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A Poor Man’s Epistemic Logic Based

on Propositional Assignment and Higher-Order

Observation

Andreas Herzig, Emiliano Lorini, and Faustine Maffre

University of Toulouse, IRIT, 118, Route de Narbonne, F-31062 Toulouse, France

Abstract. We introduce a dynamic epistemic logic that is based on
what an agent can observe, including joint observation and observation
of what other agents observe. This generalizes van der Hoek, Wooldridge
and colleague’s logics ECL-PC(PO) and LRC where it is common knowl-
edge which propositional variables each agent observes. In our logic, facts
of the world and their observability can both be modified by assign-
ment programs. We show how epistemic operators can be interpreted in
this framework and identify the conditions under which the principles of
positive and negative introspection are valid. We also provide a sound
and complete axiomatization and prove that the satisfiability problem is
PSpace-complete. Finally, we show how public and private announce-
ments can be expressed and illustrate the latter by the gossip spreading
problem.

1 Introduction

In recent years, several authors investigated how an epistemic logic could be
grounded on the notion of visibility (or observability) of propositional variables,
most prominently Epistemic Coalition Logic of Propositional Control with Par-
tial Observability ECL-PC(PO) [12] and Logic of Revelation and Concealment
LRC [11]. The idea is that each agent has a set of propositional variables she can
observe: no different truth value is possible for her. The other way round, any
combination of truth values of the non-observable variables is possible for her.

A disadvantage of these logics is that what each agent can see is common
knowledge. This is a strong hypothesis that we are going to relax in the present
paper. While in ECL-PC(PO) and LRC, visibility information is in terms of propo-
sitional variables associated to agents, we here consider propositional variables
associated to sequences of agents. Syntactically, we represent this by means of
atomic formulas that we call visibility atoms. They take the form Si1 Si2 ...Sin p,
where p is a propositional variable and i1, i2, ..., in are agents. When n=0 then we
have nothing but a propositional variable. For n=1, the atom Si1 p reads “agent
i1 sees the value of the variable p”, and for n=2, the second-order observation
Si1 Si2 p reads “agent i1 sees whether i2 sees the value of p”; and so on.

Our models are simply sets of visibility atoms. In order to guarantee positive
and negative introspection we have to ensure that agents are always aware of
what they see: for every agent i and propositional variable p, we require Si Si p



to be in every valuation. We say that a valuation V is introspective when it
contains every visibility atom having two consecutive Si, such as Sj Si Si Sk p.

Visibility information allows to interpret epistemic operators: for propositional
variables p, the formula Kip is true in a valuation V if V contains both p and
Si p. More generally, the truth condition for Kiϕ is based on a relation between
valuations that can be defined from our visibility atoms: V ∼i V

′ if every atom
that i sees in V has the same truth value in V and in V ′. While the relations
∼i are reflexive everywhere, they are symmetric and transitive—and therefore
equivalence relations—on the set of introspective valuations only. The truth con-
dition for the epistemic operator then takes the standard form: Kiϕ is true in
V if ϕ is true in every valuation related to V by ∼i. The positive and nega-
tive introspection axioms Kiϕ → KiKiϕ and ¬Kiϕ → Ki¬Kiϕ are valid in the
set of introspective valuations. A further novelty of our approach as compared
to existing visibility-based epistemic logics is that we also account for common
knowledge: our language includes a special atomic formula for joint attention
of the form JSp that reads “all agents jointly see the value of p”. Metaphori-
cally, joint attention about a propositional variable p can be understood as eye
contact between the agents when observing p. Just as individual visibility, we
generalize our account to higher-order visibility, adding a constraint on valua-
tions that guarantees introspection of common knowledge. We moreover require
that joint visibility implies individual visibility by imposing that Si p ∈ V when-
ever JS p ∈ V . We can then interpret a modal operator of common knowledge
CK in the same way as the modal operator of individual knowledge.

Just as several existing proposals, we take inspiration from dynamic epistemic
logics DEL [4] and add dynamics to our observation-based epistemic logic. Specif-
ically, we adapt van der Hoek et al.’s logic LRC which has two update operations
modifying visibility: revealing and concealing the value of a variable to some
agent. These two primitives can however not be taken over as they stand be-
cause the naive update of a valuation may no longer be introspective. We exclude
this by an appropriate definition of update. We relate our assignment programs
to Dynamic Logic of Propositional Assignments DL-PA [10,3], which is a dialect
of Propositional Dynamic Logic PDL [7] where PDL’s abstract atomic programs
are instantiated by assignments of truth values to atomic formulas. The benefit
of that link is a PSpace upper bound of the complexity of both satisfiability
and model checking. Moreover, visibility updates can capture public and private
announcements of visibility atoms and negations thereof.

We call our logic DEL-PAO: Dynamic Epistemic Logic of Propositional As-
signment and Observation. The paper is organized as follows: sections 2 and
3 introduce language and semantics of DEL-PAO. Sections 4 and 5 contain an
axiomatization and the complexity result. Section 6 illustrates our logic by two
applications: the embedding of announcements and a modeling of the gossip
spreading problem. Section 7 discusses related work and Section 8 concludes.1

1 A long version of this paper including proofs and a further case study (the co-
ordinated attack problem) is available at http://www.irit.fr/˜Andreas.Herzig/

P/Lori15.html.



2 Language

Let Prop be a countable non-empty set of propositional variables and let Agt be
a finite non-empty set of agents. Atomic formulas of our language are sequences
of visibility operators followed by propositional variables. The formal definition
is as follows.

The set of observability operators is
OBS = {Si : i ∈ Agt} ∪ {JS},

where Si stands for individual visibility of agent i and JS stands for joint visi-
bility of all agents. The set of all sequences of visibility operators is noted OBS ∗

and the set of all non-empty sequences is noted OBS+. We use σ , σ ′, . . . for
elements of OBS∗. Finally, the set of atomic formulas is

ATM = {σ p : σ ∈ OBS∗, p ∈ Prop}.
The elements of that set are also called visibility atoms, or atoms for short.

For example, JS S2 q reads “all agents jointly see whether agent 2 sees the value
of q”; in other words, there is joint attention in the group of all agents concerning
2’s observation of q. We use α, α′, . . . , β, β′, . . . for elements of ATM .

The language of DEL-PAO is then defined by the following grammar:

π ::= +α | −α | π;π | π ⊔ π | ϕ?

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CKϕ | [π]ϕ

where α ranges over ATM and i over Agt .
Our atomic programs are assignments of truth values to atoms from ATM :

+α makes α true and −α makes α false. Complex programs are constructed with
dynamic logic operators: π;π′ is sequential composition, π⊔π′ is nondeterministic
choice, and ϕ? is test. Just as in dynamic logic, the formula [π]ϕ reads “after
every execution of π, ϕ is true”. The formula Kiϕ reads “i knows that ϕ is true
on the basis of what she observes”, and CKϕ reads “all agents jointly know that
ϕ is true on the basis of what they jointly observe”. Our epistemic operators
account for forms of individual and common knowledge that are respectively
obtained via individual observation and joint observation of facts. This differs
therefore conceptually from the classical operators of individual and common
knowledge as studied in the area of epistemic logic [5]. We will come back to this
in Section 3.4.

The other boolean operators ⊤, ⊥, ∨, → and ↔ are defined as usual, and K̂iϕ
abbreviates ¬Ki¬ϕ . The program skip abbreviates ⊤? and fail abbreviates ⊥?.
We also use the abbreviation πk, for k ≥ 0, inductively defined by π0 = skip and
πk+1 = πk;π.

The set of atomic formulas of ATM occurring in the formula ϕ is noted
ATM (ϕ); the set ATM (π) is defined similarly. For example, ATM (q?;+S2 p) =
{q, S2 p} and ATM ([π]S1 JS p → q) = {q, S2 p, S1 JS p}. (So JS p is not an atom
of the latter.) The length of formulas ϕ and programs π, noted length(ϕ) and
length(π), is the number of symbols used to write them down, where we do
not count [, ] and parentheses and consider that the length of JS , CK , agent
names and propositional variables is 1. For example, length(S2 S2 p) = 5 and
length([+S2 p]JS p ∧ q) = 8.



3 Semantics

We define valuations and stipulate constraints that are motivated by the require-
ment that visibility information should be introspective and that joint visibility
should imply individual visibility. We then define indistinguishability relations
between valuations and interpret formulas and programs.

3.1 Introspective Valuations

A valuation is a subset of the set of atoms ATM . A valuation V ∈ 2ATM is
introspective if and only if the following hold, for every α ∈ ATM and i ∈ Agt :

Si Si α ∈ V (C1)

JS JS α ∈ V (C2)

JS Si Si α ∈ V (C3)

if JS α ∈ V , then Si α ∈ V (C4)

if JS α ∈ V , then JS Si α ∈ V (C5)

The set of all introspective valuations is noted INTR.
(C1) is about introspection of individual sight: an agent always sees whether

she sees the value of an atom. (C2) requires the same for joint sight; indeed, if
JS α is true then JS JS α should be true by introspection, and if JS α is false
then all agents jointly see that at least one of them has broken eye contact. (C3)
forces the first to be common knowledge. (C4) guarantees that joint visibility
implies individual visibility. Together with (C2), (C5) guarantees that JS α ∈ V
implies JS σ α ∈ V for σ ∈ OBS∗.2 The constraints (C4) and (C5) ensure that
JS α ∈ V implies σ α ∈ V for σ ∈ OBS+. This motivates the following relation
of introspective consequence between atoms: α ❀ β iff either α = β, or α =
JS α′ and β = σ α′ for some σ ∈ OBS+.

Closure under introspective consequence characterizes introspective valua-
tions.

Proposition 1. A valuation V ⊆ ATM is introspective if and only if, for every

α, β ∈ ATM and i ∈ Agt:

σ Si Si α ∈ V for every σ ∈ OBS∗ (1)

σ JS α ∈ V for every σ ∈ OBS+ (2)

if α ∈ V and α ❀ β then β ∈ V (3)

Call an atom α ∈ ATM is valid in INTR if and only if α belongs to every
valuation in INTR. By Proposition 1, α is valid in INTR if and only if α is of
the form either σ Si Si α with σ ∈ OBS ∗, or σ JS α with σ ∈ OBS+.

Observe that we do not impose the constraint “if σ α ∈ V for every σ ∈ OBS ∗

then JS α ∈ V ”, which corresponds to the greatest fixed point definition of the
operator of common knowledge from shared knowledge. We will comment on
this in Section 3.4.
2 We need (C2) when σ contains JS : in order to prove that JS α ∈ V implies
JS Si JS α ∈ V we use that JS JS α ∈ V by (C2) and that JS JS α ∈ V implies
JS Si JS α ∈ V by (C5).



3.2 Indistinguishability Relations

Two valuations are related by the indistinguishability relation for agent i, noted
∼i, if every α that i sees has the same value. Similarly, we have a relation ∼Agt

for joint indistinguishability. They are defined as follows:

V∼iV
′ iff Si α ∈ V implies V (α) = V ′(α)

V∼AgtV
′ iff JS α ∈ V implies V (α) = V ′(α)

with V (α) = V ′(α) when either α ∈ V and α ∈ V ′, or α /∈ V and α /∈ V ′.
The binary relations ∼i and ∼Agt are reflexive. They are neither transitive

nor symmetric: for example, ∅ ∼i V for every V ⊆ ATM , while V �∼i ∅ as soon
as there is a p such that p and Si are in V . However, both properties hold on
valuations satisfying the introspection constraints (C1) and (C2).

Proposition 2. Therelation∼Agt andevery∼i are equivalence relationson INTR.

Lemma 1. Let V ∈ INTR, V ′ ∈ 2ATM . If V ∼i V
′ or V ∼Agt V ′ then V ′ ∈

INTR.

3.3 Truth Conditions and Validity

Given an introspective valuation V , our update operations add or remove atoms
from V . This requires some care: we want the resulting valuation to be intro-
spective. For example, removing Si Si p should be impossible. Another example
is when V does not contain Si p: then V ∪ {JS p} would violate (C4). So when
adding an atom to V we also have to add all its positive consequences. Symmetri-
cally, when removing an atom we also have to remove its negative consequences.
Let us define the following:

Eff +(α) = {β ∈ ATM : α ❀ β}

Eff −(α) = {β ∈ ATM : β ❀ α}

Clearly, when V is introspective then both V ∪Eff +(α) and V \Eff −(α) are so,
too (unless α is valid). Now the truth conditions are as follows:

V |= α iff α ∈ V

V |= ¬ϕ iff V �|= ϕ

V |= ϕ ∧ ψ iff V |= ϕ and V |= ψ

V |= Kiϕ iff V ′ |= ϕ for all V ′ such that V ∼i V
′

V |= CKϕ iff V ′ |= ϕ for all V ′ such that V ∼Agt V
′

V |= [π]ϕ iff V ′ |= ϕ for all V ′ such that V RπV
′

where Rπ is a binary relation on valuations that is defined (by mutual recursion
with the definition of |=) by:

V R+αV
′ iff V ′ = V ∪ Eff +(α)

V R−αV
′ iff V ′ = V \ Eff −(α) and α is not valid in INTR

V Rπ1;π2
V ′ iff there is U such that V Rπ1

U and URπ2
V ′

V Rπ1⊔π2
V ′ iff V Rπ1

V ′ or V Rπ2
V ′

V Rϕ?V
′ iff V = V ′ and V |= ϕ



The relation Rπ is defined just as in PDL for the program operators ;, ⊔
and ?. The interpretation of assignments is designed in a way such that we
stay in INTR: the program +α adds all the positive consequences of α; the
program −α fails if α is valid in INTR and otherwise removes all the negative
consequences of α. For example, we never have V R−S1 S1 pV

′, i.e., the program
−S1 S1 p always fails. In contrast, the program −S1 S2 p always succeeds, and we
have V R−S1 S2 p (V \ {S1 S2 p, JS S2 p, JS p}) because the only atoms—beyond
S1 S2 p itself—whose consequence is S1 S2 p are JS S2 p and JS p. Therefore V �|=
[−S1 S2 p]JS p for every V .

Lemma 2. Let V ∈ INTR and V RπV
′. Then V ′ ∈ INTR.

Proposition 3. For every V ∈ INTR, i ∈ Agt and program π, V is only related

to valuations in INTR by ∼i, ∼Agt and Rπ.

When V |= ϕ we say that V is a model of ϕ. The set of (not necessarily
introspective) models of ϕ is noted ‖ϕ‖. A formula ϕ is satisfiable in INTR if ϕ
has an introspective model, i.e., if ‖ϕ‖∩INTR �= ∅. For example, JS p∧¬Si p has
a model, but does not have an introspective model and is therefore unsatisfiable
in INTR. A formula ϕ is valid in INTR if INTR ⊆ ‖ϕ‖. We also say that ϕ is a
validity of DEL-PAO . For example, ¬[−S1 S2 p]JS p is valid in INTR. Note that
¬β → [+α]¬β is valid in INTR if and only if α �❀ β.

Formulas without epistemic operators only depend on atoms occurring in it.

Proposition 4. Let ϕ be without epistemic operators. Let V, V ′ ∈ 2ATM such

that V (α) = V ′(α) for every α ∈ ATM (ϕ). Then V |= ϕ if and only if V ′ |= ϕ.

This proposition will be instrumental in the rest of the paper. Observe that it
does not hold when ϕ contains epistemic operators. For example, the truth value
of Kip depends on that of Si p, which however does not occur in ATM (Kip).

3.4 Discussion

Both the operators of individual knowledge and the operator of common knowl-
edge of DEL-PAO satisfy all the principles of the standard epistemic logic S5.
There are also some further validities of DEL-PAO, for example the S5-invalid
formula Ki(p ∨ q) → (Kip ∨Kiq); cf. the axiom RedK,∨ below. This is a strong
principle: to give an example, if one knows that the butler or the gardener was
the murderer then one knows which of them it was. It is however shared by all
visibility-based epistemic logics.

Our common knowledge operator obeys the fixed point axiom: CKp → p ∧(∧
i∈AgtKiCK p

)
. This is ensured by the fact that by constraints (C2) and (C4),

the formula
∧

i∈AgtSi JS p is valid in INTR. Our notion of common knowledge is
however weaker than standard common knowledge because the induction axiom(
ϕ ∧ CK

(
ϕ →

∧
i∈AgtKiϕ

))
→ CKϕ is invalid in INTR. Beyond the tech-

nical reason for that choice (such an infinitary constraint cannot be captured
by formula built from visibility atoms) we follow [13,9] and assume that such a
principle is too strong for a logic of common knowledge.



4 Axiomatization

The axiomatization of DEL-PAO is given by:

– the axioms of CPL (Classical Propositional Logic);
– the reduction axioms for epistemic operators:

Kiα ↔ Si α ∧ α (RedK,α)

CKα ↔ JS α ∧ α (RedCK ,α)

Ki¬α ↔ Si α ∧ ¬α (RedK,¬)

CK¬α ↔ JS α ∧ ¬α (RedCK ,¬)

Ki(ϕ ∧ ϕ′) ↔ Kiϕ ∧Kiϕ
′ (RedK,∧)

CK (ϕ ∧ ϕ′) ↔ CKϕ ∧ CKϕ′ (RedCK ,∧)

Ki

(
∨

α∈A+

α ∨
∨

α∈A−

¬α

)
↔

(
∨

α∈A+

Kiα

)
∨

(
∨

α∈A−

Ki¬α

)
(RedK,∨)

CK

(
∨

α∈A+

α ∨
∨

α∈A−

¬α

)
↔

(
∨

α∈A+

CKα

)
∨

(
∨

α∈A−

CK¬α

)
(RedCK ,∨)

– the reduction axioms for dynamic operators:

[π;π′]ϕ ↔ [π][π′]ϕ (Red ;)

[π ⊔ π′]ϕ ↔ [π]ϕ ∧ [π′]ϕ (Red⊔)

[ϕ?]ϕ′ ↔ ϕ → ϕ′ (Red?)

[+α]¬ϕ ↔ ¬[+α]ϕ (Red+α,¬)

[−α]¬ϕ ↔

{
⊤ if α is valid in INTR

¬[−α]ϕ otherwise
(Red−α,¬)

[+α](ϕ ∧ ϕ′) ↔ [+α]ϕ ∧ [+α]ϕ′ (Red+α,∧)

[−α](ϕ ∧ ϕ′) ↔ [−α]ϕ ∧ [−α]ϕ′ (Red−α,∧)

[+α]β ↔

{
⊤ if α ❀ β

β otherwise
(Red+α)

[−α]β ↔





⊤ if α is valid in INTR

⊥ if α is not valid in INTR and β ❀ α

β otherwise

(Red−α)

– the introspection axioms:

Si Si α (VisC1)

JS JS α (VisC2)

JS Si Si α (VisC3)

JS α → Si α (VisC4)

JS α → JS Si α (VisC5)

– the rule of Modus Ponens and the rules of inference for Ki, CK, and [π]:

ϕ ↔ ϕ′

Kiϕ ↔ Kiϕ
′

ϕ ↔ ϕ′

CKϕ ↔ CKϕ′

ϕ ↔ ϕ′

[π]ϕ ↔ [π]ϕ′

Theorem 1. The axiomatization of DEL-PAO is sound and complete.



5 Complexity

Theorem 2. The DEL-PAO satisfiability and DEL-PAO model checking prob-

lems are both Pspace-complete.

We devote the rest of the section to the proof of this result. We start by proving
that all epistemic operators can be eliminated in polynomial time. We then show
interreducibility of model and satisfiability checking. We finally establish lower
and upper bounds by embedding QBF into DEL-PAO and DEL-PAO into DL-PA.

5.1 Elimination of Epistemic Operators

Let us define the following programs:

πi,α = Si α? ⊔ (¬Si α?; (+α ⊔ −α))

πAgt,α = JS α? ⊔ (¬JS α?; (+α ⊔ −α))

The first checks whether i sees α, and if not, varies the truth value of α; the
second does the same but for joint visibility. Then for a set of atoms A =
{α1, ..., αn}, we define:

πi,A = πi,α1
; ...;πi,αn

πAgt,A = πAgt,α1
; ...;πAgt,αn

We suppose that the program is skip if the set A is empty.
We did not impose any ordering on atoms in A; this will not influence the

program execution. More details can be found in the long version of the paper.

Proposition 5. Let ϕ be a DEL-PAO formula without epistemic operators. Then

Kiϕ ↔ [πi,ATM (ϕ)]ϕ

CKϕ ↔ [πAgt,ATM (ϕ)]ϕ

are valid in INTR.

Proposition 5 can be turned into a procedure eliminating epistemic opera-
tors: it suffices to iterate the application of the equivalences, starting with the
innermost operators.

Procedure 1. While there is an epistemic operator in ϕ:

1. if there exists a subformula Kiϕ
′ such that ϕ′ does not contain epistemic

operators, replace ϕ by [πi,ATM (ϕ)]ϕ
′;

2. if there exists a subformula CKϕ′ such that ϕ′ does not contain epistemic

operators, replace ϕ by [πAgt,ATM (ϕ)]ϕ.

Proposition 6. For every DEL-PAO formula ϕ, there exists a DEL-PAO for-

mula ϕ′ without epistemic operators such that ϕ ↔ ϕ′ is valid in INTR. The

length of ϕ′ is polynomial in length(ϕ).



5.2 Model Checking and SAT Interreducible

For formulas without epistemic operators, satisfiability and model checking have
the same complexity.

Proposition 7. Let ϕ be a DEL-PAO formula without epistemic operators such

that ATM (ϕ) = {α1, . . . , αn}. Let π = (+α1 ⊔ −α1); . . . ; (+αn ⊔ −αn). Then:

– if ϕ is satisfiable in INTR, then for every V ∈ INTR, V |= 〈π〉ϕ;

– if ϕ is unsatisfiable in INTR, then for every V ∈ INTR, V �|= 〈π〉ϕ.

The length of the program (+α1⊔−α1); . . . ; (+αn⊔−αn) is linear in length(ϕ).
It follows from Proposition 7 that the satisfiability problem can be reduced in
polynomial time to model checking in a randomly chosen valuation.

Proposition 8. Let ϕ be a DEL-PAO formula without epistemic operators. For

V ∈ INTR, V |= ϕ if and only if the formula

〈+α1; . . . ; +αn;−β1; . . . ;−βm〉ϕ
is satisfiable in INTR, where ATM (ϕ) ∩ V = {α1, . . . , αn} and ATM (ϕ) \ V =
{β1, . . . , βn}.

The length of +α1; . . . ; +αn;−β1; . . . ;−βm is again linear in length(ϕ). It
follows from Proposition 8 that the model checking problem can be polynomially
reduced to the satisfiability problem.

We observe that from a practical point of view, model checking requires a
finite valuation. For formulas without epistemic operators such valuations can
always be obtained: due to Proposition 4 we have V |= ϕ iff V ∩ ATM (ϕ) |= ϕ.

5.3 Lower Bound

In DEL-PAO we can express Quantified Boolean Formulas (QBF), whose satisfi-
ability problem is Pspace-complete. Details can be found in the full version of
the paper.

5.4 Dynamic Logic of Propositional Assignments

In order to establish the upper bound we will embed our logic into the star-free
fragment of Dynamic Logic of Propositional Assignments DL-PA [10,3], whose
satisfiability problem is Pspace-complete. We briefly recall this logic.

Just as the language of DEL-PAO, the language of DL-PA has formulas and
programs. They are defined by the following grammar:

π ::= +α | −α | π;π | π ⊔ π | ϕ?

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | [π]ϕ

where α ranges over ATM and i over Agt . So the language has the same atoms
as DEL-PAO, but no epistemic operators. Formulas are interpreted in valuations



V ∈ 2ATM in exactly the same way as in DEL-PAO, except that atomic programs
do not take introspective consequences into account. We have:

V R+αV
′ iff V ′ = V ∪ {α}

V R−αV
′ iff V ′ = V \ {α}

A counterpart of Proposition 4 holds for DL-PA.

Proposition 9 ([3], Proposition 1). Let V, V ′ ∈ 2ATM such that V (α) =
V ′(α) for every α ∈ ATM (ϕ). Then V |=DL-PA ϕ if and only if V ′ |=DL-PA ϕ.

5.5 Upper Bound

The final step is to polynomially translate non-epistemic DEL-PAO formulas and
programs into DL-PA formulas and programs. The introspection constraints will
be taken into account by translating DEL-PAO assignments into appropriate
DL-PA programs.

Given an atom α and a set of relevant atoms A ⊆ ATM , let Eff +(α) ∩
A = {β1, ..., βn} and Eff −(α) ∩ A = {β′

1, ..., β
′
m}. Translate assignments of α as

follows:

tr(+α,A) = +β1; ...; +βn

tr(−α,A) =

{
fail if α valid in INTR

−β′
1; ...;−β′

m otherwise

Again we suppose that the program is skip if the set {β1, ..., βn} is empty.
We extend tr to complex programs and formulas by stipulating tr(α) = α

and tr([π]ϕ) = [tr(π,ATM (ϕ))]tr(ϕ), and homomorphic otherwise.
Note that ATM (tr(π,A)) ⊆ A and ATM (tr(ϕ)) ⊆ ATM (ϕ).

Proposition 10. Let ϕ be a DEL-PAO formula without epistemic operators.

Then we have V |=DEL-PAO ϕ if and only if V |=DL-PA tr(ϕ).

The grande finale follows from propositions 6, 7, 8 and 10 and because tr(ϕ)
can be computed in time polynomial in length(ϕ).

Theorem 3. In DEL-PAO, both satisfiability and model checking are PSpace-

complete.

6 Private Announcements and Spreading Gossip

Public Announcement Logic PAL [14] is a logic of the DEL family extending
standard epistemic logic with an operator [ψ!], such that [ψ!]ϕ reads “after ψ is
publicly and truthfully announced, ϕ is true”. Its validities are axiomatized by
means of the reduction axioms [ψ!]p ↔ ψ→p, [ψ!]¬ϕ ↔ ψ→¬[ψ!]ϕ, [ψ!](ϕ∧ϕ′) ↔
[ψ!]ϕ ∧ [ψ!]ϕ′, and [ψ!]Kiϕ ↔ ψ→Ki[ψ!]ϕ.

We claim that we can express public announcements of literals as p! =
p?;+JS p and ¬p! = ¬p?;+JS p. We furthermore claim that we can express
the public announcement of knowledge of atoms as Kip! = Kip?;+JS p. It can



indeed be checked that with these definitions all the reduction axioms for PAL are
valid in our logic (see the full version of the paper). Beyond that we can also eas-
ily model private announcements of the same kind of formulas. Read j : ψ! as “ψ
is privately announced to agent j”. Then: j : p! = p?;+Sj p, j : ¬p! = ¬p?;+Sj p
and j : Kip! = Kip?;+Sj p; +Sj Si p.

Let us illustrate this by the Spreading Gossip problem, of which a detailed
study can be found in [4]. Six friends each know a secret. When they call each
other, they exchange every secret that they know. The problem is to find how
many calls are necessary to spread all secrets among all friends. It was proven
([1], among others) that the minimal number of calls is 8; for example, if we
write ij the fact that i calls j (or that j calls i), the following sequence spreads
all secrets: 12, 34, 56, 13, 45, 16, 24, 35 [4]. Let us model this with private
announcements. With Agt = {i : 1 ≤ i ≤ 6} and si meaning that i has the secret
si, we define the program Call ij , for i, j ∈ Agt , as:

Call ij = ((Si s1?; j : s1!) ⊔ ¬Si s1?); ...; ((Si s6?; j : s6!) ⊔ ¬Si s6?);

((Sj s1?; i : s1!) ⊔ ¬Sj s1?); ...; ((Sj s6?; i : s6!) ⊔ ¬Sj s6?)

Our program expresses that i tells all she knows to j, and conversely; each call
makes each atom known by one agent known to both. Then the formula
[

Call12;Call34;Call56;Call13;Call45;Call16;Call24;Call35

]

∧

i∈Agt
Ki

(

∧

j∈Agt
sj

)

is true at the initial state V0 defined as:

V0 = {α : α is valid in INTR} ∪ {si : i ∈ Agt} ∪ {Si si : i ∈ Agt}.

This establishes that the above sequence is correct. Furthermore, the formula

〈(⊔
i,j∈Agt,i�=j

¬Si sj?;Call ij
)8〉∧

i∈Agt
Ki

(∧
j∈Agt

sj

)

expresses that a more general protocol is correct. Finally, the formula

[(⊔
i,j∈Agt,i�=j

Call ij
)7]

¬
∧

i∈Agt
Ki

(∧
j∈Agt

sj

)

expresses that only 7 calls are not enough. Both are true at V0.
Note that our modelling does not account for second-order knowledge. In

order to do so we should modify the program Call ij in a way such that when
Si s1 is true then not only j : s1! is performed, but also i : Sj s1!. With that
modelling we could check not only that everybody knows each secret, but also
that everybody knows that everybody knows each secret. In the same vein, third-
order knowledge can be attained by adding j : Si Sj s1!, and so on.

Beyond that, we may also want to model that Call ij leads to common knowl-
edge of i and j. This requires the extension of DEL-PAO by visibility atoms with
non-empty sets of agents as arguments. However, secrets can never become com-
mon knowledge of all agents. This can also be highlighted by the Two Generals’
problem where common knowledge cannot be reached. Details are in the full
version of the paper.



7 Related Work

As said in the introduction, our logic is in the tradition of several other logics
developed in the past few years. In the logic ECL-PC(PO) [12], visibility is rep-
resented by a set of atoms for each agent, containing the variables the agent
observes. This does not allow for higher-order observations such as “i observes
whether j observes p”. Instead and as already mentioned, the observational ca-
pabilities of each agent become common knowledge among all agents. The logic
LRC [11] allows to express, as programs, that a variable is revealed to an agent or
concealed from her. Semantically, formulas are interpreted over pointed models
with a visibility set for each agent; revealing a variable p to an agent i will add
p to i’s visibility set, while concealing p will remove p from i’s set. Just as in
ECL-PC(PO), who sees what is common knowledge among all agents.

The logic of knowing whether [6] adds an operator standing for “i knows
whether ϕ” to the language of standard epistemic logic, interpreted as “ϕ has
the same value in all indistinguishable worlds for i”. This can be compared to
our visibility atoms Si which express the same notion on atoms.

In Flatland Logic [2], visibility is further grounded on geometry in order to
give semantics to epistemic operators: an agent can (or cannot) observe the
positions of other agents and can reason about what they observe. Visibility can
be higher-order and is also fully determined by geometric constraints. The main
difference with our logic is that in Flatland Logic, agents see other agents instead
of propositional variables.

8 Conclusion

We have introduced a dynamic epistemic logic of propositional assignment and
observation DEL-PAO which accounts for higher-order and joint observation as
well as updates thereof. It avoids the strong hypothesis of common knowledge
of visibility that other observation-based epistemic logics make. It is remark-
able that the addition of higher-order observability and in particular of joint
observability comes without supplementary cost: both satisfiability and model
checking remain PSpace-complete. This contrasts with standard logics of com-
mon knowledge: there, satisfiability checking is ExpTime-hard [8].

A simple extension of our logic is to generalize the operator of common knowl-
edge of all agents CK to operators taking any subset of Agt as arguments. It
suffices to introduce visibility atoms JSJα, one per group of agents J . Another
interesting generalization is to consider belief instead of knowledge. A way to
achieve this is to replace Si by two operators Oi and Ci, respectively meaning
that i has an opinion on something and that i is correct on something. This
requires other constraints on valuations that should match the properties of be-
lief. Further possible extensions concern the dynamic part: following [10], one
may add atoms representing that i controls some propositional variable p, in the
sense that i can change the truth value of p at will. One may then associate to
each assignment an author, which is the agent performing the assignment. As



shown in [10], this allows to embed Coalition Logic of Propositional Control [12].
It remains to be worked out how this combines with higher-order observations.
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