantics since any stable extension is also preferred.

Consistency: Let E ∈ Extx(H) with x ∈ {p, s} and assume that Concs(E) is inconsis-
tent. Thus, ∃a, b ∈ E such that a = (d, x), b = (d′,¬x), d = 〈(x1, r1), . . . , (xn, rn)〉,
d′ = 〈(x′

1), . . . , (x
′
m, rm)〉, xn = x and x′

m = ¬x. Moreover, x,¬x ∈ L. If a



and b are both strict (i.e., Def(d) = ∅ and Def(d′) = ∅), then CN((F ,S, ∅)) is in-
consistent. Assume now that CN((F ,S, ∅)) is consistent. It follows that a or/and b
is defeasible (i.e., Def(d) 6= ∅ or/and Def(d) 6= ∅). Assume that a is defeasible.

If rn ∈ D, then ¬x → rn ∈ S (since T is closed). Since E is closed under strict

rules and ¬x ∈ Concs(E), then rn ∈ Concs(E). Thus, CN(Th(E)) ∩ Defs(Th(E)) 6=
∅. This contradicts the fact that Th(E) is coherent. Assume now that rn /∈ D. Let
ri ∈ Def(d) be such that for all j > i, rj is either a fact or a strict rule. By def-

inition of a derivation, rn ∈ S. Let rn = y1, . . . , yl → x. Since S is closed un-

der contraposition, then for all 1 ≤ j ≤ l, y1, . . . , yj−1, yj+1, . . . , yl → ¬yj ∈ S.
Moreover, there exists a minimal sub-derivation dj of d for each yj . Thus, Xj =
〈d1, dj−1, dj+1, . . . , dl, d

′, (¬yj , y1, yj−1, yj+1, . . . , yl → ¬yj ,¬yj)〉 is a derivation
of ¬yj . Since arguments are minimal, then (Xj ,¬yj) ∈ Arg(T ). Note that (di, yi) ∈
Sub(a). Since H is closed under sub-arguments, then (di, yi) ∈ E and thus yi ∈
Concs(E). Since H is closed under strict rules, ¬yj ∈ Concs(E) for all j = 1, . . . , l.

The same reasoning holds for each strict rule y1, . . . , yl → y between ri and rn.
Indeed, ¬yi ∈ Concs(E) for all i = 1, . . . , l. By definition of derivation, there exists
a strict rule r after ri such that Head(ri) ∈ Body(r) thus ¬Head(ri) ∈ Concs(E).
Thus, ¬Head(ri) → ri ∈ S. Since H is closed under strict rules, ri ∈ Concs(E). But,
ri ∈ Defs(E) (since ri ∈ Def(d)). This contradicts the fact that Th(E) is coherent.

Proof. of Corollary 1. LetH = (Arg(T ),Ru) be an argumentation system built over a

closed theory T = (F ,S,D) s.t. Ext(H) 6= ∅. Assume that Output(H) is inconsistent
then ∃x,¬x ∈ Output(H). Thus, for all E ∈ Ext(H), x,¬x ∈ Concs(E). From
Theorem 1, this is only possible if CN((F ,S, ∅)) is inconsistent.

Since CN is monotonic, Output(H) ⊆ CN(Output(H)). Let x ∈ CN(Output(H))
and assume that x /∈ Output(H), thus, there exists E ∈ Ext(H) such that x /∈
Concs(E). This contradicts Theorem 1.

Proof. of Theorem 3. LetH = (Arg(T ),Ru) be a system built over a theory T .

Let E ∈ Extn(H) and let O = Th(E). It is clear that O is uniquely deter-

mined from E . Let us show that O is an option. O = (F ′,S ′,D′) such that

F ′ =
⋃

(d,x)∈E
Facts(d), F ′ =

⋃

(d,x)∈E
Strict(d) and D′ =

⋃

(d,x)∈E
Def(d).

It is obvious that S ′ ⊆ S and D′ ⊆ D. Now, for every x ∈ F there is an

argument (〈(x, ∅)〉 , x) ∈ Arg(T ). By definiteion of undercutting, such argu-
ment has no conflict with any other argument. Thus, all arguments of this form

belong to every naive extension, i.e., F ′ = F .

For the sake of contradiction, suppose that ∃x ∈ CN(F ′,S ′,D′) s.t. x ∈ D′. Let

d be a minimal derivation of x inO. Thus (d, x) is an argument of E . since x ∈
D′ then, from the definition of Th(E), x must be used in at least an argument

of E , say (d′, x′), i.e., x ∈ d′. Therefore, (d, x)Ru(d
′, x′). Contradiction with

conflict-freeness of E .

Let r ∈ S′ ∪D′. r is used in at least one argument, say a, of E . So, a has a sub-
argument b=(〈(x1, r1), . . . (xn, rn)〉 , xn) with rn = r and xn = Head(r). By
closeness ander sub-arguments, b is also an argument of E . From the definition

of derivation schema, for every x ∈ Body(r), x = xi for some i s.t. 1 ≤ i < n.



Thus, there is a sub-argument of b, and hence an argument in E and a derivation

in O, for every x ∈ Body(r). This means that for every x ∈ Body(r), x ∈
CN(O), i.e., body(r) ⊆ CN(O).

Suppose that ∃S ′′, D′′ s.t. (F ′,S ′,D′) ❁ (F ′,S ′′,D′′) and (F ′,S ′′,D′′) sat-
isfies the previous conditions. Every rule r ∈ (S ′′ ∪ D′′) \ (S ′ ∪ D′), there is
at least an argument a = (d, x) s.t. r ∈ Strict(d) ∪ Def(d). Clearly, a /∈ E .
But from the coherence of (F ′,S ′′,D′′) it must be the case that ∄b ∈ E s.t.

aRub or bRua. Indeed, suppose for example that aRub and that b = (d′, x′),
then x ∈ d′. That is, x ∈ CN(F ′,S ′′,D′′) and x ∈ D′′ which contradicts the

coherence of (F ′,S ′′,D′′). We can show in a similar way that it must not be

the case that bRua. But, it this case E ∪ a is conflict-free. Contradiction with
the fact that E is a naive extension.

Let E , E ′ ∈ Extn(H) and Option(E) = Option(E ′). Let us show that E ⊆ E ′. Let

a = (d, x) ∈ E . Then, d is a derivation for x in Option(E). Suppose that a /∈ E ′.

Then d is not a derivation for x in Option(E ′). Contradiction, since Option(E) =
Option(E ′). We show similarly that E ′ ⊆ E .

Let E ∈ Extn(H). Since Option(E) = Th(E) and from the definition of func-

tions Th and Arg it is obvious that E ⊆ Arg(Option(E)). Now let a = (d, x) ∈
Arg(Option(E)). This means that a = (d, x) is constructed from Option(E). So,
x ∈ CN(Option(E)) and Def(d) ⊆ Defs(Option(E)). Suppose that a /∈ E .
Since E is a naive extension then there is b = (d′, x′) ∈ E such that aRub or
bRua. From b ∈ E we easily deduce that x′ ∈ CN(Option(E)) and Def(d′) ⊆
Defs(Option(E)). But then, from aRub or bRua, Option(E) must be incoherent.
Contradiction with the fact that Option(E) is an option.

Proof. of Theorem 4. LetH = (Arg(T ),Ru) be a system built over a theory T .

LetO = (F ,S ′,D′) ∈ Opt(T ) and let E = Arg(O). We prove that E is a maximal
conflict-free set of Arg(T ).
Suppose that there is two arguments a = (d, x) and b = (d′, x′) in E s.t. aRub, i.e.,
x ∈ Def(d′). But since d and d′ are derivation schemas for x and x′ respectively

in O we have: x ∈ CN(O) and Def(d′) ⊆ D′, so x ∈ D′. Contradiction with the

coherence of optionO. E = Arg(O) is conflict-free.
Now, suppose that E is not maximal. Thus there is E ′ ⊆ Arg(T ) s.t. E ⊂ E ′ and

E ′ is a naive extension of H. From theorem 3 Option(E ′) = Th(E ′) = O′ is an

option of T . Let O′ = (F ,S ′′,D′′). Since all the arguments that uses exclusively
rules from S ′ ∪ D′ belong to E , every argument E ′ \ E uses at least a rule r which
is not in S ′ ∪ D′. So, either (S ′ ⊂ S ′′) or (D′ ⊂ D′′) or both, i.e, O ❁ O′.

contradiction with the fact thatO is an option of T .

Let O = (F ,S ′,D′) ∈ Opt(T ) and let Option(Arg(O)) = (F ′′,S ′′,D′′). F ′′ =
F follows from the fact that Arg(O) contains every argument (〈x, ∅〉 , x). Let x ∈
S ′′ (resp. x ∈ D′′). x is used in at least an argument of Arg(O), so x ∈ S ′ (resp.

x ∈ D′). Thus we have: S ′′ ⊆ S ′ and D′′ ⊆ D′. Inversely, let x ∈ S ′(resp.

x ∈ D′), since Body(x) ⊆ CN(O) (from the definition of an option), x must be

used in at least one argument of Arg(O). Thus x ∈ F ′′ (resp. x ∈ D′′). So, F ′ ⊆



F ′′ and D′ ⊆ D′′. In summary, F = F ′′, S ′ = S ′′ and D′ = D′′, i.e., O =
Option(Arg(O)).

Let O1 = (F ,S ′
1,D

′
1) and O2 = (F ,S ′

2,D
′
2) be two options. Suppose that O1 6=

O2, i.e., either S
′
1 6= S′

2 or D′
1 6= D′

2 or both. Suppose that S′
1 6= S′

2. It means

that either there is x s.t. x ∈ S ′
1 and x /∈ S ′

2 or there is x s.t. x ∈ S ′
2 and x /∈ S ′

1.

Suppose the first case. Then, x is used in at least an argument of Arg(O1) and never
used in Arg(O2). So, Arg(O1) 6= Arg(O2). By a similar reasoning, we obtain the
same conclusion for the other case (there is x s.t. x ∈ S ′

2 and x /∈ S ′
1) and for the

case of defeasible rules.

Proof. of Corollary 2. Follows immediately from the bijection between options and

naive extensions(theorems 3 - 4).

Proof. of Corollary 3. Follows immediately from the bijection between options and

naive extensions(theorems 3 - 4).

Proof. of Theorem 5. LetH = (Arg(T ),Ru) s.t. Exts(H) 6= ∅.

Let us show that for all E ∈ Exts(H), there is a uniqueO ∈ SOpt(T ) s.t. Th(E) ⊑
O and Concs(E) = CN(O).
Let E ∈ Exts(H) and let Th(E) = (F ′,S ′,D′). We can show that F ′ = F in a

similar way as in Theorem 3, first point. We take O = (F ,S,D′) (we complete
S ′ by the remaining strict rules). Clearly, O is uniquely determined from E . We

have that Concs(E) = CN(Th(E)). Let us show that: CN((F ,S,D′)) = CN(Th(E)).
To do so, it suffices to show that every rule of r ∈ S \ S ′ is not applicable in

(F ,S ′,D′). Suppose for the sake of contradiction that there is r ∈ S \ S ′ s.t. r
is applicable in (F ,S ′,D′). Thus, there is a minimal derivation in (F ,S ′,D′) for
Head(r)) using r as a last rule: 〈d, (x, r)〉 s.t. x = Head(r), Def(d) ⊆ D′ and

Strict(d) ⊆ S′. Thus, a = (〈d, (x, r)〉 , x) is an argument outside E but since

E is a stable extension, there is b ∈ E s.t. bRua. So, there is a sub-argument of
a: a′ = (〈d′, (x′, r′)〉 , x′) with x′ ∈ D′ and b = (d′′, x′). However since a′ ∈ E
(because it uses only rules from S′ ∪ D′), this means that E is not conflict-free.

Contradiction. Now let us prove that O = (F ,S,D′) is a strong option.
It is obvious that D′ ⊆ D

Similar to the proof of point 2 in Theroem 3.

Similar to the proof of point 3 in Theroem 3.

Suppose that ∃r /∈ D′ s.t. r /∈ CN(F ,S,D′) and ∀x ∈ Body(r), x ∈ CN(F ,S,D′).
Let Body(r) = {x1, . . . , xk} and Head(r) = y. Since for 1 ≤ i ≤ k,
xi ∈ CN(F ,S,D′), then there is an argument ai = (di, xi) ∈ E (1 ≤ i ≤ k)
for each xi. Thus, we can construct an argument a for y using r as last rule,
i.e., a = (〈d, (y, r)〉 , y) where Facts(d) =

⋃

i Facts(di), Strict(d) =
⋃

i Strict(di) and Def(d) =
⋃

i Def(di). Since r /∈ D′, a /∈ E , so there

is b = (d′, x′) ∈ E s.t. bRua, i.e., x
′ ∈ Def(d) ∪ {r}. Sincd r /∈ CN(F ,S,D′),

it cannot be the case that x′ = r, thus x′ ∈ Def(d), so x′ ∈ Def(di) for some i
s.t. 1 ≤ i ≤ k. This means that bRuai which contradicts the conflict-freeness
of E .



Let E , E ′ ∈ Exts(H) and SOption(E) = SOption(E ′). Let us show that E ⊆ E ′.

Let a = (d, x) ∈ E . Then, d is a derivation for x in SOption(E). Suppose that
a /∈ E ′. Then d is not a derivation for x in SOption(E ′). Contradiction, since
SOption(E) = SOption(E ′). We show similarly that E ′ ⊆ E .

Let E ∈ Exts(H). Since Th(E) ⊑ SOption(E) and from the definition of func-

tions Th and Arg it is obvious that E ⊆ Arg(SOption(E)). Now let a = (d, x) ∈
Arg(SOption(E)). a = (d, x) is constructed from SOption(E). So, Def(d) ⊆
Defs(SOption(E)). Suppose that a /∈ E . Since E is a stable extension then there

is b = (d′, x′) ∈ E such that bRua. From b ∈ E we easily deduce that x′ ∈
CN(SOption(E)). But then, from bRua, SOption(E) must be incoherent. Contra-
diction with the fact that SOption(E) is a strong option.

Proof. of Theorem 6. LetH = (Arg(T ),Ru) s.t. Exts(H) 6= ∅.

Let O = (F ,S,D′) ∈ SOpt(T ) and let E = Arg(O). We prove that E is conflict-

free and ∀b ∈ Arg(T ) \ E , ∃a ∈ E s.t. aRub.
Suppose that there is two argument a = (d, x) and b = (d′, x′) in E s.t. aRub, i.e.,
x ∈ Def(d′). But since d and d′ are derivation schemas for x and x′ respectively

in O we have: x ∈ CN(O) and Def(d′) ⊆ D′, so x ∈ D′. Contradiction with the

coherence of strong optionO. So, E is conflict-free.

Now, let us show that: ∀b ∈ Arg(T ) \ E , ∃a ∈ E s.t. aRub. Let b = (d, x) /∈ E .
Clearly, d uses at least a defeasible rule r (r ∈ Def(d)) s.t. r /∈ D′. From the

definition of a strong option, we have two possible cases. The first case is that

r ∈ CN(F ,S,D′), so there is a minimal derivation d′ for r in O, i.e., a = (d′, r)
is an argument of E . Clearly aRub since r ∈ Def(d). The second case is that

∃x1 ∈ Body(r) s.t. x1 /∈ CN(O). Let b1 = (d1, x1) be a sub-argument of b. Since
x1 /∈ CN(O), there is no derivation of x1 in O, so b1 /∈ E . Thus, d1 uses at least
a defeasible rule r1 (r1 ∈ Def(d1)) s.t. r1 /∈ D′. Again, from the definition of a

strong option, we have two possible cases. The first case is that r1 ∈ CN(F ,S,D′),
so there is a minimal derivation d′′ for r1 in O, i.e., a = (d′′, r1) is an argument
of E . Clearly aRub1 since r ∈ Def(d1), hence , so aRub. The second case is that
∃x2 ∈ Body(r1) s.t. x2 /∈ CN(O). Let b2 = (d2, x2) be a sub-argument of b1. Since
x2 /∈ CN(O), there is no derivation of x2 in O, so b2 /∈ E . Thus, d2 uses at least a
defeasible rule r2 (r2 ∈ Def(d2)) s.t. r2 /∈ D′, an so one. Since the set of arguments

Arg(T )\E is finite, it must exist a sub-argument bk of b such that aRubk and hence
aRU b for some a ∈ E .

Let O = (F ,S,D′) ∈ SOpt(T ) and SOption(Arg(O)) = (F ′′,S ′′,D′′). F ′′ =
F follows from the fact that Arg(O) contains every argument (〈x, ∅〉 , x). S ′′ = S
follows from the definition of SOption. Let us show that D′′ = D′. Let x ∈ D′′.

x is used in at least an argument of Arg(O), so x ∈ D′. Thus we have: D′′ ⊆ D′.

Inversely, let x ∈ D′, since Body(x) ⊆ CN(O) (from the definition of a strong

option), xmust be used in at least one argument of Arg(O). Thus x ∈ D′′. So,D′ ⊆
D′′. In summary, F = F ′′, S = S ′′ and D′ = D′′, i.e., O = SOption(Arg(O)).

Let O1 = (F ,S1,D′
1) and O2 = (F ,S2,D′

2) be two strong options. Suppose that
O1 6= O2, i.e., D

′
1 6= D′

2. It means that either there is x s.t. x ∈ D′
1 and x /∈ D′

2 or

there is x s.t. x ∈ D′
2 and x /∈ D′

1. Suppose the first case. Then, x is used in at least



an argument of Arg(O1) and never used in Arg(O2). So, Arg(O1) 6= Arg(O2). By
a similar reasoning, we obtain the same conclusion for the other case (there is x s.t.
x ∈ D′

2 and x /∈ D′
1).

Proof. of Corollary 4. Follows immediately from the bijection between strong options

and stable extensions(theorems 5 - 6).

Proof. of Corollary 5. Follows immediately from the bijection between strong options

and stable extensions(theorems 5 - 6).

Proof. of Theorem 7. LetH = (Arg(T ),Ru) s.t. Extp(H) 6= ∅.

Let us show that for all E ∈ Extp(H), there is a uniqueO ∈ POpt(T ) s.t. Th(E) ⊑
O and Concs(E) = CN(O).
Let E ∈ Extp(H) and let Th(E) = (F ′,S ′,D′). We can show that F ′ = F in a

similar way as in Theorem 3, first point. We take O = (F ,S,D′) (we complete
S ′ by the remaining strict rules). Clearly, O is uniquely determined from E . We

have that Concs(E) = CN(Th(E)). Let us show that: CN((F ,S,D′)) = CN(Th(E)).
To do so, it suffices to show that every rule of r ∈ S \ S ′ is not applicable in

(F ,S ′,D′). Suppose for the sake of contradiction that there is r ∈ S \ S ′ s.t. r
is applicable in (F ,S ′,D′). Thus, there is a minimal derivation in (F ,S ′,D′) for
Head(r)) using r as a last rule: 〈d, (x, r)〉 s.t. x = Head(r), Def(d) ⊆ D′ and

Strict(d) ⊆ S ′. Thus, a = (〈d, (x, r)〉 , x) is an argument outside E . a does not
attack any argument of E . Indeed, if we suppose the contrary then, since E is a

preferred extension, there is b ∈ E s.t. bRua. So, there is a sub-argument of a:
a′ = (〈d′, (x′, r′)〉 , x′) with x′ ∈ D′ and b = (d′′, x′). However since a′ ∈ E
(because it uses only rules from S′ ∪ D′), this means that E is not conflict-free

which contradicts the fact that E is a preferred extension. So E ∪ {a} is conflict

free. Moreover, for every c ∈ Arg(T ) \ (E ∪ {a}), if cRua then there is a sub-

argument of a: a′ = (〈d′, (x′, r′)〉 , x′) with x′ ∈ D′ and c = (d′′, x′). However
since a′ ∈ E (because it uses only rules from S′∪D′) and E is a preferred extension,
then there is a′ ∈ E such that a′Ruc. This means that E ∪ {a} is conflict-free and
defends all its elements. Contradiction with the fact that E is maximal. Now let us

prove that O = (F ,S,D′) ∈ POpt(T ).
It is obvious that D′ ⊆ D

Similar to the proof of point 2 in Theroem 3.

Similar to the proof of point 3 in Theroem 3.

∀D′′ ⊆ D, if ∃r′ ∈ D′ s.t. r′ ∈ CN(F ,S,D′′) then there is a minimal derivation
d′ for r′ in (F ,S,D′′), i.e., (d′, r′) is an argument of Arg(T ). Since r′ ∈ D′ ,

there in an argument a = (d, x) ∈ E s.t. r′ ∈ Def(d) and we have bRaa. Since
E is a preferred extension, there is an argument c = (d′′, x′′) ∈ E s.t. cRub,
i.e., there is a derivation d′′ for r′′ in (F ,S,D′) s.t. d′′ ∈ Def(d′). This means
that r′′ ∈ CN(F ,S,D′) and r′′ ∈ D′′.

Suppose that there is D′′ s.t. D′ ⊂ D′′ and D′′ satisfies the previous condi-

tions. Let O′ = (F ,S,D′′) and E ′ = Arg(O′). The conflict-freeness of E ′

follows from the fact that O′ is coherent. Let b = (d, x) be an argument of



Arg(T ) \ E ′ s.t. there is an argument a = (d′, x′) ∈ E ′ and bRua. Thus,
x ∈ CN(F ,S, Def(d)) and x ∈ Def(d′), i.e. x ∈ D′′. But, from the fourth

condition of preferred options, there is r′′ ∈ Def(d) such that r′′ ∈ CN(O). So,
there is an argument a′ ∈ E ′ such that a′Rub. Consequently, E

′ is a preferred

extension and E ⊂ E ′ which contradicts the fact that E is a preferred extension.

We show by a similar way as in the second point of Theorem 5 that: for all E , E ′ ∈
Extp(H) if POption(E) = POption(E ′), E = E ′.

Let E ∈ Extp(H). Since Th(E) ⊑ POption(E) and from the definition of func-

tions Th and Arg it is obvious that E ⊆ Arg(POption(E)). Now let a = (d, x) ∈
Arg(POption(E)). a = (d, x) is constructed from POption(E). So, Def(d) ⊆
Defs(POption(E)). Suppose that a /∈ E . Since E is a preferred extension then we

have two cases. The first case is that there is b = (d′, x′) ∈ E such that bRua.
From b ∈ E we easily deduce that x′ ∈ CN(POption(E)). But then, from bRua,
POption(E) must be incoherent. Contradiction with the fact that POption(E) is a
preferred option. The second case is that E does not attack a but it does not defend
it: there is b = (d′, x′) /∈ E such that bRua and E does not attack b. From bRua we
have x′ ∈ d. Since Def(d) ⊆ Defs(POption(E)) then x ⊆ Defs(POption(E)).
So, x is used in at least an argument c = (d′′, x′′) of E i.e., x ∈ d′′. Thus, c is at-
tacked by b. But since E is a preferred extension, then it must contain an argument

which attacks b. This contradict the hypothesis that E does not attack b.

Proof. of Theorem 8. LetH = (Arg(T ),Ru) s.t. Exts(H) 6= ∅.

Let O = (F ,S,D′) ∈ POpt(T ) and let E = Arg(O). We prove that E is conflict-

free, ∀b ∈ Arg(T ) \ E , if ∃a ∈ E s.t. bRua then ∃c ∈ E s.t. cRub and E is a

maximal subset of Arg(T ) satisfying the previous two conditions.
Suppose that there is two argument a = (d, x) and b = (d′, x′) in E s.t. aRub, i.e.,
x ∈ Def(d′). But since d and d′ are derivation schemas for x and x′ respectively

in O we have: x ∈ CN(O) and Def(d′) ⊆ D′, so x ∈ D′. Contradiction with the

coherence of preferred optionO. So, E is conflict-free.

Now, let us show that: ∀b ∈ Arg(T ) \ E , if ∃a ∈ E s.t. bRua then ∃c ∈ E s.t.

cRub. Let b = (d, x) ∈ Arg(T ) \ E and let a = (d′, x′) ∈ E s.t. bRua, i.e.,
x ∈ CN(F, S, Def(d)) and x ∈ Def(d′). From the fourth conditions of the definition

of a preferred option, there is r′′ ∈ Def(d) s.t. r′′ ∈ CN(F ,S,D′). So, there is an
argument c = (d′′, r′′) with d′′ a minimal derivation of r′′ in O. Clearly, cRub.
Finally, Suppose that E is not maximal w.r.t. previous conditions. Thus, there is E ′

s.t. E ⊂ E ′ and E ′ is preferred, i.e., E ′ is an maximal conflict-free set of arguments

that defends all its elements. Let O′(F ,S,D′′) = POption(E ′). Clearly, D′ 6= D,
because there every argument in E ′ \ E uses at least a rule which is not in D′. Since

O′ is a preferred option (Theorem 7),D′′ is maximal, soD′ ⊂ D′′. This contradicts

the fact thatO is a preferred option.

Similar to the proof of point 2 of Theorem 6.

Similar to the proof of point 3 of Theorem 6.

Proof. of Corollary 6. Follows immediately from the bijection between preferred op-

tions and preferred extensions(theorems 7 - 8).



Proof. of Corollary 7. Follows immediately from the bijection between preferred op-

tions and preferred extensions(theorems 7 - 8).




