
1

New Adaptive Filters as Perceptual Preprocessing for
Rate-Quality Performance Optimization of Video Coding

Eloïse Vidal, Member IEEE, Nicolas Sturmel, Christine Guillemot, Fellow IEEE, Patrick Corlay and François-Xavier
Coudoux, Member IEEE

Abstract—In this paper, we introduce two perceptual filters as pre-
processing techniques to reduce the bitrate of compressed high-definition
(HD) video sequences at constant visual quality. The goal of these
perceptual filters is to remove spurious noise and insignificant details from
the original video prior to encoding. The proposed perceptual filters rely
on two novel adaptive filters (called BilAWA and TBil) which combine the
good properties of the bilateral and Adaptive Weighting Average (AWA)
filters. The bilateral and AWA filters being initially dedicated to denoising,
the behavior of the proposed BilAWA and TBil adaptive filters is first
analyzed in the context of noise removal on HD test images. The first set
of experimental results demonstrates their effectiveness in terms of noise
removal while preserving image sharpness. A just noticeable distortion
(JND) model is then introduced in the novel BilAWA and TBil filters
to adaptively control the strength of the filtering process, taking into
account the human visual sensitivity to signal distortion. Visual details
which cannot be perceived are smoothed, hence saving bitrate without
compromising perceived quality. A thorough experimental analysis of
the perceptual JND-guided filters is conducted when using these filters
as a pre-processing step prior to MPEG-4/AVC encoding. Psychovisual
evaluation tests show that the proposed BilAWA pre-processing filter leads
to an average bitrate saving of about 19.3% (up to 28.7%) for the same
perceived visual quality. The proposed new pre-filtering approach has
been also tested with the new state-of-the-art HEVC standard and has
given similar efficiency in terms of bitrate savings for constant visual
quality.

Index Terms—Video Coding; Pre-processing; Image Filtering; Adap-
tive Weighting Average (AWA) Filter; Bilateral Filter; Just Noticeable
Distortion (JND); Image Quality.

I. INTRODUCTION

IT is well-known that removing spurious noise or attenuating per-
ceptually insignificant details by video filtering prior to encoding

can improve the rate-quality performance of encoders [1]. Traditional
noise filtering approaches using linear filters which compute the
value of the filtered image as a weighted average of pixel values
in the neighborhood are often employed [2], [3], [4], [5]. To cite
a few examples, in conventional Gaussian low-pass filtering, the
weights decrease with the distance from the filtered pixel. Nearby
pixels generally share a similar value due to slow variations of
luminance over space. Averaging them is a way of increasing the
spatial correlation, hence compression efficiency, while introducing
a negligible distortion.

However, in areas where the assumption of stationarity is not
verified (e.g. corners, edges), the linear filtering will not only at-
tenuate noise but will also lead to a strong attenuation of the high
frequency structures and introduce blur. Therefore, there has been
a remarkable effort to find nonlinear and adaptive operators which
would smooth or increase correlation in smooth areas and at the
same time better preserve image structures. Most adaptive filtering
techniques use the standard deviation of those pixels within a local
neighborhood to calculate a new pixel value. These methods include
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anisotropic diffusion [6], bilateral filtering [7], [8] and adaptive
weighted averaging [9]. Anisotropic diffusion uses the gradient of the
image to guide the diffusion process, avoiding smoothing the edges
[6]. Bilateral filtering first introduced in [7] is a non-linear filtering
technique utilizing both the spatial and photometric distances to better
preserve signal details. The link between anisotropic diffusion and
bilateral filtering has been established in [10]. Bilateral filtering is
actually the product of two local filters, one based on a measure of
similarity between the pixel amplitudes - e.g. luminance channel of
colored images - in a local neighborhood and the other one based
on a geometric spatial distance. Both kernels are Gaussian kernels.
An Adaptive Weighted Averaging (AWA) filter is proposed in [9]
and used for motion-compensated filtering of noisy video sequences.
Given its use in the temporal dimension, the dimension of the AWA
filter support is in general small. It has also been successfully used
in adaptive filtering [11].

This paper addresses the question of choosing a real time adaptive
pre-processing filter prior to encoding which would maximize the
bitrate saving while preserving the visual quality. The out-loop
prefiltering approach applied prior to the encoding stage has been
retained in the present work because it has the great advantage to
be universal, i.e. it can easily be applied to any video encoder. Note
here that we stress the term ’real time’ as the chosen implementation
is expected to meet high performance (30 or 60 fps high-definition
video filtering) on a standard workstation. This is the reason why
recently proposed denoising filter methods, such as the Non Local
Means algorithm [12], will not be considered as they provide very
high performance but at the cost of even higher computational time.
Wavelet based methods will also not be accounted for [46], as
they provide a complexity which is much higher than conventional
spatial filtering. On top of that, any successful filtering done in the
spatial domain can also be applied to the wavelet domain as it was
successfully done in [13] with bilateral filtering.

The contributions of the paper are two-folds:
1) We first consider the well known AWA and bilateral filters

and search for the best compromise between denoising performance
(minimal absolute distance to the original) and lowest subjective
visual distortion (lack of sharpness). The weights of the AWA filter
start decreasing once the difference between the pixel luminance
values exceeds a given threshold. Above this threshold, the decaying
rate of the AWA filter is slow, which leads to a stronger smoothing
effect when increasing the size of the filtering kernel. In contrast,
the weights of the bilateral similarity kernel decay faster both in
the similarity and geometric dimensions. The bilateral filter therefore
better preserves edges and textures than the AWA filter does when
the size of the support increases.

These observations naturally led us to introduce two novel adaptive
filters designed around the bilateral paradigm (geometric kernel
+ similarity kernel) with however different approaches. These fil-
ters, called BilAWA and Thresholded Bilateral (TBil), improve the
paradigm of bilateral filtering, and are fast enough for real-time
computation. They combine the good properties of the AWA and
bilateral filters and enable a larger filtering support, with the aim
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to increase the noise and insignificant details removal performance
while preserving the image structure and textures.

The proposed filters are first studied in a context of noise removal
in High Definition (HD) images, using four different quality metrics:
two of them express the distance in regards to the inverse problem
of denoising, while the two others describe the overall sharpness
quality of the filtered images. Experimental results show that the two
proposed adaptive filters outperform the AWA and bilateral filters in
terms of denoising while preserving the image texture and structure.

2) Perceptual pre-filtering is derived from the novel filters by
integrating a Just Noticeable Distortion (JND) model to vary the
filtering strength according to the visual significance of the image
content. Indeed, the first set of experiments shows that the TBil and
BilAWA filters offer the best compromise between noise removal and
preservation of image sharpness compared to the original bilateral
and AWA filters. This led us to retain these two filters to design the
perceptual pre-filtering technique. To further remove details which
are perceptually insignificant, a Just Noticeable Distortion model
(JND) [14] is introduced to control the strength of the filters. Note
that, as the filters themselves are not dependent on the JND model,
other JND pixel-domain models, such as for example described
in [16], could be used. The JND-guided BilAWA and TBil filters
have been used as prefilters prior to MPEG-4/AVC encoding for
increasing the rate/quality performances. Experimental results based
on psychovisual evaluation tests show that a significant rate saving
(up to 28.7% and 19.3% on average) can be achieved thanks to
the pre-filters with equivalent perceived visual quality. The proposed
new pre-filtering approach has been also tested with the new state-
of-the-art HEVC standard and has given similar efficiency in terms
of bitrate savings for constant visual quality. These average bitrate
reduction ratios are comparable with some others obtained with
methods recently described in the literature [52][49][48].

The paper is organized as follows. Section II gives the background
in video pre-processing for compression as well as a brief overview
of the original AWA and bilateral filters. Section III is dedicated to
image quality discussion. Section IV presents the proposed adaptive
filters based on the bilateral filtering paradigm and analyzes their be-
haviour for noise removal. Section V introduces the novel perceptual
filters and analyzes their behaviour in light of the JND maps. Section
VI presents the experimental protocol and discusses the results
obtained with both perceptual filters under different MPEG-4/AVC
and HEVC codec configurations (quantization parameter values and
GOP structures). Section VII gives the conclusion and further work.

II. PRE-PROCESSING FOR VIDEO COMPRESSION: BACKGROUND

A. Pre-filtering for rate saving

Since the beginning of image and video compression codecs,
conventional denoising filters have been applied prior to the encoding
stage in order to reduce the undesirable high frequency content which
degrades the encoder performances [4]. The external denoising filter
can be controlled by the encoder parameters in a two-pass encoding
process. For example, the authors of [17] exploit the motion vectors
and the residual information energy to control the strength of a low-
pass filter applied before a MPEG-2 coder. In contrast the authors
of [18] use the motion vectors to reduce the complexity of a motion
compensated 3-D filter. The denoising process can be embedded into
the encoder by applying a spatial denoising filter on the residual
information [19], or a frequential-domain filter on the wavelet [46]
or DCT coefficients [20] [21]. Recently, the proposed denoising
algorithm in [45] combines motion estimation using optical flow and
patch processing.

Even when the video sequences are not altered by the presence of
noise, which is a common situation in video professional applications,

adaptive low-pass filters are still useful to help the encoding stage
at low bitrates by reducing the high-frequency content before the
quantization stage [22] [23]. However, the adaptive filters suffer from
smoothing effect which is annoying for high quality applications.

These observations have motivated several studies to control per-
ceptually a low-pass filter hence reducing the visually insignificant
information. Thus, a saliency map is employed in [24] to control
both gaussian kernels of a bilateral filter to smooth the non saliency
part of a video sequence prior to H.264 encoding. In [47], the
authors present a video processing scheme based on a foveation
filter which is guided by a sophisticated perceptual quality-oriented
saliency model. In [53] [25] [52], an anisotropic filter controlled
by a contrast sensitivity map is applied before x264 encoding. The
proposed pre-processing filter has the particularity of depending on
a number of display parameters, e.g. the viewing distance or the
ambient luminous contrast. Recently, the authors in [51] proposed
an original method for preprocessing the residual signal in the
spatial domain prior to transform, quantization and entropy coding.
In order to do that, the authors introduce a HVS-based color contrast
sensitivity model which accounts for visual saliency properties. For
video conferencing applications, a Region-of-Interest model [26] and
a saliency map [27] were employed to apply low-pass filter on the
background while preserving the human face which concentrates
the visual attention. JND (Just-Noticeable distortion) models have
also be employed to control a gaussian filter applied on superpixels
before HEVC encoding [15], to reduce the amplitude of the residual
information in MPEG-2 [14]. They have also been integrated to the
quantization process to reduce the non visible frequential coefficients
in H.264 [28] and HEVC [29] [48] [49]. Other video coding schemes
as [50] use the structural similarity (SSIM) index instead of the JND
criterion for rate-distortion optimization.

In our study, we consider the constraints of live streaming applica-
tions which require low latency and real time encoding. Consequently,
we propose a low complexity external pixel-domain pre-filter con-
trolled by an a priori model which does not need information from
a first pass encoding. The reasons of developing an external pixel-
domain pre-filter are two-folds: firstly, our solution is independent
of the video codec used after the pre-processing step. Secondly,
the main drawback of most current video compression standards
is the presence of well-known blocking artifacts [38]: when the
compression ratio increases, block boundaries tend to become visible.
The various techniques applied on processed blocks at the encoder
tend towards the same artifacts. By appling a pixel-domain filter on
the entire frame prior the encoding process, our solutions will not
induce blocking artifact. This is illustrated in Figure 1, where we
compare the effect of increasing the Quantization Parameter value
with respect to the perceptual filter for an equivalent bitrate reduction.
Clearly, coarser quantization strengthens the blocking effect in the
reconstructed image (see areas circled in red), while pre-filtering
introduces a slight blurring effect which is much less annoying than
blockiness for the end user.

B. Adaptive filtering

We focus on simple well-known spatial filters in order to obtain
a low complexity implementation. In this Section we review the
adaptive weighting average (AWA) [9] and bilateral [7] filters and
then study the effect of their similarity kernels as well as of the
geometric kernel present in the bilateral filter. While the first filter
is very simple to implement, the second one is more elaborated
and constitutes a reference in the field of noise reduction, as many
elaborated filters have been based on it.

The AWA filter of parameters ε and a is defined by a so-called
similarity kernel which computes the weights of the filter as
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QP 27 BilAWA JND 11x11 QP 27TBil JND 11x11 QP 27QP 28

Figure 1. Comparison between coarser quantization and pre-filtering: the first and second lines show zoomed areas from the Soccer sequence, the third and
fourth lines from the CrowdRun sequence. In the first column, the content has been encoded with H.264/AVC (QP=27, IBBP12). Encoding with coarser
quantization QP=28 leads to a bitrate reduction of 13.5% for the Soccer sequence and of 12.9% for the CrowdRun sequence, but at the expense of visible
blocking effect in the reconstructed image (second column, see areas circled in red). In comparison, our perceptual pre-filtering introduces a slight blur which
is much less annoying than blockiness for the end user, for a similar bitrate reduction: ∆Bitrate = -9.2% for the Soccer sequence and ∆Bitrate = -7.4% for
the CrowdRun sequence (third column). ∆Bitrate = -16.0% for the Soccer sequence and ∆Bitrate = -14.2% for the CrowdRun sequence (fourth column).

hi,AWA =
1

1 + a ∗ max(ε2, ||I(x)− I(xi)||2)
, (1)

where I(x) is the amplitudinal value of pixel at position x = (x, y),
and hi,AWA is the filter coefficient at position xi = (xi, yi), i ∈
[1, N ] within a N × N filtering mask centered at position x. The
threshold ε depends on the noise variance, and the differences in
luminance below the threshold ε filter are considered as noise and
are simply averaged to be reduced. The higher ε is, the more the filter
tends to be an averaging filter.

The bilateral filter is instead defined as the product of a similarity
kernel and a geometric kernel which are functions of the amplitudinal
and spatial distances between the pixel at position x being filtered
and its neighboring pixels at positions xi respectively. The weights
of the bilateral filter are computed as

hi,Bil = hg,Bil(x, xi)hs,Bil(x, xi), (2)

where hg,Bil denotes the geometric kernel of variance σ2
g which is

function of the spatial distance given by

hg,Bil(x, xi) = exp(−
||x− xi||

2

2σ2
g

), (3)

and where hs,Bil denotes the similarity kernel of variance σ2
s which

is function of the distance in amplitude between pixels, given by

hs,Bil(x, xi) = exp(−
||I(x)− I(xi)||

2

2σ2
s

). (4)

Figure 2. Illustration of the bilateral process with geometric hg,Bil and
similarity hs,Bil kernels evaluated for the current pixel.

The bilateral filter is well known in order to be a non-iterative
edge-preserving smoothing operator. Its luminance kernel prevents
averaging across edges while still averaging within smooth regions.
This feature is illustrated in Fig. 2. More sophisticated variants exist
(e.g. [30]), but they need side information to guide the filtering
process.

Fig. 3 illustrates the comparison between the similarity kernels for
AWA and bilateral filters. The similarity kernels are different for the
two filters. The AWA kernel filters more because the kernel is more
extended. This is due to the fact that the function e−x decreases faster
than the function 1

x
.
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(a) (b)

Figure 3. Comparison of AWA and bilateral similarity kernels: (a) evolution of
weights for normalized AWA filter kernel as a function of squared luminance
difference and for different threshold values; (b) evolution of weights for
normalized bilateral filter similarity kernel as a function of squared luminance
difference and for different variance values.

Original

Noisy  AWA 3x3,    = 1,    = 40

 Bil. 11x11,     = 40,      = 1.8 AWA 11x11,    = 1,    = 40

Figure 4. Illustrative example of the trade-off between noise reduction and
smoothing performed by the AWA and bilateral filters.

The weights of the AWA filter decrease slowly and identically for
any value of ε. As a consequence, the smoothing effect of the AWA
filter is too strong especially when the size of its support increases.
This is the reason why the filter is in general used with a small
support (e.g.,3x3). In the case of the bilateral filter, the geometric
kernel adds an other reduction of this averaging effect when filtering
pixels far from the center.

III. QUALITY METRICS DISCUSSION

In what follows, we introduce new pre-processing filters derived
from the AWA and bilateral filters described in the previous Section.
It is essential to carefully select the quality metrics used to evaluate

the performances of the studied filters in a meaningful way. In
this work, we mainly focus on the subjective quality metrics as
psychovisual evaluation represent the ground truth for video quality.
The subjective quality evaluation protocol will be detailed in Section
VI. Psychovisual evaluation is also supported by the results of
different objective metrics. Three kinds of objective metrics have been
selected: first, the well-known PSNR and SSIM [32] objective metrics
are used to quantify the similarity between each processed video
frame and the corresponding original one: the more a processed frame
is similar to a reference frame, the more the PSNR and the SSIM
increase. These metrics are used to describe the ability of the filtering
process to recover the original image and to solve the inverse problem
of denoising. Although they do not reflect the perceived quality of
the processed video, they constitute a good indicator of the strength
of the filtering process. Secondly, two blurring effect measures are
applied because blur is known to constitute the predominent artifact
brought by low-pass filtering. Among the existing blur metrics, we
use the Local Phase Coherence Sharpness Index or LPC-SI [33] (a
no-reference blur metric based on the local measure of the phase
coherence) as well as the Marziliano’s blur metric [34] (based on
the overall spread of the edges across the processed image) because
these perceptual metrics exhibit a high correlation with subjective
ratings of blurred images. Note that the less a frame is blurred, the
higher the LPC-SI, while the opposite is true for the Marziliano’s
perceptual blur metric. Finally, a global perceptual full-reference
quality measure has been incorporated as assessment index. Among
the existing metrics, the so-called Feature-Similarity (FSIM) metric
[39] was chosen because of its high consistency with subjective
evaluations. The FSIM metric is a decreasing function of the global
quality, with one means same quality as reference.

IV. THE NEW ADAPTIVE FILTERS

A. New Bilateral Filters

The previous observations reveal two interesting features: (i) The
AWA filter has a thresholded behaviour that exhibits the same filtering
weight for values below ε and (ii) the bilateral filter has the fastest
decay rate and preserves sharpness thanks to the use of a geometric
kernel [31]. In Fig. 4, one can see how the bilateral filter is sharper
than the AWA, and how the AWA induces much more blur with a
large support such as 11x11 pixels. Examples are given for a noise
standard deviation of σn = 20. This leads us to introduce two new
filters which combine those two features.

The first proposed filter, called the BilAWA filter, is defined as the
product of the similarity kernel of the AWA filter by a geometric
kernel, as follows:

hi,BilAWA = hg,BilAWA(x, xi)hs,BilAWA(x, xi), (5)

where the kernel hg,BilAWA is the same as hg,Bil defined in Eq. 3
and the kernel hs,BilAWA is the same as hi,AWA (Eq. 1).

The second filter follows the AWA thresholding principle, but with
a gaussian decay (see Fig. 3.b) and a geometric kernel. It is therefore
called Thresholded Bilateral or TBil. It is described, using the same
notation as Eq. 4, as

hi,TBil = hg,TBil(x, xi)hs,TBil(x, xi), (6)

hs,TBil(x, xi) = min(e(−1

2
), e

(−
||I(x)−I(x

i
)||2

2σ2s
)
). (7)

The threshold of the similarity kernel in Eq. 7 is chosen such that
every value between 1 and σs has the same weight.

The size of the bi-dimensional filtering support is an important
parameter of the pre-filtering algorithm. It has been chosen through
simulations working on a large variety of video sequences. Filters
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Figure 5. Comparison between the bilateral similarity kernel (dotted line,
σs=10), the AWA kernel (BilAWA similarity kernel) (solid line, ε=10) and
the TBil similarity kernel (point, σs=10).

Figure 6. Illustration of the impact of the similarity kernel (c) and the
geometric kernel (d) on the weights of the BilAWA filter (b) for a particular
pixel and its 11x11 neighboors (a).

with squared kernel sizes of 3x3, 5x5, 7x7, 11x11 and 25x25 have
been applied and the 11x11 kernel size has been retained as a
satisfying compromise between introduced blur, bitrate saving and
computational complexity. This 11x11 size is also consistent with
the high-definition context of this work. SDTV filtering applications
widely use bi-dimensional filtering support of 3x3 or 5x5 squared
odd size [43] [44]. Comparing SDTV and HDTV, the 4:3 portion
of a 1080 HDTV image is 1440x1080 or 1555200 pixels. If both
SDTV and HDTV images are displayed at the same height, each
1080 pixel is about 1

4
the size of a SDTV pixel [54]. This factor 4

of the resolution is consistent with the chosen size of 11x11 pixels.
Finally, Figure 5 gives a comparison between the bilateral sim-

ilarity kernel, the AWA kernel (BilAWA similarity kernel) and the
TBil similarity kernel, respectively. It can be noted that the similarity
kernel of the new TBil filter offers an interesting compromise between
the bilateral and AWA kernel decays. The combined effect of the
geometric and similarity kernels as well as the adaptation to the local
image content are illustrated in Figure 6.

B. Performance analysis in the context of noise reduction

We first analyze the behaviour of both the original and the novel fil-
ters in terms of the compromise they yield between removing spurious
noise and preserving image sharpness. In the experiments we consider
eight different images of size 1280 x 720 pixels extracted from a great
variety of well-known high-definition video test sequences (IntoTree,
ParkJoy, MobCal, CrowdRun, Ducks, Ski, Soccer, Parkrun). This
dataset has been designed to cover a wide range of spatial activity
values. These images are corrupted by additive white gaussian noise
with standard deviation values of 10, 20 and 30, respectively. The

standard deviation of the bilateral geometric kernel σg has been fixed
to a value of 1.8 as specified in [13]. Experiments confirmed that this
corresponds to the best value in terms of denoising. In addition, we
have chosen ε =

√
2σn for the AWA filter and σ2

s = 2σ2
n for the

bilateral filter. Here, the performance analysis is limited to objective
metrics evaluation. The distance and blur metrics discussed in Section
III are used for performance assessment. We remind that:

- the PSNR values vary from 0 ( opposite to the reference) to
infinity ( identical to the reference) while the SSIM values vary from
0 ( opposite to the reference) to 1 ( identical to the reference).

- the Marziliano’s metric is an increasing function of the blur
phenomenon while this is the opposite for the LPC-SI metric, with:
LPC-SI=1 when no blur is present.

Results are given in Tables I and II, where one can first see that
increasing the AWA filtering support from 3x3 pixels (column 1)
to 11x11 pixels (column 2) logically leads to an increase of both
distance from the original image and blur at low values of noise
(standard deviation of 10 or 20). For higher value of noise (standard
deviation of 30), the AWA 11x11 filter brings slightly improved
results in terms of distance from the original image, compared to
the 3x3 case, despite of an increase of blur phenomenon.

Table I
DENOISING PERFORMANCES: ABSOLUTE DISTANCE MEASUREMENT

RESULTS. THE HIGHER THE NOTE IS, THE LOWER THE DISTANCE
BETWEEN THE FILTERED IMAGE AND THE ORIGINAL ONE.

σn Distance AWA AWA Bilat. BilAWA Sim. TBil
measures 3x3 11x11 11x11 11x11 11x11 11x11

10 SSIM .854 .836 .845 .860 .838 .862
PSNR[dB] 31.7 30.3 31.4 31.6 31.1 31.7

20 SSIM .683 .684 .668 .712 .659 .714
PSNR[dB] 27.2 26.6 26.8 27.5 26.6 27.5

30 SSIM .546 .558 .536 .585 .523 .598
PSNR[dB] 24.4 24.5 24.2 25.0 24.2 25.1

Table II
DENOISING PERFORMANCES: BLURRING MEASUREMENT RESULTS. THE

HIGHER THE MARZILIANO’S METRIC VALUE IS, THE MORE BLURRING
ARTEFACT IS PERCEPTIBLE, WHILE THE OPPOSITE IS TRUE FOR LPC-SI

METRIC.

σn Blurring AWA AWA Bilat. BilAWA Sim. TBil
measures 3x3 11x11 11x11 11x11 11x11 11x11

10 LPC-SI .925 .918 .926 .923 .926 .927
Marzil 3.72 3.80 3.34 3.77 3.22 3.41

20 LPC-SI .916 .902 .922 .915 .921 .923
Marzil 3.78 3.88 3.29 3.86 3.14 3.42

30 LPC-SI .907 .884 .914 .903 .909 .914
Marzil 3.80 3.92 3.26 3.89 3.09 3.44

When comparing the third and fifth columns of Tables I and II,
the addition of the geometric kernel (Eq. 3) to the similarity kernel
brings a significant improvement both in terms of blur limitation (in
regards to LPC-SI) and distance from the original image (expressed
here in terms of PSNR). Such improvements are also present when
adding the geometric kernel to the AWA 11x11 filter (BilAWA filter,
fourth column).

The BilAWA filter brings a significant improvement in PSNR
compared to the bilateral filter (over 0.7dB for the higher value of
σn) with slightly worse perceptual measurement results. Fig. 7 shows
the differences on two images between the BilAWA and the bilateral
filter for a noise value of 10 (first row) and 30 (second row). One can
see clearly that fine details are better preserved by bilateral filtering
at the expense of remaining noise.
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Original

Noisy Bilateral 11x11 TBil 11x11 BilAWA 11x11

Figure 7. Denoising results obtained with different filters for σn = 10 (second row) and σn = 30 (third row) - Parkrun sequence, enlarged part.

From those results, we can conclude that there is still a sharpness
advantage to the bilateral filter. It seems that the decay of the filter for
large luminance difference values observed in Fig. 3 is too slow for
the AWA kernel. This may explain the decrease in sharpness obtained
with the AWA 11x11 kernel and the BilAWA filter. This raises the
need for the second new filter, called the TBil filter, which uses only
the thresholded feature of the AWA filter while keeping a gaussian
decay.

Results presented in Tables I and II show that all quality metrics
indicate an image quality improvement after denoising using the TBil
filter, except the Marziliano blur metric. However, this latter metric is
clearly in favor of the TBil filter compared to the BilAWA one. The
increase in PSNR compared to the bilateral filter goes up to 0.9dB for
σn = 30. This shows that the TBil filter yields the best compromise
between the bilateral and the AWA filter for noise removal.

V. JUST NOTICEABLE DISTORTION (JND) DRIVEN ADAPTIVE

FILTER

A. Perceptually-Guided Filtering Process

In Section IV, two adaptive filters have been proposed and val-
idated in terms of the trade-off between noise removal and preser-
vation of image sharpness using different metrics. Both filters are
modified versions of the bilateral filter, where the strength of the
filter is controlled by a thresholding operation applied to the similarity
term. The choice of the threshold is an important aspect of the filter
design: in our case, we want to guide the video low-pass filtering to
remove visual information hardly perceptible from the original video
signal before compression, so as to increase the coding efficiency.
By lowering typically the high frequency content of each image of
the pre-processed video sequence, the perceptual pre-filtering process
will lower the image entropy resulting in a reduced amount of data
to be encoded.

For this, we propose to use a just noticeable distortion (JND)
model. Generally speaking, the JND refers to the visibility threshold
below which no changes can be detected in an image by most human
observers. This JND is dependent on properties of the human visual

system (HVS) such as the contrast sensitivity function (CSF) of the
eye or masking properties [35], and is based on local image charac-
teristics. Several JND models have been proposed in recent years in
the literature and applied to the digital video processing and coding
areas. A good overview of these models is provided in [35], [14],
[36]. These models mainly differ in the considered computational
domain, respectively the pixel domain and the frequency domain.
Recently proposed JND models [40], [41], [42] are highly complex
and include some elaborated human visual properties like foveated
masking effects. The JND frequency models are usually block-based
and defined in the DCT domain, since the DCT is widely used in
video processing applications. A JND threshold value is then obtained
for each block from the modelling of spatial and temporal properties
of the HVS in the frequency domain. The other possibility is to
define the JND model in the pixel domain. Among the different
models in the literature, the one defined by X. Yang et al. [14] is
one of the most widely used because it provides a good compromise
between accuracy and computational complexity. In what follows,
we retain the pixel-based JND model proposed by Yang for several
reasons: firstly, it doesn’t rely on DCT block-based computation. It
is consequently more suited to the proposed pixel-based pre-filtering
process and avoids to introduce spurious blocking effect. Moreover,
the JND models described in pixel domain are less complex and are
better suited to real-time video processing, which constitutes one of
the aims of our work as explained in Section I. In a first approach,
we choose to use a 2D spatial filtering for real-time implementation
purposes because a 3D spatio-temporal pre-filtering implies the use of
motion compensation which is computationally expensive. Hence, the
temporal masking model proposed by Yang is not taken into account
here. Finally, it is important to note that our proposed perceptual filter
can be applied with other JND pixel based models.

The spatial-only JND model denoted JNDS can be expressed as

JNDS = JNDlum + JNDtex − C ∗min (JNDlum, JNDtex).
(8)

This model considers two phenomena: luminance masking noted
JNDlum and texture masking, noted JNDtex. The third term
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Figure 8. Luminance masking effect: (a) Approximation of the Weber-Fechner
law, (b) Weighting windows for luminance background calculation.

accounts for the overlapping effect when both spatial and texture
masking are present, with C a constant fixed experimentally to 0.3
[14].

1) Luminance Masking: Luminance masking noted JNDlum

reflects the difference in sensitivity of the HVS to changes in an image
based on the background luminance level. This visual phenomenon
is usually modelled by the well-known Weber-Fechner law [35]
reflecting the low sensitivity of the human eye to differences involved
in dark image areas as illustrated in Figure 8.a. In [14], the authors
propose the following approximation:

JNDlum =

 17

(
1−

√
I(x,y)
127

)
+ 3 if I(x, y) ≤ 127

3
128

(I(x, y)− 127) + 3 otherwise.
,

(9)
where I(x, y) is the local average luminance value computed on a 5x5
neighborhood of each pixel using the weighting window illustrated
in Figure 8.b).

2) Texture Masking: Texture masking, also called contrast mask-
ing, reflects the fact that high spatial activity within an image reduces
the sensitivity of the eye to a visual stimulus. Moreover, it accounts
for the high sensitivity of the human visual system to the contour
information and the homogeneous areas. Indeed, the HVS is more
highly sensitive to edges than textures. In order to separate the two
high frequency contents, a gradient map G(x, y) is first calculated
to detect both edges and textures using four convolution masks gk
described in Figure 9, as follows:

G(x, y) = maxk=1,2,3,4 |gradk(x, y)|
gradk(x, y) = 1

16

∑5

i=1

∑5

j=1
p(x− 3 + i, y − 3 + j) ∗ gk(i, j).

(10)

Figure 9. Four gradient directions used for G(x,y) calculation.

Then an edge map We(x, y) is calculated using the Canny operator
combined with morphological processing. The resulting edge map
is binarised and serves as a mask to remove strong edges from
the gradient map, hence keeping only the textures with higher JND
thresholds.

B. Using the model in the filters

The spatial-only JND mode given by Eq. (8) is used in the proposed
perceptually-guided filtering approach to estimate sensitivity thresh-

olds pixel-by-pixel for each image of the processed sequence. Hence,
the smoothing operation is adapted to the local sensitivity threshold,
given by the JND, to selectively remove irrelevant high frequency
details. Such low-pass filtering for perceptual image coding makes
perfect sense as long as the bandwidth of the filter is driven by the
JND value.

To do that, Equations (1) and (4) are revisited by simply substi-
tuting, in a first approach, the JND value to ε and σs parameters,
respectively. Consequently, the similarity kernels of the two percep-
tual bilateral filters are expressed by the equations (11) and (12) for
the BilAWA and the TBil filter respectively:

hJND
s,BilAWA(x, xi) =

1

1 + a ∗ max(JND2(I(x)), ||I(x)− I(xi)||2)
,

(11)

hJND
s,TBil(x, xi) = exp(−

||I(x)− I(xi)||
2

2 ∗ JND2(I(x))
). (12)

where JND(I(x)) is the JND value of the pixel at location x =
(x, y).

It is expected that the smoothing operation should be adaptively
increased when the JND sensitivity threshold value increases. In this
case, more distortion is supposed to be visually acceptable for the
human observer. Similarly to noise filtering, we propose to act on
σs, the similarity kernel variance of the bilateral filter, such that the
filtering bandwidth is inversely proportional to the JND value. Hence,
the value of the similarity variance σs is chosen in order to process
strong edges and textures of the image in a separate way. In the
case of the BilAWA filter, the JND parameter is similarly taken into
account using the threshold ε: the higher the JND, the wider the
photometric range used and the larger the weights of the filter kernel.

The distortion is directly related to the amount of information
removed by filtering which depends on the image content. Therefore
a feedback control loop would be further required to reach the exact
JND threshold value. In the following experiments, the purpose of the
proposed filters is to remove perceptually insignificant high frequency
content. In most cases, the actual distortion due to filtering will
be under the JND threshold. Preliminary results on the use of the
JND model to control the pre-filtering have been reported in [11]
considering the AWA algorithm as a basis filter operation.

C. Quality evaluation

In order to validate the proposed JND-driven filtering process,
several simulations have been conducted on high-definition video
sequences. Figure 10 gives for the CrowdRun sequence an illustration
of the difference between two filtering approaches: the first one
is based on the TBil filter defined in Section IV-A using a fixed
threshold for the similarity kernel. The second filtering version is
also obtained with the TBil filter: in this case, however, the TBil filter
is controlled by the JND model. In the case of the non-perceptual
TBil filtered version, the threshold value was chosen experimentally
in order to have the same PSNR for the two filtered versions. In
that way, we compare two frames with the same distance from the
original frame. Figure 10 a) to c) correspond to an enlarged part of
the original frame, the fixed TBil filtered version, and the JND-driven
TBil filtered version, respectively. We can see that the perceptual
filter (c) preserves the homogeneous parts of the frame (i.e. the
grass) in comparison to the fixed non-perceptual filter (b). In addition,
we present the JND map computed from the original frame (d), as
well as the differences introduced by the non-perceptual filter (e)
and the perceptual filter (f), respectively. For visualization purposes,
Figures 10 e) and f) correspond to the logarithm of the absolute
difference. We verify that the result of JND-driven filtering correlates
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well with the JND map: the reduction of imperceptible details is
mainly concentrated on areas of the processed image where the JND
values are the most significant. Consequently, the processed image is
sharper and of better perceived video quality without excessive blur.

D. Complexity evaluation

Performing the filtering on a support of dimension 11x11 pixels
and computing the JND values are both time consuming operations.
For instance, once the weights of the filter have been computed, a
11x11 filtering implies more than 250 Mega Multiplication Accumu-
lations (MAC) per HD image, so more than 5 Giga MAC per second
for a 25 fps. On top of that, since the filter is adaptive, 250 Mega
filter weights have to be computed per image. This latter operation
can be more or less complex given the filter kernel. For instance,
AWA weights can be easily computed using a look up-table. The
complexity of the whole JND computing process has been estimated
at around 30 Giga MAC per second.

Real time processing is therefore not achievable on conventional
computer without using aggressive acceleration techniques such as
general-purpose processing on graphics processing units (GPGPU).
We achieved real time computation of a modified version of the origi-
nal spatial JND model given by Eq. (8) (with faster but less accurate
edge detection) using OpenCL on a standard consumer GPU (ATI
FirePro v4900) with the resort to various parallelisation techniques
such as two-pass convolution and edge detection optimisation. The
JND is computed at a framerate of 64 fps.

Given the computational complexity of the JND, the use of a
complex non local filtering would not allow a real-time processing on
a standard workstation as it is especially heavy in terms of random
memory access (the weak point of parallel systems). Therefore, local
filtering keeps the algorithm simple and easily deployable on parallel
architectures.

VI. EXPERIMENTAL RESULTS

By removing imperceptible details and by using constant quan-
tization, we expect to reduce the bitrate necessary to encode a
sequence without compromising the perceived quality. To evaluate
the performances of the proposed perceptual pre-filters, we have
compared the bitrate of the sequences, encoded at constant quanti-
zation parameter (QP), with and without pre-filtering and the quality
of the decoded sequences based on psychovisual evaluation and
completed thereafter by objective metrics. The test conditions are
summarized in Fig. 11 and all the results are presented in Tables
III, IV, V, VI and VII. The rate gain brought by pre-filtering
the videos with the proposed BilAWA and TBil perceptual filters
has been evaluated using both MPEG-4/AVC and HEVC codecs.
The MPEG-4/AVC video coding standard is today largely adopted
for both consumer and professional market sectors and is likely
to remain widely used in the years to come, while HEVC is the
new state-of-the-art video coding standard developed by JVT. The
MPEG-4/AVC and HEVC codecs used in the experiments are the
x264 and x265 implementation, respectively. Three 1280x720@50p
sequences from our video database (CrowdRun, Ski and Soccer)
are used to evaluate the proposed filters. We initially evaluated the
BilAWA filter performances on six sequences as shown by Figure
12. The IntoTree sequence was not retained because of its marginal
bitrate saving. We selected three sequences which all present high
spatial information index but different temporal information indexes.
The reason for choosing video contents with a high spatial index
are two-folds: firstly, such contents allow to highlight the blurring
artifact which is the main artifact introduced by pixel-domain low-
pass filters. Secondly, it also validates the effectiveness of using

a spatial only JND map: if the proposed pre-processing solutions
give satisfying results in this particular case, one can expect that the
results could only be improved if the JND model is extended to a
spatio-temporal one. Both proposed filters have been applied with
a 11x11 mask. Results are also given when using the AWA filter
with a 3x3 mask. The three filters under test are controlled by the
original luminance spatial JND model given by Eq. (8) (without edge
detection simplification). All the filters have been applied only on the
luminance component, the chrominance components are copied from
the original sequence.

A. Encoders set-up

For MPEG-4/AVC, the High Profile configuration of the codec has
been used with CABAC encoding. Evaluation was performed with
and without the deblocking filter. Note that the proposed perceptual
pre-filtering technique can be used with or without the deblocking
filter which is in the coding loop, and with any encoder. The reasons
for performing a test without the deblocking filter are two-folds:
firstly, the deblocking filter is useful at low bitrates but is less relevant
for high rate and high quality encoding as targeted here for High
Definition sequences. Secondly, it can introduce blurring effects that
are not acceptable for professional applications. In addition, removing
this filter allows us to more specifically analyze the behaviour of the
proposed perceptual filters. These results are presented in Table IV.
For comparison, the results with the deblocking filter are presented
in Table VI.

For HEVC, the Main Profile configuration of the codec has been
used, with both deblocking and SAO loop filters applied and CTU
up to 64x64 pixels.

For both encoders, we analyze the gain brought by the proposed
perceptual filters for two QP and GOP configurations. Our work is
focused on high quality, so we chose low QP values of 22 and 27,
corresponding to bitrates between 5.5Mbps and 53 Mbps for the three
HD test sequences. We used two GOP structures: IBBP using one
Intra picture every 12 frames (GOP IBBP(12)) and Intra-only GOP.

B. Subjective and objective quality protocol

Subjective evaluation has been conducted on a 47 inch monitor
of resolution 1920x1080, in a dedicated room with white walls and
a controlled light following the Recommendation ITU-R BT 500-
13 [37]. Sixteen observers, five females and eleven males, have
participated in the subjective tests. They were all non-expert with
(or corrected-to-) normal visual acuity. To evaluate the difference of
perceived quality between a sequence encoded with and without pre-
filtering, we used the simple stimulus paired comparison protocol,
as in [37], with a 7-level comparison scale presented in Fig.13. The
Comparison Mean Opinion Scores (CMOS) are presented in Table
IV.

In order to comfort the subjective evaluation tests, these ones are
completed by the computation of the PSNR and LPC-SI objective
metrics [33], in the same manner as in Section IV-B. We also add
the Feature-Similarity (FSIM) full-reference objective quality metric
[39], selected because it can achieve very high consistency with
subjective quality scores. In Table IV, VI and VII, we present the
difference of PSNR, LPC-SI and FSIM scores between the sequences
encoded with and without pre-processing, called ∆PSNR, ∆LPC-
SI and ∆FSIM respectively. LPC-SI and FSIM values have been
multiplied by 100 for readability. We remind that:

- the PSNR values vary from 0 (opposite to the reference) to infinity
(identical to the reference).

- the LPC-SI is a no reference metric. It is a decreasing function
of the blur phenomenon. LPC-SI=1 when no blur is present.
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(d) (e) (f)

(a) (b) (c)

Figure 10. Comparison between perceptual filter and fixed threshold filter at same PSNR. (a), (b), (c) represent a portion of the original frame, the filtered
one with the fixed TBil filter (TBil(11x11, 7.8)) and the perceptual TBil filter (TBil(11x11, JND)) respectively. The two filtered versions have the same PSNR
= 39.4 dB. The figure also presents the JND map of the original frame (d), and the difference map of the fixed filtered frame (e) and the perceptually filtered
one (f) compared to the original frame.
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Figure 11. Experimental protocol.
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Figure 12. Video test material: (a) spatial (SI) and temporal (TI) information
indexes ; (b) average bitrate savings obtained with BilAWA JND 11x11 filter
applied prior to x264 encoder with QP22, GOP IBBP12 and no Deblocking
filter. Grey: excluded videos - Color: selected video for the rest of the
evaluation.
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- the FSIM metric is in the [0, 1] range with “1” meaning excellent
quality compared to the reference.

C. Performance analysis of proposed TBil and BilAWA filters

Before studying of perceptual prefilters, we analyse the behaviour
of non-perceptual BilAWA and TBil filters compared to the bilateral
filter. The filters are driven by a constant variance which was chosen
as follows: the mean JND value of the sequence was used to control
the BilAWA filter, then the variance of the bilateral and TBil filters
were fixed experimentally in order to obtain almost the same PSNR
for all sequences, ie. the same distance from the original video
sequence. Table III presents the results with the x264 codec without
deblocking filter, at QP 27 and IBBP GOP structure with a GOP
length of 12 frames. One can notice that the BilAWA filter allows
a higher bitrate saving than the bilateral filter. In the following, we
will analyze the perceptual pre-filters BilAWA and TBil compared to
the perceptual AWA filter initially proposed by the authors [11].

D. Performance analysis of proposed JND-guided filters with H.264

Table IV presents the bitrate and the CMOS (Comparative Mean
Opinion Score) results with confidence interval of 95% (read CMOS
± δ95%) for all sequences and encoding configurations of the x264
codec without deblocking filter. Figure 14 presents CMOS notes
versus bitrate saving for the three evaluated pre-filters. The pre-filters
yield very large rate savings (up to 28.7%) for same visual quality
(very low CMOS values near to zero). We can note that none of the
three filters causes a loss of perceived quality (-0.29<CMOS<-0.16),
and they all allow to reduce the bitrate (on average, 14.1%, 14.3%
and 19.3% for AWA, TBil and BilAWA filter respectively). We verify
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Table III
COMPARISON OF ENCODING PERFORMANCES OF X264 CODEC WITH AND

WITHOUT NON-PERCEPTUAL PRE-FILTERS. ANALYSIS OF BITRATE
REDUCTION (∆BITRATE), OBJECTIVE MEASURE VARIATION (∆PSNR).

X264 IS USED WITHOUT THE DEBLOCKING FILTER AT QP 27

Crowd
Run

Ski Soccer Average

x264 Bitrate [Mbit/s] 28.33 6.28 7.29 13.97
PSNR [dB] 35.24 40.02 39.05 38.10

Bilateral ∆Bitrate [%] 11.88 14.31 14.62 13.61
(11x11) ∆PSNR [dB] -2.03 -0.72 -1.16 -1.30
BilAWA ∆Bitrate [%] 14.42 15.30 17.00 15.58
(11x11) ∆PSNR [dB] -2.03 -0.72 -1.18 -1.31

TBil ∆Bitrate [%] 11.06 13.97 13.70 12.91
(11x11) ∆PSNR [dB] -2.00 -0.73 -1.14 -1.29

B
it

ra
te

 s
av

in
g
 [

%
]

CMOS

-25,00

-5,00

0,00-1,00

-10,00

-15,00

-20,00

-0,75 -0,50 -0,25

Slightly
worse

Same
Quality

BilAWA 11x11 JND

AWA 3x3 JND

TBil 11x11 JND

Figure 14. Evaluation of proposed pre-filters. CMOS versus bitrate saving for
AWA, BilAWA and TBil perceptual pre-filters in comparison with encoding
scheme without pre-filters. Global results for all sequences, GOP and QP
configurations for x264 without deblocking filter.

that these average bit reduction ratios are comparable with the ones
obtained with other methods recently described in the literature [25]
[52]. In particular, the authors in [52] report bitrate savings between
9.6% and 30.4% (extreme case) for similar test data and coding
conditions (four HD test videos, High-Profile H.264/AVC encoding
using x264 encoder, original bitrates of 10Mbps et 15 Mbps). The
bitrate reduction is directly correlated with the filtering strength and
we have seen in Section IV-B that the AWA filter, applied with a 3x3
support, filters less details than the TBil filter with a 11x11 support,
which filters less than a BilAWA filter with the same support.

In addition, Table IV presents the objective metric variations
∆LPC-SI, ∆FSIM and ∆PSNR. The ∆LPC-SI values (0.114 for
AWA, 0.135 for BilAWA and 0.156 for TBil on average) are in-
significant in comparison with the LPC-SI values of the encoded
versions without pre-filters (91.316). The LPC-SI results are well
correlated with the subjective evaluation, showing that no blurring
effect is observed on the pre-processed sequences. Even if the ∆LPC-
SI values are insignificant, they are always positive, meaning than the
filtered encoded versions are less blurred than the encoded versions
without pre-filter. That could be explained by the fact that LPC-SI
is a no-reference metric and because perceptual pre-filters preserve
edges of the sequences. Finally, it can be seen that the ∆FSIM
values (-0.382 for BilAWA and -0.321 for TBil, on average) are
small compared to the FSIM values of the compressed versions
(99.726). This confirms the fact that the pre-filters do not introduce
any degradation of perceived video quality.

a) PSNR analysis:
Table IV also presents ∆PSNR for the three tested filters. These
results can be analyzed as follows: the perceptual pre-filter removes
non-significant visual information to ease compression, and the

bitrate reduction will be even more significant than the amount
of information removed is important. Consequently, the distance
between the pre-filtered image and the original version is logically
increased from a mathematical point of view, which results in a
PSNR decrease. It can also be noted that the reduction of PSNR
is directly correlated to the bitrate reduction. To further quantify
the impact of the filters, Table V presents the PSNR results when
the reference signal correspond either to the original sequence, or
its pre-filtered version. We can note that the PSNR values of the
pre-filtered then encoded sequences are logically higher when using
the filtered version as a reference instead of the original one. In
addition, these same PSNR values are also higher than the PSNR
of the compressed sequences without pre-filtering. The reason is that
the remaining information after filtering, having less details and being
less noisy, is easier to encode.

Finally, this PSNR reduction occurs without loss of visual quality.
This highlights the performances of the proposed JND-guided pre-
filters as perceptually lossless processes since they can remove
informations in the image (hence the decrease in PSNR) without
affecting the visual quality. Indeed, the BilAWA filter brought the
larger ∆PSNR (-2.90dB on average) and the larger ∆Bitrate (19.3%)
without compromising the perceived quality (-0.16 CMOS) (Table
IV). One can note a maximum PSNR reduction of 5.12 dB for a
CMOS of 0.13, brought by the BilAWA filter on the CrowdRun
sequence at QP 22 and GOP I only. One would expect that the
differences are not perceived to a certain level of PSNR reduction,
and then become visible. But there is no correlation between the
∆PSNR values and the CMOS scores. We take the example of the
CrowdRun sequence pre-processed by the AWA filter: at QP=22 and
GOP I only, there is no perceived differences (CMOS=0.00) for a
PSNR reduction of 4.16 dB. In contrast, at QP=27 and GOP IBB12,
the loss of details is slightly perceived (CMOS = −0.56) for a
smaller PSNR reduction of -1.69 dB.

b) Comparison of the perceptual BilAWA and TBil filters:
Finally, the BilAWA filter yields the best performance, by reducing
the bitrate by 19.3% with imperceptible quality difference (CMOS
less than 0.16). We have seen that the TBil filter has the best
denoising performances in terms of objective metrics. However, in a
pre-processing context, bitrate saving and subjective evaluation tests
show that the BilAWA is better suited. In fact, thanks to its gaussian
decay, the TBil filter better preserves the details of a frame than the
BilAWA filter which uses a 1

x
decay. That can be observed in Figure

17 and confirmed by the PSNR values. But when the sequences are
displayed, the subjective tests show that the observers cannot see any
difference between the encoded sequence without pre-filter and with
any of the three filters under test. It is important to notice that the
results obtained by a frame analysis are not directly applicable to
a video analysis. The BilAWA filter allows the highest bandwidth
saving as it smooths more stronger the details.

c) QP impact:
One can compare the bitrate gain brought by the pre-filters with two
different QP values with a IBBP(12) GOP. One can note that for all
the filters, the rate saving is higher with a QP value of 22 compared
with QP=27 (Figure 15). For example, the TBil filter brought a rate
reduction of 17.3% at QP=22 and 10.2% at QP=27. This can be
explained by the fact that the quantization process reduces the high-
frequency content by itself when the QP increases.

d) GOP impact:
We can evaluate the pre-filters performances with different GOP
configurations. For all the filters, on average for the three sequences,
the rate reduction is larger when using a IBBP(12) GOP than a I only
GOP (Figure 15). For example, the TBil filter leads to a rate reduction
of 15.4% with a I only GOP and 17.3% with a IBBP(12) GOP. So the
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Table IV
COMPARISON OF ENCODING PERFORMANCES OF X264 CODEC WITH AND WITHOUT PERCEPTUAL PRE-FILTERS. ANALYSIS OF BITRATE REDUCTION

(∆BITRATE), SUBJECTIVE QUALITY EVALUATION (CMOS AND THE CONFIDENCE INTERVAL δ[95%]) AND ASSOCIATED OBJECTIVE MEASURES
VARIATION (∆LPC-SI, ∆FSIM AND ∆PSNR). X264 IS USED WITHOUT THE DEBLOCKING FILTER.

GOP Intra-only GOP IBBP(12)
AverageQP 22 QP 22 QP 27

Crowd
Run

Ski Soccer Average Crowd
Run

Ski Soccer Average Crowd
Run

Ski Soccer Average

Bitrate [Mbit/s] 110.48 27.47 37.11 58.36 53.41 13.24 16.28 27.64 28.33 6.28 7.29 13.97 33.32
x264 LPC-SI*100 92.273 89.330 92.403 91.335 92.275 89.331 92.400 91.335 92.264 89.222 92.343 91.277 91.316

FSIM*100 99.908 99.819 99.852 99.860 99.879 99.764 99.794 99.812 99.673 99.383 99.465 99.507 99.726
PSNR [dB] 40.39 43.97 43.36 42.57 39.22 42.86 42.09 41.39 35.24 40.02 39.05 38.10 40.69
∆Bitrate [%] -12.36 -17.24 -11.99 -13.87 -11.24 -22.68 -18.01 -17.31 -9.68 -12.72 -10.99 -11.13 -14.10

AWA CMOS 0.00 -0.50 0.00 -0.17 -0.44 0.06 -0.13 -0.17 -0.56 -0.31 -0.25 -0.38 -0.24
3x3 ±δ95% 0.18 0.54 0.44 0.24 0.56 0.46 0.30 0.26 0.40 0.43 0.42 0.24 0.14
JND ∆LPC-SI*100 0.136 0.156 0.072 0.121 0.139 0.135 0.077 0.117 0.133 0.122 0.056 0.104 0.114

+x264 ∆FSIM*100 -0.088 -0.105 -0.095 -0.096 -0.090 -0.109 -0.099 -0.099 -0.109 -0.131 -0.100 -0.113 -0.103
∆PSNR [dB] -4.16 -1.98 -2.09 -2.74 -3.27 -1.43 -1.45 -2.05 -1.69 -0.68 -0.77 -1.05 -1.95
∆Bitrate [%] -15.79 -23.99 -17.16 -18.98 -15.66 -28.73 -24.33 -22.90 -14.20 -18.11 -15.95 -16.09 -19.32

BilAWA CMOS -0.13 -0.31 -0.06 -0.17 0.19 -0.13 -0.38 -0.10 -0.38 -0.25 0.00 -0.21 -0.16
11x11 ±δ95% 0.43 0.46 0.46 0.26 0.48 0.47 0.53 0.29 0.43 0.33 0.47 0.24 0.15
JND ∆LPC-SI*100 0.187 0.162 0.080 0.143 0.188 0.144 0.086 0.139 0.187 0.117 0.062 0.122 0.135

+x264 ∆FSIM*100 -0.343 -0.434 -0.336 -0.371 -0.345 -0.425 -0.333 -0.367 -0.391 -0.483 -0.347 -0.407 -0.382
∆PSNR [dB] -5.32 -3.15 -3.17 -3.88 -4.42 -2.43 -2.38 -3.08 -2.51 -1.33 -1.39 -1.74 -2.90
∆Bitrate [%] -11.84 -21.27 -13.15 -15.42 -9.51 -24.76 -17.56 -17.28 -7.35 -14.16 -9.22 -10.24 -14.31

TBil CMOS -0.06 -0.19 -0.50 -0.25 -0.50 -0.19 -0.50 -0.40 -0.19 -0.19 -0.31 -0.23 -0.29
11x11 ±δ95% 0.52 0.41 0.36 0.25 0.40 0.41 0.31 0.22 0.45 0.37 0.50 0.25 0.15
JND ∆LPC-SI*100 0.107 0.312 0.078 0.166 0.105 0.293 0.080 0.159 0.105 0.271 0.056 0.144 0.156

+x264 ∆FSIM*100 -0.260 -0.400 -0.287 -0.316 -0.259 -0.389 -0.279 -0.309 -0.296 -0.438 -0.280 -0.338 -0.321
∆PSNR [dB] -4.07 -2.77 -2.41 -3.08 -3.20 -2.08 -1.68 -2.32 -1.62 -1.04 -0.86 -1.17 -2.19

Table V
COMPARISON OF THE PSNR VALUES OF THE CODED SEQUENCES WHEN

TAKING THE ORIGINAL OR THE FILTERED SEQUENCE AS THE REFERENCE.
THE SEQUENCES ARE ENCODED WITH THE X264 CODEC AT QP 27, NO

DEBLOCKING FILTER.

PSNR[dB]
reference

Crowd
Run

Ski Soccer Average

x264 Original 35.24 40.02 39.05 38.10

AWA 3x3 JND
Original 33.55 38.95 38.16 36.89

+ x264 Filtered 36.03 40.24 39.10 38.46

BilAWA 11x11
Original 32.73 38.45 37.80 36.33

JND + x264 Filtered 36.23 40.66 39.44 38.78

TBil 11x11 JND
Original 33.63 38.40 38.13 36.72

+ x264 Filtered 36.01 40.52 39.25 38.60

pre-filters have a more strongly impact on a GOP using inter-frames
(P or B) than an I only GOP. This observation shows that the pre-
filters tend to better improve the inter prediction (motion estimation
and compensation) than the intra prediction. However, one can notice
that for the sequence with the highest spatial activity (CrowdRun),
the pre-filters save more bitrate for the intra prediction.

e) Content impact:
Given the higher initial rate of Crowdrun which contains more high
frequency details, one could have expected a higher bitrate reduction
compared to Ski. However, the adaptive filters smooth the texture
around the edges: this may lead to amplifying the discontinuity
(activity) around the edges, with in turn an increase of bitrates in
these areas. As a result, the CrowdRun sequence with a lot of edges,
obtains a lower bitrate saving (Figure 16).
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Figure 15. Evaluation of GOP and QP parameter impact on proposed pre-
filters performances. CMOS versus bitrate saving for AWA, BilAWA and TBil
perceptual pre-filters in comparison with encoding scheme without pre-filters.
Average results on CrowdRun, Ski and Soccer sequences, for x264 without
deblocking filter.

f) Deblocking filter impact:
Table VI presents the results with the deblocking filter at QP 27 and
IBBP GOP structure with a GOP length of 12 frames. One can notice
that the use of the deblocking filter indeed increases the PSNR of
the x264 codec (first row of the Table). But the results also show
that the proposed filters bring gains when using the deblocking filter
which are very similar to those we had with no deblocking filter,
with similar variations in LPC-SI metrics, FSIM and PSNR.

E. Performance analysis of proposed JND-guided filters with HEVC

Finally, Table VII presents the results with x265 codec at QP 27
and IBBP GOP structure with a GOP length of 12 frames. These
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perceptual pre-filters in comparison with encoding scheme without pre-filters.
Average results on GOP and QP configuration for x264 without deblocking
filter.

Table VI
COMPARISON OF ENCODING PERFORMANCES OF X264 CODEC WITH AND
WITHOUT PERCEPTUAL PRE-FILTERS. ANALYSIS OF BITRATE REDUCTION

(∆BITRATE), OBJECTIVE MEASURES VARIATION (∆LPC-SI, ∆FSIM
AND ∆PSNR). X264 IS USED WITH THE DEBLOCKING FILTER AT QP

27AND GOP IBBP12.

Crowd
Run

Ski Soccer Average

Bitrate [Mbit/s] 31.36 7.02 8.43 15.60
x264 LPC-SI*100 92.262 89.297 92.360 91.306

FSIM*100 99.670 99.360 99.460 99.497
PSNR [dB] 35.74 40.54 39.61 38.63

AWA ∆Bitrate [%] -9.80 -12.13 -11.11 -11.02
3x3 ∆LPC-SI*100 0.141 0.117 0.050 0.102
JND ∆FSIM*100 -0.130 -0.180 -0.130 -0.147

+x264 ∆PSNR [dB] -1.81 -0.74 -0.82 -1.12
BilAWA ∆Bitrate [%] -14.31 -17.42 -16.04 -15.92
11x11 ∆LPC-SI*100 0.187 0.103 0.074 0.121
JND ∆FSIM*100 -0.440 -0.580 -0.410 -0.477

+x264 ∆PSNR [dB] -2.67 -1.46 -1.49 -1.87
TBil ∆Bitrate [%] -7.51 -13.83 -9.55 -10.30

11x11 ∆LPC-SI*100 0.108 0.258 0.071 0.145
JND ∆FSIM*100 -0.340 -0.520 -0.330 -0.397

+x264 ∆PSNR [dB] -1.76 -1.17 -0.94 -1.29

results show that the proposed filters bring gains when using HEVC
which are very similar to those obtained with x264, with similar
variations in LPC-SI, FSIM and PSNR metrics. One can observe that
the rate gains brought by the proposed filters are even higher with
HEVC than with MPEG-4/AVC. The reason is that the pre-filtering
removes high frequency details, which favors the use of large CTU
sizes in the quadtree partition of HEVC. This in turn induces a higher
bitrate reduction. Our solutions bring bitrate reduction ratios varying
from 11.1% to 17.4% depending on the selected filter. Such results
are in accordance with the ones recently described in the literature,
9.6% [48] and 11.0% [49] on average. These results are obtained for
similar test data and coding conditions (four and three HD test videos
respectively, Main-Profile RA HEVC encoding using HM.11 encoder,
QP 27, original bitrates of 2 Mbps et 5 Mbps). Finally, although
formal subjective evaluation tests were not conducted in HEVC, our
informal evaluation show that subjective quality loss between the
HEVC compressed sequences with and without our perceptual pre-
processing is imperceptible like in the H.264/AVC case. Thus we
conclude that our pre-filtering methods can give significant bitrate

savings while keeping the same video quality.

Table VII
COMPARISON OF ENCODING PERFORMANCES OF X265 CODEC WITH AND
WITHOUT PERCEPTUAL PRE-FILTERS. ANALYSIS OF BITRATE REDUCTION

(∆BITRATE), OBJECTIVE MEASURES VARIATION (∆LPC-SI, ∆FSIM
AND ∆PSNR). X265 IS USED WITH THE LOOP FILTERS AT QP 27 AND

GOP IBBP12.

Crowd
Run

Ski Soccer Average

Bitrate [Mbit/s] 28.13 5.49 6.29 13.30
x265 LPC-SI*100 92.244 89.157 92.260 91.220

FSIM*100 99.790 99.780 99.830 99.800
PSNR [dB] 35.22 40.56 39.77 38.52

AWA ∆Bitrate [%] -10.69 -
¯
13.32 -12.16 -12.06

3x3 ∆LPC-SI*100 0.120 0.086 0.059 0.088
JND ∆FSIM*100 -0.270 -0.600 -0.510 -0.460

+x265 ∆PSNR [dB] -1.87 -0.89 -0.97 -1.24
BilAWA ∆Bitrate [%] -15.44 -19.26 -17.35 -17.35
11x11 ∆LPC-SI*100 0.164 0.115 0.068 0.116
JND ∆FSIM*100 -0.460 -0.990 -0.790 -0.747

+x265 ∆PSNR [dB] -2.70 -1.67 -1.69 -2.02
TBil ∆Bitrate [%] -8.10 -15.01 -10.15 -11.08

11x11 ∆LPC-SI*100 0.093 0.231 0.067 0.130
JND ∆FSIM*100 -0.580 -0.940 -0.710 -0.743

+x265 ∆PSNR [dB] -1.77 -1.33 -1.11 -1.40

VII. CONCLUSION

In this paper, we have first described two novel adaptive filters
(BilAWA and TBil) which efficiently exploit the features of the AWA
and bilateral filters, while being amenable to the introduction of a
control of the filtering process by a JND model. We have shown
that these novel adaptive filters outperform the classical AWA and
bilateral filters for noise removal. The introduction of the JND model
then leads to perceptual adaptive filters which exhibit a strong interest
as low complex real-time pre-processing techniques to improve HD
real-time video compression efficiency by removing imperceptible
details. Psychovisual evaluation tests have been conducted in order
to validate the performances of the JND-guided adaptive pre-filters.
Experimental results have exhibited significant bitrate saving without
compromising the perceived visual quality. A maximum rate saving
of 28.7% and an average rate saving of 19.3% have been obtained
with the perceptual BilAWA filter applied before MPEG-4/AVC
encoding at QP 22. Similarly, when using HEVC, a maximum bitrate
saving of 19.3% and an average bitrate saving of 17.4% have been
obtained at QP 27. Such performance is comparable to those recently
described in the literature. The results of the different selected
objective metrics corroborate the subjective quality rating as they
do not reveal significant loss of quality or excessive blurring. Note
that, although experimental results are given with one particular JND
model, the proposed filters are independent of the model: the filtering
parameters could as well be controlled by other JND pixel-domain
models. Moreover the pre-filters act outside the encoding loop and
can consequently be used with any image or video encoding scheme
(JPEG XS, VP10). Further work will concern the improvement of the
JND model including spatio-temporal and chrominance sensitivity.
Moreover, the pre-processing algorithm could be implemented in the
coding loop: in this case, it could benefit from the data computed
during the pre-analysis step to weight the JND perceptual index
or to adapt dynamically the filter kernel’s support depending on
the selected Coding Tree Unit (CTU) size, in the case of HEVC-
compliant pre-processing.
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(a) (b) (c)

Figure 17. Comparison of quality between a frame of the sequence CrowdRun encoded at QP22 without pre-filter (39.11dB) (a), with TBil(11x11, JND)
(PSNRframe = 36.14dB, CMOSsequence = -0.50, BitrateSavingsequence = 9.51%) (b) and BilAWA(11x11, JND) (PSNRframe = 34.84dB,
CMOSsequence = 0.19, BitrateSavingsequence = 15.66%) (c)
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