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A Poor Man's Epistemic Logic Based on Propositional Assignment and Higher-Order Observation

We introduce a dynamic epistemic logic that is based on what an agent can observe, including joint observation and observation of what other agents observe. This generalizes van der Hoek, Wooldridge and colleague's logics ECL-PC(PO) and LRC where it is common knowledge which propositional variables each agent observes. In our logic, facts of the world and their observability can both be modified by assignment programs. We show how epistemic operators can be interpreted in this framework and identify the conditions under which the principles of positive and negative introspection are valid. We also provide a sound and complete axiomatization and prove that the satisfiability problem is PSpace-complete. Finally, we show how public and private announcements can be expressed and illustrate the latter by the gossip spreading problem.

Introduction

In recent years, several authors investigated how an epistemic logic could be grounded on the notion of visibility (or observability) of propositional variables, most prominently Epistemic Coalition Logic of Propositional Control with Partial Observability ECL-PC(PO) [START_REF] Van Der Hoek | Knowledge and control[END_REF] and Logic of Revelation and Concealment LRC [START_REF] Van Der Hoek | A logic of revelation and concealment[END_REF]. The idea is that each agent has a set of propositional variables she can observe: no different truth value is possible for her. The other way round, any combination of truth values of the non-observable variables is possible for her.

A disadvantage of these logics is that what each agent can see is common knowledge. This is a strong hypothesis that we are going to relax in the present paper. While in ECL-PC(PO) and LRC, visibility information is in terms of propositional variables associated to agents, we here consider propositional variables associated to sequences of agents. Syntactically, we represent this by means of atomic formulas that we call visibility atoms. They take the form S i 1 S i 2 ...S i n p, where p is a propositional variable and i 1 , i 2 , ..., i n are agents. When n=0 then we have nothing but a propositional variable. For n=1, the atom S i 1 p reads "agent i 1 sees the value of the variable p", and for n=2, the second-order observation S i 1 S i 2 p reads "agent i 1 sees whether i 2 sees the value of p"; and so on.

Our models are simply sets of visibility atoms. In order to guarantee positive and negative introspection we have to ensure that agents are always aware of what they see: for every agent i and propositional variable p, we require S i S i p to be in every valuation. We say that a valuation V is introspective when it contains every visibility atom having two consecutive S i , such as S j S i S i S k p.

Visibility information allows to interpret epistemic operators: for propositional variables p, the formula K i p is true in a valuation V if V contains both p and S i p. More generally, the truth condition for K i ϕ is based on a relation between valuations that can be defined from our visibility atoms: V ∼ i V ′ if every atom that i sees in V has the same truth value in V and in V ′ . While the relations ∼ i are reflexive everywhere, they are symmetric and transitive-and therefore equivalence relations-on the set of introspective valuations only. The truth condition for the epistemic operator then takes the standard form: K i ϕ is true in V if ϕ is true in every valuation related to V by ∼ i . The positive and negative introspection axioms K i ϕ → K i K i ϕ and ¬K i ϕ → K i ¬K i ϕ are valid in the set of introspective valuations. A further novelty of our approach as compared to existing visibility-based epistemic logics is that we also account for common knowledge: our language includes a special atomic formula for joint attention of the form JS p that reads "all agents jointly see the value of p". Metaphorically, joint attention about a propositional variable p can be understood as eye contact between the agents when observing p. Just as individual visibility, we generalize our account to higher-order visibility, adding a constraint on valuations that guarantees introspection of common knowledge. We moreover require that joint visibility implies individual visibility by imposing that S i p ∈ V whenever JS p ∈ V . We can then interpret a modal operator of common knowledge CK in the same way as the modal operator of individual knowledge.

Just as several existing proposals, we take inspiration from dynamic epistemic logics DEL [START_REF] Van Ditmarsch | Dynamic Epistemic Logic, 1st edn[END_REF] and add dynamics to our observation-based epistemic logic. Specifically, we adapt van der Hoek et al.'s logic LRC which has two update operations modifying visibility: revealing and concealing the value of a variable to some agent. These two primitives can however not be taken over as they stand because the naive update of a valuation may no longer be introspective. We exclude this by an appropriate definition of update. We relate our assignment programs to Dynamic Logic of Propositional Assignments DL-PA [START_REF] Herzig | A dynamic logic of normative systems[END_REF][START_REF] Balbiani | Dynamic logic of propositional assignments: a well-behaved variant of PDL[END_REF], which is a dialect of Propositional Dynamic Logic PDL [START_REF] Fischer | Propositional dynamic logic of regular programs[END_REF] where PDL's abstract atomic programs are instantiated by assignments of truth values to atomic formulas. The benefit of that link is a PSpace upper bound of the complexity of both satisfiability and model checking. Moreover, visibility updates can capture public and private announcements of visibility atoms and negations thereof.

We call our logic DEL-PAO: Dynamic Epistemic Logic of Propositional Assignment and Observation. The paper is organized as follows: sections 2 and 3 introduce language and semantics of DEL-PAO. Sections 4 and 5 contain an axiomatization and the complexity result. Section 6 illustrates our logic by two applications: the embedding of announcements and a modeling of the gossip spreading problem. Section 7 discusses related work and Section 8 concludes. 1Let Prop be a countable non-empty set of propositional variables and let Agt be a finite non-empty set of agents. Atomic formulas of our language are sequences of visibility operators followed by propositional variables. The formal definition is as follows.

The set of observability operators is OBS = {S i : i ∈ Agt} ∪ {JS }, where S i stands for individual visibility of agent i and JS stands for joint visibility of all agents. The set of all sequences of visibility operators is noted OBS * and the set of all non-empty sequences is noted OBS + . We use σ , σ ′ , . . . for elements of OBS * . Finally, the set of atomic formulas is ATM = {σ p : σ ∈ OBS * , p ∈ Prop}. The elements of that set are also called visibility atoms, or atoms for short. For example, JS S 2 q reads "all agents jointly see whether agent 2 sees the value of q"; in other words, there is joint attention in the group of all agents concerning 2's observation of q. We use α, α ′ , . . . , β, β ′ , . . . for elements of ATM .

The language of DEL-PAO is then defined by the following grammar:

π ::= +α | -α | π; π | π ⊔ π | ϕ? ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | K i ϕ | CK ϕ | [π]
ϕ where α ranges over ATM and i over Agt.

Our atomic programs are assignments of truth values to atoms from ATM : +α makes α true and -α makes α false. Complex programs are constructed with dynamic logic operators: π; π ′ is sequential composition, π⊔π ′ is nondeterministic choice, and ϕ? is test. Just as in dynamic logic, the formula [π]ϕ reads "after every execution of π, ϕ is true". The formula K i ϕ reads "i knows that ϕ is true on the basis of what she observes", and CK ϕ reads "all agents jointly know that ϕ is true on the basis of what they jointly observe". Our epistemic operators account for forms of individual and common knowledge that are respectively obtained via individual observation and joint observation of facts. This differs therefore conceptually from the classical operators of individual and common knowledge as studied in the area of epistemic logic [START_REF] Fagin | Reasoning about Knowledge[END_REF]. We will come back to this in Section 3.4.

The other boolean operators ⊤, ⊥, ∨, → and ↔ are defined as usual, and K i ϕ abbreviates ¬K i ¬ϕ . The program skip abbreviates ⊤? and fail abbreviates ⊥?. We also use the abbreviation π k , for k ≥ 0, inductively defined by π 0 = skip and

π k+1 = π k ; π.
The set of atomic formulas of ATM occurring in the formula ϕ is noted ATM (ϕ); the set ATM (π) is defined similarly. For example, ATM (q?; +S 2 p) = {q, S 2 p} and ATM ([π]S 1 JS p → q) = {q, S 2 p, S 1 JS p}. (So JS p is not an atom of the latter.) The length of formulas ϕ and programs π, noted length(ϕ) and length(π), is the number of symbols used to write them down, where we do not count [, ] and parentheses and consider that the length of JS , CK , agent names and propositional variables is 1. For example, length(S 2 S 2 p) = 5 and length([+S 2 p]JS p ∧ q) = 8.

We define valuations and stipulate constraints that are motivated by the requirement that visibility information should be introspective and that joint visibility should imply individual visibility. We then define indistinguishability relations between valuations and interpret formulas and programs.

Introspective Valuations

A valuation is a subset of the set of atoms ATM . A valuation V ∈ 2 ATM is introspective if and only if the following hold, for every α ∈ ATM and i ∈ Agt:

S i S i α ∈ V (C1) JS JS α ∈ V (C2) JS S i S i α ∈ V (C3) if JS α ∈ V , then S i α ∈ V (C4) if JS α ∈ V , then JS S i α ∈ V (C5)
The set of all introspective valuations is noted INTR.

(C1) is about introspection of individual sight: an agent always sees whether she sees the value of an atom. (C2) requires the same for joint sight; indeed, if JS α is true then JS JS α should be true by introspection, and if JS α is false then all agents jointly see that at least one of them has broken eye contact. (C3) forces the first to be common knowledge. (C4) guarantees that joint visibility implies individual visibility. Together with (C2), (C5) guarantees that JS α ∈ V implies JS σ α ∈ V for σ ∈ OBS * . 2 The constraints (C4) and (C5) ensure that JS α ∈ V implies σ α ∈ V for σ ∈ OBS + . This motivates the following relation of introspective consequence between atoms: α ❀ β iff either α = β, or α = JS α ′ and β = σ α ′ for some σ ∈ OBS + .

Closure under introspective consequence characterizes introspective valuations.

Proposition 1. A valuation V ⊆ ATM is introspective if and only if, for every α, β ∈ ATM and i ∈ Agt: Observe that we do not impose the constraint "if σ α ∈ V for every σ ∈ OBS * then JS α ∈ V ", which corresponds to the greatest fixed point definition of the operator of common knowledge from shared knowledge. We will comment on this in Section 3.4.

σ S i S i α ∈ V for every σ ∈ OBS * (1) σ JS α ∈ V for every σ ∈ OBS + (2) if α ∈ V and α ❀ β then β ∈ V (3) 

Indistinguishability Relations

Two valuations are related by the indistinguishability relation for agent i, noted ∼ i , if every α that i sees has the same value. Similarly, we have a relation ∼ Agt for joint indistinguishability. They are defined as follows:

V ∼ i V ′ iff S i α ∈ V implies V (α) = V ′ (α) V ∼ Agt V ′ iff JS α ∈ V implies V (α) = V ′ (α) with V (α) = V ′ (α) when either α ∈ V and α ∈ V ′ , or α / ∈ V and α / ∈ V ′ .
The binary relations ∼ i and ∼ Agt are reflexive. They are neither transitive nor symmetric: for example, ∅ ∼ i V for every V ⊆ ATM , while V ∼ i ∅ as soon as there is a p such that p and S i are in V . However, both properties hold on valuations satisfying the introspection constraints (C1) and (C2).

Proposition 2. The relation ∼ Agt and every ∼ i are equivalence relations on INTR.

Lemma 1. Let V ∈ INTR, V ′ ∈ 2 ATM . If V ∼ i V ′ or V ∼ Agt V ′ then V ′ ∈ INTR.

Truth Conditions and Validity

Given an introspective valuation V , our update operations add or remove atoms from V . This requires some care: we want the resulting valuation to be introspective. For example, removing S i S i p should be impossible. Another example is when V does not contain S i p: then V ∪ {JS p} would violate (C4). So when adding an atom to V we also have to add all its positive consequences. Symmetrically, when removing an atom we also have to remove its negative consequences. Let us define the following:

Eff + (α) = {β ∈ ATM : α ❀ β} Eff -(α) = {β ∈ ATM : β ❀ α}
Clearly, when V is introspective then both V ∪ Eff + (α) and V \ Eff -(α) are so, too (unless α is valid). Now the truth conditions are as follows:

V |= α iff α ∈ V V |= ¬ϕ iff V |= ϕ V |= ϕ ∧ ψ iff V |= ϕ and V |= ψ V |= K i ϕ iff V ′ |= ϕ for all V ′ such that V ∼ i V ′ V |= CK ϕ iff V ′ |= ϕ for all V ′ such that V ∼ Agt V ′ V |= [π]ϕ iff V ′ |= ϕ for all V ′ such that V R π V ′
where R π is a binary relation on valuations that is defined (by mutual recursion with the definition of |=) by:

V R +α V ′ iff V ′ = V ∪ Eff + (α) V R -α V ′ iff V ′ = V \ Eff -(α) and α is not valid in INTR V R π 1 ;π 2 V ′ iff there is U such that V R π 1 U and U R π 2 V ′ V R π 1 ⊔π 2 V ′ iff V R π 1 V ′ or V R π 2 V ′ V R ϕ? V ′ iff V = V ′ and V |= ϕ
The relation R π is defined just as in PDL for the program operators ;, ⊔ and ?. The interpretation of assignments is designed in a way such that we stay in INTR: the program +α adds all the positive consequences of α; the program -α fails if α is valid in INTR and otherwise removes all the negative consequences of α. For example, we never have V R -S 1 S 1 p V ′ , i.e., the program -S 1 S 1 p always fails. In contrast, the program -S 1 S 2 p always succeeds, and we have V R -S 1 S 2 p (V \ {S 1 S 2 p, JS S 2 p, JS p}) because the only atoms-beyond S 1 S 2 p itself-whose consequence is S 1 S 2 p are JS S 2 p and JS p. Therefore V |= [-S 1 S 2 p]JS p for every V . 

Lemma 2. Let V ∈ INTR and V R π V ′ . Then V ′ ∈ INTR. Proposition 3. For every V ∈ INTR, i ∈ Agt and
. Let V, V ′ ∈ 2 ATM such that V (α) = V ′ (α) for every α ∈ ATM (ϕ). Then V |= ϕ if and only if V ′ |= ϕ.
This proposition will be instrumental in the rest of the paper. Observe that it does not hold when ϕ contains epistemic operators. For example, the truth value of K i p depends on that of S i p, which however does not occur in ATM (K i p).

Discussion

Both the operators of individual knowledge and the operator of common knowledge of DEL-PAO satisfy all the principles of the standard epistemic logic S5. There are also some further validities of DEL-PAO, for example the S5-invalid formula K i (p ∨ q) → (K i p ∨ K i q); cf. the axiom Red K,∨ below. This is a strong principle: to give an example, if one knows that the butler or the gardener was the murderer then one knows which of them it was. It is however shared by all visibility-based epistemic logics.

Our common knowledge operator obeys the fixed point axiom: CK p → p ∧ i∈Agt K i CK p . This is ensured by the fact that by constraints (C2) and (C4), the formula i∈Agt S i JS p is valid in INTR. Our notion of common knowledge is however weaker than standard common knowledge because the induction axiom

ϕ ∧ CK ϕ → i∈Agt K i ϕ → CK ϕ is invalid in INTR.
Beyond the technical reason for that choice (such an infinitary constraint cannot be captured by formula built from visibility atoms) we follow [START_REF] Lorini | Direct and indirect common belief[END_REF][START_REF] Herzig | Logics of knowledge and action: critical analysis and challenges[END_REF] and assume that such a principle is too strong for a logic of common knowledge.

The axiomatization of DEL-PAO is given by:

the axioms of CPL (Classical Propositional Logic); -the reduction axioms for epistemic operators:

K i α ↔ S i α ∧ α (Red K,α ) CK α ↔ JS α ∧ α (Red CK ,α ) K i ¬α ↔ S i α ∧ ¬α (Red K,¬ ) CK ¬α ↔ JS α ∧ ¬α (Red CK ,¬ ) K i (ϕ ∧ ϕ ′ ) ↔ K i ϕ ∧ K i ϕ ′ (Red K,∧ ) CK (ϕ ∧ ϕ ′ ) ↔ CK ϕ ∧ CK ϕ ′ (Red CK ,∧ ) K i α∈A + α ∨ α∈A - ¬α ↔ α∈A + K i α ∨ α∈A - K i ¬α (Red K,∨ ) CK α∈A + α ∨ α∈A - ¬α ↔ α∈A + CK α ∨ α∈A - CK ¬α (Red CK ,∨ )
the reduction axioms for dynamic operators:

[π; π ′ ]ϕ ↔ [π][π ′ ]ϕ (Red ; ) [π ⊔ π ′ ]ϕ ↔ [π]ϕ ∧ [π ′ ]ϕ (Red ⊔ ) [ϕ?]ϕ ′ ↔ ϕ → ϕ ′ (Red ? ) [+α]¬ϕ ↔ ¬[+α]ϕ (Red +α,¬ ) [-α]¬ϕ ↔ ⊤ if α is valid in INTR ¬[-α]ϕ otherwise (Red -α,¬ ) [+α](ϕ ∧ ϕ ′ ) ↔ [+α]ϕ ∧ [+α]ϕ ′ (Red +α,∧ ) [-α](ϕ ∧ ϕ ′ ) ↔ [-α]ϕ ∧ [-α]ϕ ′ (Red -α,∧ ) [+α]β ↔ ⊤ if α ❀ β β otherwise (Red +α ) [-α]β ↔      ⊤ if α is valid in INTR ⊥ if α is not valid in INTR and β ❀ α β otherwise (Red -α )
the introspection axioms:

S i S i α (Vis C1 ) JS JS α (Vis C2 ) JS S i S i α (Vis C3 ) JS α → S i α (Vis C4 ) JS α → JS S i α
(Vis C5 ) -the rule of Modus Ponens and the rules of inference for K i , CK, and [π]:

ϕ ↔ ϕ ′ K i ϕ ↔ K i ϕ ′ ϕ ↔ ϕ ′ CK ϕ ↔ CK ϕ ′ ϕ ↔ ϕ ′ [π]ϕ ↔ [π]ϕ ′ Theorem 1.
The axiomatization of DEL-PAO is sound and complete.

Theorem 2. The DEL-PAO satisfiability and DEL-PAO model checking problems are both Pspace-complete.

We devote the rest of the section to the proof of this result. We start by proving that all epistemic operators can be eliminated in polynomial time. We then show interreducibility of model and satisfiability checking. We finally establish lower and upper bounds by embedding QBF into DEL-PAO and DEL-PAO into DL-PA.

Elimination of Epistemic Operators

Let us define the following programs:

π i,α = S i α? ⊔ (¬S i α?; (+α ⊔ -α)) π Agt ,α = JS α? ⊔ (¬JS α?; (+α ⊔ -α))
The first checks whether i sees α, and if not, varies the truth value of α; the second does the same but for joint visibility. Then for a set of atoms A = {α 1 , ..., α n }, we define:

π i,A = π i,α 1 ; ...; π i,α n π Agt,A = π Agt,α 1 ; ...; π Agt,α n
We suppose that the program is skip if the set A is empty.

We did not impose any ordering on atoms in A; this will not influence the program execution. More details can be found in the long version of the paper. Proposition 5. Let ϕ be a DEL-PAO formula without epistemic operators. Then

K i ϕ ↔ [π i,ATM (ϕ) ]ϕ CK ϕ ↔ [π Agt,ATM (ϕ) ]ϕ are valid in INTR.
Proposition 5 can be turned into a procedure eliminating epistemic operators: it suffices to iterate the application of the equivalences, starting with the innermost operators. Procedure 1. While there is an epistemic operator in ϕ:

1. if there exists a subformula K i ϕ ′ such that ϕ ′ does not contain epistemic operators, replace ϕ by [π i,ATM (ϕ) ]ϕ ′ ; 2. if there exists a subformula CK ϕ ′ such that ϕ ′ does not contain epistemic operators, replace ϕ by [π Agt,ATM (ϕ) ]ϕ.

Proposition 6. For every DEL-PAO formula ϕ, there exists a DEL-PAO formula ϕ ′ without epistemic operators such that ϕ ↔ ϕ ′ is valid in INTR. The length of ϕ ′ is polynomial in length(ϕ).

indeed be checked that with these definitions all the reduction axioms for PAL are valid in our logic (see the full version of the paper). Beyond that we can also easily model private announcements of the same kind of formulas. Read j : ψ! as "ψ is privately announced to agent j". Then: j : p! = p?; +S j p, j : ¬p! = ¬p?; +S j p and j : K i p! = K i p?; +S j p; +S j S i p.

Let us illustrate this by the Spreading Gossip problem, of which a detailed study can be found in [START_REF] Van Ditmarsch | Dynamic Epistemic Logic, 1st edn[END_REF]. Six friends each know a secret. When they call each other, they exchange every secret that they know. The problem is to find how many calls are necessary to spread all secrets among all friends. It was proven ( [START_REF] Baker | Gossips and telephones[END_REF], among others) that the minimal number of calls is 8; for example, if we write ij the fact that i calls j (or that j calls i), the following sequence spreads all secrets: 12, 34, 56, 13, 45, 16, 24, 35 [START_REF] Van Ditmarsch | Dynamic Epistemic Logic, 1st edn[END_REF]. Let us model this with private announcements. With Agt = {i : 1 ≤ i ≤ 6} and s i meaning that i has the secret s i , we define the program Call ij , for i, j ∈ Agt, as: is true at the initial state V 0 defined as:

Call ij = ((S i
V 0 = {α : α is valid in INTR} ∪ {s i : i ∈ Agt} ∪ {S i s i : i ∈ Agt }.
This establishes that the above sequence is correct. Furthermore, the formula expresses that only 7 calls are not enough. Both are true at V 0 . Note that our modelling does not account for second-order knowledge. In order to do so we should modify the program Call ij in a way such that when S i s 1 is true then not only j : s 1 ! is performed, but also i : S j s 1 !. With that modelling we could check not only that everybody knows each secret, but also that everybody knows that everybody knows each secret. In the same vein, thirdorder knowledge can be attained by adding j : S i S j s 1 !, and so on.

Beyond that, we may also want to model that Call ij leads to common knowledge of i and j. This requires the extension of DEL-PAO by visibility atoms with non-empty sets of agents as arguments. However, secrets can never become common knowledge of all agents. This can also be highlighted by the Two Generals' problem where common knowledge cannot be reached. Details are in the full version of the paper.

As said in the introduction, our logic is in the tradition of several other logics developed in the past few years. In the logic ECL-PC(PO) [START_REF] Van Der Hoek | Knowledge and control[END_REF], visibility is represented by a set of atoms for each agent, containing the variables the agent observes. This does not allow for higher-order observations such as "i observes whether j observes p". Instead and as already mentioned, the observational capabilities of each agent become common knowledge among all agents. The logic LRC [START_REF] Van Der Hoek | A logic of revelation and concealment[END_REF] allows to express, as programs, that a variable is revealed to an agent or concealed from her. Semantically, formulas are interpreted over pointed models with a visibility set for each agent; revealing a variable p to an agent i will add p to i's visibility set, while concealing p will remove p from i's set. Just as in ECL-PC(PO), who sees what is common knowledge among all agents.

The logic of knowing whether [6] adds an operator standing for "i knows whether ϕ" to the language of standard epistemic logic, interpreted as "ϕ has the same value in all indistinguishable worlds for i". This can be compared to our visibility atoms S i which express the same notion on atoms.

In Flatland Logic [START_REF] Balbiani | Agents that look at one another[END_REF], visibility is further grounded on geometry in order to give semantics to epistemic operators: an agent can (or cannot) observe the positions of other agents and can reason about what they observe. Visibility can be higher-order and is also fully determined by geometric constraints. The main difference with our logic is that in Flatland Logic, agents see other agents instead of propositional variables.

Conclusion

We have introduced a dynamic epistemic logic of propositional assignment and observation DEL-PAO which accounts for higher-order and joint observation as well as updates thereof. It avoids the strong hypothesis of common knowledge of visibility that other observation-based epistemic logics make. It is remarkable that the addition of higher-order observability and in particular of joint observability comes without supplementary cost: both satisfiability and model checking remain PSpace-complete. This contrasts with standard logics of common knowledge: there, satisfiability checking is ExpTime-hard [START_REF] Halpern | A guide to completeness and complexity for modal logics of knowledge and belief[END_REF].

A simple extension of our logic is to generalize the operator of common knowledge of all agents CK to operators taking any subset of Agt as arguments. It suffices to introduce visibility atoms JS J α, one per group of agents J. Another interesting generalization is to consider belief instead of knowledge. A way to achieve this is to replace S i by two operators O i and C i , respectively meaning that i has an opinion on something and that i is correct on something. This requires other constraints on valuations that should match the properties of belief. Further possible extensions concern the dynamic part: following [START_REF] Herzig | A dynamic logic of normative systems[END_REF], one may add atoms representing that i controls some propositional variable p, in the sense that i can change the truth value of p at will. One may then associate to each assignment an author, which is the agent performing the assignment. As shown in [START_REF] Herzig | A dynamic logic of normative systems[END_REF], this allows to embed Coalition Logic of Propositional Control [START_REF] Van Der Hoek | Knowledge and control[END_REF]. It remains to be worked out how this combines with higher-order observations.
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  program π, V is only related to valuations in INTR by ∼ i , ∼ Agt and R π . When V |= ϕ we say that V is a model of ϕ. The set of (not necessarily introspective) models of ϕ is noted ϕ . A formula ϕ is satisfiable in INTR if ϕ has an introspective model, i.e., if ϕ ∩INTR = ∅. For example, JS p∧¬S i p has a model, but does not have an introspective model and is therefore unsatisfiable in INTR. A formula ϕ is valid in INTR if INTR ⊆ ϕ . We also say that ϕ is a validity of DEL-PAO . For example, ¬[-S 1 S 2 p]JS p is valid in INTR. Note that ¬β → [+α]¬β is valid in INTR if and only if α ❀ β.

Formulas without epistemic operators only depend on atoms occurring in it. Proposition 4. Let ϕ be without epistemic operators

  s 1 ?; j : s 1 !) ⊔ ¬S i s 1 ?); ...; ((S i s 6 ?; j : s 6 !) ⊔ ¬S i s 6 ?); ((S j s 1 ?; i : s 1 !) ⊔ ¬S j s 1 ?); ...; ((S j s 6 ?; i : s 6 !) ⊔ ¬S j s 6 ?)Our program expresses that i tells all she knows to j, and conversely; each call makes each atom known by one agent known to both. Then the formula Call 12 ; Call 34 ; Call 56 ; Call 13 ; Call 45 ; Call 16 ; Call 24 ; Call 35

	i∈Agt	K i	j∈Agt	s j

A long version of this paper including proofs and a further case study (the coordinated attack problem) is available at http://www.irit.fr/˜Andreas.Herzig/ P/Lori15.html.

We need (C2) when σ contains JS : in order to prove that JS α ∈ V implies JS S i JS α ∈ V we use that JS JS α ∈ V by (C2) and that JS JS α ∈ V implies JS S i JS α ∈ V by (C5).
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For formulas without epistemic operators, satisfiability and model checking have the same complexity. Proposition 7. Let ϕ be a DEL-PAO formula without epistemic operators such that ATM (ϕ) = {α 1 , . . . , α n }. Let π = (+α 1 ⊔ -α 1 ); . . . ; (+α n ⊔ -α n ). Then:

The length of the program (+α 1 ⊔-α 1 ); . . . 

The length of +α 1 ; . . . ; +α n ; -β 1 ; . . . ; -β m is again linear in length(ϕ). It follows from Proposition 8 that the model checking problem can be polynomially reduced to the satisfiability problem.

We observe that from a practical point of view, model checking requires a finite valuation. For formulas without epistemic operators such valuations can always be obtained: due to Proposition 4 we have V |= ϕ iff V ∩ ATM (ϕ) |= ϕ.

Lower Bound

In DEL-PAO we can express Quantified Boolean Formulas (QBF), whose satisfiability problem is Pspace-complete. Details can be found in the full version of the paper.

Dynamic Logic of Propositional Assignments

In order to establish the upper bound we will embed our logic into the star-free fragment of Dynamic Logic of Propositional Assignments DL-PA [START_REF] Herzig | A dynamic logic of normative systems[END_REF][START_REF] Balbiani | Dynamic logic of propositional assignments: a well-behaved variant of PDL[END_REF], whose satisfiability problem is Pspace-complete. We briefly recall this logic.

Just as the language of DEL-PAO, the language of DL-PA has formulas and programs. They are defined by the following grammar:

where α ranges over ATM and i over Agt. So the language has the same atoms as DEL-PAO, but no epistemic operators. Formulas are interpreted in valuations V ∈ 2 ATM in exactly the same way as in DEL-PAO, except that atomic programs do not take introspective consequences into account. We have:

Upper Bound

The final step is to polynomially translate non-epistemic DEL-PAO formulas and programs into DL-PA formulas and programs. The introspection constraints will be taken into account by translating DEL-PAO assignments into appropriate DL-PA programs.

Given The grande finale follows from propositions 6, 7, 8 and 10 and because tr (ϕ) can be computed in time polynomial in length(ϕ). Theorem 3. In DEL-PAO, both satisfiability and model checking are PSpacecomplete.