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ABSTRACT

This study deals with the problem of scheduling jobs and preventive maintenance (PM) activities in
production workshops jointly in order to reduce failure occurrence. PM activities can be planned at fixed
periods (time-based PM) or in response to a signal provided from a machine’s captor after anomaly
detection (condition-based PM). Maintenance activities’ planning depends on different constraints like
human resources, spare parts availability and past operating duration of the machine.

Proposed related works evaluate possible arrangements of both production and maintenance activities
according to different criteria (makespan (Cmax: completion date of the last operation on the last
machine), machine’s failure risk, jobs’ lateness, etc.). However, maintenance activities are frequently
considered as production jobs. In fact, maintenance activities present different constraints and cannot
be planned in the same manner as production ones. In addition to that, most of current works deal with
the time-based maintenance planning even so condition-based maintenance is qualified as more realistic
and more economic than the former.

This work discusses a new approach to integrate the scheduling of production and maintenance
operations. Proposed approach takes explicitly into account human resources availability and skills when
updating integrated production and maintenance schedules. It is based on multi-agent systems for

modeling the production workshop.
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1. Introduction

Production scheduling is concerned with allocating limited
machines to a set of jobs along with certain objective functions
that should to be optimized, i.e., in order to meet the deadlines
by minimizing the sum of tardiness or makespan. According to
the configuration of the workshop (single workstation, multiple
workstations, flow-shop, job-shop, open-shop), some critical
objectives should be optimized and certain types of constraints
must be taken into account (preemption, setups, etc.) (Cox &
Blackstone, 1991).

Production workshops, by their nature, are subject to events
(expected or not) such as arrival of new tasks, machine break-
downs, and defection of a human intervener. Also, production or
maintenance tasks processing time cannot be estimated exactly
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because it depends on many factors like machines’ operating
condition, used raw materials, and human resources competence.
Consequently, deterministic solutions are frequently inadequate.
Such solutions suppose that all relevant problem data are known
precisely and unchanging. This assumption is far from the reality
of production workshops.

It is important that used data accurately represent the environ-
ment in order to obtain realistic solutions. Recently, scheduling
under uncertainties is proposed to address the shortcomings of
deterministic scheduling. Dubois and Prade (1985) identify two
types of data imperfection: imprecision and uncertainty. A data
is imprecise if its value cannot be given exactly. It is uncertain
whether there is a doubt concerning its validity. Generally, data
imperfection is designed by the word “uncertainty” and no distinc-
tion is made for its two types. Four uncertainties models can be
distinguished (Billaut, Moukrim, & Sanlaville, 2005): stochastic
models (Shakhlevich & Strusevich, 2005), fuzzy logic based models
(Dumitru & Luban, 1982), interval models (Matsveichuk, Sotskov,
Egorova, & Lai, 2009) and scenario models (Aloulou & Croce,
2008). Fuzzy logic is widely used in the literature to model



scheduling data imprecision as it allows representing and treating
approximate or uncertain knowledge (Chanas & Kasperski, 2001;
Marmier, Varnier, & Zerhouni, 2009; Petrovic, Petrovic, & Burke,
2011).

In recent years, there have been tremendous efforts to solve
scheduling problems under uncertainties because many research-
ers have identified deterministic scheduling insufficiencies. For
solving the scheduling problem, two phases where uncertainties
can be treated are distinguished: the proactive phase (offline)
and the reactive phase (in-line). Several classifications of resolu-
tion methods exist in the literature and this according to the devel-
oped phase. We hold the one of Chaabi (2010) which distinguishes
three types of approaches: proactive approaches, reactive
approaches and hybrid approaches which include the two phases.

In order to avoid machines’ failure, maintenance activities are
planned periodically. This maintenance policy is called preventive
maintenance (PM). PM is defined as the activity undertaken while
the machine is satisfactorily operating, to reduce or eliminate the
accumulated deterioration (Sim & Endrenyi, 1988). Generally,
there exist two types of preventive maintenance schemes, i.e.
condition-based (CBM) and time-based preventive maintenance
(TBM) (Legat, Zaludova, Cervenka, & Jurca, 1996). For CBM, the
action taken depends on the state of the system. It could be no
action, or minimal maintenance to recover the system to the
previous stage of degradation, or major maintenance to bring the
system to “as good as new state”. It is based on the condition mon-
itoring process, where signals are monitored using certain types of
sensor or other appropriate indicators (Campos, 2009). For TBM,
the preventive maintenance is carried out at pre-determined time
intervals to bring the system to “as good as new state” (Vaurio,
1997). The periodicity T of TBM activities can vary in a tolerance
interval noted [Tmin, Tmax] (Benbouzid, Varnier, & Zerhouni, 2003).
This interval gives some flexibility to plan TBM activities while
respecting production constraints, disturbing the least possible
the production schedule, and respecting the maintenance equip-
ment periodicity.

Production and maintenance have been treated for a long time
as two separate functions (Altuger & Chassapis, 2009; Kulscar &
Forrai, 2009; Pereira, Lapa, Mol, & da Luz, 2010; Sawik, 2005);
nowadays, and because of the interdependence between these
functions, there is a great interest to develop optimization models
that consider the integration of the two of them (Benmansour,
Allaoui, Artiba, Iassinovski, & Pellerin, 2011; Benbouzid-Sitayeb,
Guelbi, Bessadi, Varnier, & Zerhouni, 2011).

Maintenance integration can be sequential or total (Lee & Chen,
2000). A sequential integration consists of two steps: first,
scheduling the production jobs then inserting maintenance
operations, taking the production schedule as a mandatory con-
straint of machines unavailability in the resolution of the problem.
On the other hand, a total integration consists of simultaneously
scheduling both production and maintenance operations. Such
policy limits conflict risks, and thus makes it possible to optimize
a joint objective function (Brandolese, Fransi, & Pozzeti, 1996;
Sloan & Shanthikumar, 2000).

By reviewing the literature, no work focuses on integrated
production and maintenance scheduling with the CBM strategy.
Only TBM strategy is considered despite the fact that CBM strategy
has been widely recommended because it reduces unnecessary
maintenances and related costs (Gupta & Lawsirirat, 2006) by plan-
ning only needed maintenance activities. Rosmaini and Shahrul
(2012) present an overview of the TBM and CBM policies. They
admit that the CBM policy is more preferred because it is simpler
than the TBM as long as the former is based on the optimization
approach. They consider that CBM application is more realistic
because 99% of equipment failures are preceded by certain signs
conditions or indications that inform such a failure was going to

occur. The choice of the maintenance policy depends on the main-
tenance activity itself. TBM policy application seems trivial for sim-
ply and shortly activities like cleaning and inspection. However for
activities with important processing time and cost, like a compo-
nent replacement, the CBM is more interesting. So it can be neces-
sary to consider both policies for machines maintenance. The CBM
monitoring process consists of two phases: analysis and prognostic.
The analysis phase interprets received signals in order to deter-
mine the failure nature. Whereas the prognostic consists on deter-
mining the remaining useful life of the equipment (RUL) of the
equipment according to analysis phase results. All works in CBM
answer to the question “when it is necessary to plan a mainte-
nance activity?”. They try to find the most significant indicators
that announce the failure occurrence. Their objective is to precisely
predict the RUL. However, they do not treat the problem of where
inserting the maintenance activity in the current production plan.

When a CBM activity needs to be planned in any running sched-
ule, two alternatives may be adopted to update this latter: gener-
ating a new schedule or altering the predictive schedule to adapt
it to new conditions. As (Seguy, Noyes, & Clermont, 2010), we
consider that the first alternative might in principle be better for
maintaining optimal solutions, but these solutions require
prohibitive computation times. Moreover, frequent schedule
regeneration can result in instability and lack of continuity in
detailed plant schedules, leading to additional production and
maintenance costs attributable to what has been termed “shop
floor nervousness” (Dorn, Kerr, & Thalhammer, 1993). Things will
be more complicated when human resources are involved which
is the case of maintenance activities. These latter will be disturbed
by seeing their schedules change frequently. Therefore, it is more
reasonable to adapt schedules partially. Given that maintenance
activities, involve human resources with different competences
and availability, the objective of updating obsolete schedules
should not only be the generation of optimal schedules, but finding
schedules that by one side maintain the production goals and
satisfy the scheduling constraints and, on the other hand, are able
to be easily adapted to human resources availability (Martorell,
Villamizar, Carlos, & Sanchez, 2010).

Faced with an unexpected event such as CBM activity, the
decision must be made quickly in order to not disturb production
process. This propriety is called “reactivity”. The management of
production workshop floors should be based on solutions that
support reactivity and autonomy in decision making. A top-down
centralized system for decision making can cause rigidity and limit
problem solving ability in real world (Jones & Rabelo, 1998; Shen,
Wang, & Hao, 2006), although centralization can provide a consis-
tent global view of the state of the system (Ouelhadj & Petrovic,
2009). A distributed approach to control and scheduling attempts
to address the inflexibility of hierarchical systems. Multi Agent
Systems (MAS) address these needs; they are defined as a collec-
tion of autonomous entities called Agents that alone or in coopera-
tion with other ones aim to achieve a goal. MAS have been widely
applied in scheduling problems (Li, Zhang, Gao, Li, & Shao, 2010;
Owliya, Saadat, Goharian, & Anane, 2010). Agents may represent
any actor like machines (Kouiss, Pierreval, & Mebarki, 1997,
Owliya et al., 2010) jobs or operations (Li et al., 2010) and human
interveners (Sabar, Montreuil, & Frayret, 2009). Agent proprieties
such as decision autonomy, reaction and collaboration make their
use profitable in the case of dynamic environments where events
may appear like machines breakdown or arrival of new tasks.
Agents negotiate to get an agreement on the best production and
maintenance activities’ arrangement while satisfying the schedul-
ing problem constraints. Khelifati and Benbouzid-Sitayeb (2011)
presents a multi-agent approach for scheduling jobs and mainte-
nance operations in a flowshop sequencing problem. They propose
an approach for production, TBM and CM scheduling. Firstly, they



propose an integrated production and TBM scheduling then, when
the breakdown appears (arrival of a CM activity), affected machine
agent proceed by rescheduling maintenance and production tasks
as in Li et al. (2010).

In recent works, human resources are exploited separately in
production (Guyon, Lemaire, Pinson, & Rivreau, 2010; Sabar et al.,
2009) and maintenance planning (De Snoo, Van Wezel,
Wortmann, & Gaalman, 2011; Marmier et al., 2009) and not in
integrated production and maintenance scheduling. Sabar et al.
(2009) present a MAS approach for personnel scheduling problems
in the context of a paced multi-product assembly center. Its
purpose is to elaborate daily assignment of employees to
workstations in order to minimize simultaneously the operational
costs and personnel dissatisfactions. Guyon et al. (2010) investi-
gate the integration of the employee timetabling and production
scheduling problems. At the first level, it manages a classical
employee timetabling problem. At the second level, it aims at
supplying a feasible production schedule for a set of interruptible
tasks with qualification requirements and time-windows. Instead
of hierarchically solving these two problems as in the current
practice, it tries to integrate them and propose two exact methods
to solve the resulting problem. De Snoo et al. (2011) present an
extension for maintenance planning by inserting the human and
material resources. The work addresses the effect of these
constraints on the optimization of maintenance according to the
RAM+C criteria (Reliability, Availability, Maintainability and Cost).
Marmier et al. (2009) propose multi-criteria approach for planning
TBM preventive and curative maintenance activities with consider-
ation of human resources skills because the competence level
influences the task processing time. We admit that it is more
interesting to consider human resources for maintenance
activities because they are mostly manual activities where the
competence level of human resources influences on their process-
ing time. The role of human resources in production process is
usually controlling the process runs smoothly. Hence, processing
time of production jobs depends generally on machine states
and raw materials but not on human resources that control the
production process.

To the best of our knowledge, there no previous study on
integrating production and maintenance scheduling with the
CBM strategy. In this way, in this paper, we propose an integrated
scheduling model in two phases: Firstly, we present a one-machine
resolution in which we explain how the machine subject to
maintenance will proceed to update its plan when a CBM activity
has to be inserted after need detection. We take into account the
human resources skill and availability to affect the activity to the
best maintenance intervener. Then we propose a multi-machine
resolution. In order to balance the trade-offs between production
scheduling and PM planning, we aim to simultaneously optimize
total tardiness of production tasks and machine breakdown risk.
According to the new CBM planning, we identify two decision
strategies for managing maintenance: (1) maintenance oriented
strategy (planning the activity when the anomaly appears), and
(2) production oriented strategy (planning the activity as late as
possible in order to disturb less possible the current plan). We pro-
pose a multi-agent architecture for the workshop in order to take
advantage of reactivity, autonomous decision making and collabo-
ration proprieties of agents. Moreover, we adopt a fuzzy estimation
of used data so that they represent actually the real scheduling
problem.

The rest of the paper is organized as follows: The problem
description is provided in Section 2. Section 3 describes the
proposed method. Section 4 is devoted to the computational
experiments. Finally, Section 5 enumerates the method’s
advantages and presents some future researches.

2. Jobs re-scheduling with machine maintenance and human
resources constraints

This study deals with the problem of updating an integrated
production and maintenance schedules when a new CBM activity
has to be planned on a given machine.

We consider a multi-machine workshop where each machine
M; executes an integrated plan composed of production jobs and
TBM activities. Machines operation is monitored throughout the
production process using sensors. These latter are connected to a
computer on which a decision-making software is running. The
software compares recollected data with normal machines state
and acts in case of malfunctioning.

We call “Subject Machine” (SM) the machine M; on which
anomalies were detected. In order to avoid failure appearance
and thus interrupt the production process, a new CBM activity j,
noted CBMj, has to be inserted in the M; current schedule.

The RUL (remaining useful life) is the useful life left on an asset
at a particular time of operation. Its estimation is essential to CBM
prognostics and health management. It is an estimated breakdown
date before which it is necessary to intervene. The RUL is therefore
considered as the deadline for CBM planification. It is estimated
from available sources of information such as information obtained
in condition and health monitoring (Si, Wang, Hu, & Zhou, 2011).
Despite that, its estimation is most often approximate and inexact.

After starting production plan execution, collected data on a
machine M; sensors indicate a malfunction (point “P” - Fig. 1a)
and thereby advert the appearance of a failure (point “F" -
Fig. 1a). The two points “P” and “F” are sometimes referred to as
the leading indicators to failure of an asset or the failure develop-
ment period. The pattern of the P-F Interval is reflected on a P-F
Curve (Fig. 1a) and is used to express the probability of failure of
an asset (Huang, Jiang, Chen, & Chen, 2014).

After its identification at t;, necessary CBM;; has to be planned
in order to avoid failure. Ideally, CBM; is planned before RUL;
end i.e. inside the interval [t,t]. If CBMj is planned after RUL;
breakdowns are likely to appear and consequently the machine
would be unavailable. As tf (RUL; end) is inexact, we suppose that
it could vary between two values DdIS; (Deadline Start) and DdIE;
(Deadline End) (Fig. 1a).

Each maintenance activity (TBM or CBM) requires a competence
or a qualification for its execution. Processing time of maintenance
activities depends on interveners’ competence level. We suppose
that each intervener according to its experience can estimate the
time for executing maintenance activities. Moreover, as work
started in the workshop, human resources that intervene in main-
tenance have already their planning. Consequently, competence
and availability constraints have to be considered when planning
the maintenance activity so as to propose realistic schedules.

The choice of maintenance planning date is difficult because
production is underway. Interrupting the production process for
maintenance could cause delays in delivery. In order to offer flex-
ibility to deciders and to balance the trade-offs between risk of
machine unavailability and production delays, we propose two
strategies for managing machines’ maintenance: (1) Maintenance
Oriented Strategy (MOS) and (2) Production Oriented Strategy
(POS) (Fig. 1b).

(1) When MOS is applied, the CBMj activity has to be planned
rather than possible without waiting for reaching t; minimal
value (DdIS;), i.e. the CBMj; activity has to be planned in the
interval [t{,DdIS;].

(2) POS: In this strategy, a risk can be tolerated in order to do not
disturb the production plan. CBMj activity is planned after
DdIS;, i.e. in the interval [DdIS;, DAIE;].
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Fig. 1. P-F curve and maintenance strategies.

In following, we present production scheduling problem,
preventive maintenance planning problem with human resource
constraints and objective functions to optimize.

2.1. Production scheduling problem

There are a set M = {M;,M5,...Mpno} of my machines and a set
P={Py,P,...Py;} of my production jobs scheduled on M. Each
production job P, on a machine M; is characterized by a release
date ry, an execution date tj, a processing time p;, a completion
date c; and a due date dj.

The processing times are fixed and non-negative. Further,
assumptions are that each job can be processed on only one
machine at a time, the operations are non preemptable, and no
set-up time is considered or it can be integrated in the processing
time of each operation.

2.2. Preventive maintenance planning problem with human resource
constraints

Each TBM;{l = 1,...m,} planned on a machine i is characterized
by an execution time tj; and a completion time cj,. CBM activities
are planned just after need detection, so they are associated
with an event that has to be handled on the workshop. Each
CBMy{j = 1,...ms} activity is characterized by pj its processing
time, cr; a competence or a qualification required from
interveners for its execution and a deadline RUL; that should be
respected when planning CBM;; in order to keep the machine in
operation. Actually pj; and RUL; could not be known exactly. That
is why we adopt an approximate estimation by using fuzzy sets.
p; and RUL; are modeled by the fuzzy sets E)T] and RUL; with a
triangular membership function defined by the triplet (¢}, 27, 2})
representing respectively (minimal, most probable and maximal
value) of fwith f = {p}, RUL;) (Fig. 2a).

The choice of a triangular function is justified by the fact that
CBM processing time or RUL are generally defined by certain
estimation; this estimation is represented by point vfz. If the

estimation was not as expected (lower or upper value than vf),

CBM

He g
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Fig. 2. Fuzzy modeling of processing time, RUL and task execution intervals.

the value will be represented by a point within [0}7 Zlfz] or within
(07, V7).

The fuzziness of CBM;; processing time ZJTJ has an impact on its
completion time (c};) and the execution interval' bounds of tasks
that succeed it. Tasks execution interval is also fuzzy with a trape-

zoidal membership function (Fig. 2b). Regarding the deadline RUL;,
its fuzziness will have an impact only on decision of when planning
the CBMj; (see Section 3).

The maintenance service involves human interveners with dif-
ferent competences and availability. Indeed, competence level of
human resources has a direct effect on processing time of activities
they execute. Regarding availability, this constraint affects the
feasibility of maintenance planning. Consequently, each human
resource HR,,{m = 1,...,m4}is characterized by CR,, = {crp1,Clm2, . . .}
the set of competences that allow HR,, executing maintenance
activities, a set of intervals 1A, = {IAn1,1Am2, . . .} representing his
availability. With 1A, = [IAmin,, IAmax.,,] and p;,, processing
time that proposes for executing a maintenance activity p (TBM or
CBM) on machine M;. We admit that each HR;, according to its
experience can estimate the approximate py,, and express it in a

fuzzy form py;,

for which we propose also a triangular membership.
2.3. Objective functions

The goal of the proposed approach is to insert a new CBM into
an existing integrated schedule, i.e. taking into account human

T Execution interval = [starting date, completion date].



resources availability and competence. The aim is to disturb the
current plan less possible while minimizing the risk of machine’s
breakdown.

Disturbing at least the current schedule means that execution
intervals of current production and TBM activities have to be chan-
ged minimally. We admit that TBM activities will not be changed
because they have been planned taking into account several con-
straints like human resource constraints and tools availability.
Our objective is to propose only a partial rescheduling instead of
a total one. Execution intervals of production jobs can be modified
because their planning depends only on production machines
that exist on the workshop. The production objective is then to

minimize the average tardiness (f~1) of production jobs (Eq. (1)).

Tardiness (fivk) of a job k executed on a machine i is calculated
according to (Eq. (2))

~ ml
fi 1/leT1k (1)
pary

Ty = Max(0, ((C) — d)) 2)

The functional failure of the SM depends on the date t;; where
CBMj; will be planned on it after signal reception at to. We call
the period between ¢, and the t; CBM tardiness (Eq. (3)). The risk
of failure increases with maintenance tardiness increase.

f, = Max(o, (t;j - t0>) 3)

In conclusion, the problem amounts to minimize the global
objective function f (Eq. (4)) which is defined as a weighted sum
of average production tardiness f~1 and CBM-tardiness f,.

{f:WIf; +W2f2 (4)

wi+w, =1

Weights w; and w, measure the respective effects of production

tardiness and CBM tardiness in the global objective function f. Their
values depend on the adopted strategy of maintenance: (1) when
MOS is considered, the CBM tardiness is low. Therefore, we focus
on minimizing production jobs tardiness by giving to f~1 an impor-
tant weight (w; > w,); (2) whereas, in the case of POS, as the CBM;;
will be planned after DdIS;, the CBM tardiness will be significant.
Thus, f, will have the most important weight.

3. Resolution approach

In this paper, we propose a two levels resolution approach: (1)
the one-machine level; and (2) the multi-machine level. The one-
machine level describes SM’s behavior for inserting the new CBMj;
into its current schedule taking into account human resource con-
straints which are competence and availability. The schedule
resulting from the one-machine resolution may affect schedules
of SM’s adjacent machines (upstream and downstream machines).
In order to readjust their schedules, in the multi-machine level, the
SM initiates a re-negotiation with upstream machines. Then it
informs the downstream machines of the resulted schedule in
order to update their local plans if lateness will be caused. In order
to take advantage of SMA proprieties, we propose a multi-agent
architecture for our system.

3.1. Proposed MAS architecture

Agents interact and collaborate to get an agreement on the final
schedule. They communicate directly by message exchanging. We

identify three agent types: Machine Agent, Maintenance Agent and
Human Resource Agent.

(a) Machine Agent (MA) represents a machine. Its role is to
control the execution of tasks on the machine it represents.
There are three types of MA: (1) the Subject Machine Agent
(SMA) that represents the SM, (2) the Upstream Machine
Agent (UMA) which represents any machine situated before
the MA and finally, (3) the Downstream Machine Agent
(DMA) which represents at its turn any machine situated
after SM.

(b) Maintenance Agent (MCA), its role is diagnosing machine
breakdowns, identifying needed maintenance activities
and estimating the RUL duration of the machine
(prognostication).

(c) Human Resource Agent (HRA) represents a maintenance
intervener. Its role is to construct its execution plan by
negotiating intervention intervals with SMA by the interme-
diate of MCA.

Behaviors of proposed agents are illustrated in Figs. 3 and 4 and
will be described in subsections thereinafter.

3.2. One-machine resolution

In this section, we describe the SMA's local resolution i.e. how
the SMA proceeds for inserting CBM activity in the current plan.
We propose a partial rescheduling where only production jobs
order can be adjusted. It consists of seven stages: (1) initialization
stage, (2) analysis stage, (3) call for intervention stage, (4)
proposals formulation stage, (5) reception stage (6) scheduling
and evaluation stage and finally (7) finalization stage. Figs. 3 and
4 illustrates respectively interaction and activity diagrams of
involved agents.

3.2.1. Initialization stage

When the SMA receives signals from captors, it sends an
analysis request to the MCA. The request is composed of signals
code and information relevant to machines’ state. Information
allows MCA to determine the problem, suggestion of needed
maintenance activity and estimation of RUL.

3.2.2. Analysis stage

In this stage, according to information sent by SMA, the MCA
first identifies the problem as well as needed maintenance activity
for correcting the anomaly and then estimates the RUL; duration.
This latter is fuzzy and is defined by three points [DdIS;, t; DdIE;]
(Fig. 1a). Many interesting works could be adopted for implement-
ing MCA (Bach, Althoff1, Newo, & Stahl, 2011; Chebel-Morello,
Haouchine, & Zerhouni, 2009; Hanemann, 2006). Tobon-Mejia,
Medjaher, Zerhouni, and Tripot (2011) propose a system for
bearings RUL estimation based on the utilization of Mixture of
Gaussians Hidden Markov Models (MoG-HMMSs). The raw signals
provided by the sensors are first processed to extract features,
which permit to model the physical component and its degrada-
tion. The prognostic process is done in two phases: a learning
phase and an evaluation phase. Once the learning phase is done,
the generated model is exploited during the second phase, where
the extracted features are continuously injected to the learned
model to assess the current health state of the physical component
and to estimate its RUL and the associated confidence.

3.2.3. Call for intervention stage

The MCA is involved with a database called “a referential” that
contains all HRAs and their competences. Thus, it sends a call for
proposals (CFP) to the interveners qualified to perform the activity.
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Fig. 3. Multi-agents interaction protocol.

The CFP is composed of the activity identifier CBMy and the
preferred interval of intervention I; that depends on chosen
maintenance strategy (I = [t;,DdIE;] for MOS and Ij; = [DdIE;, DdIE;]
for POS).

3.2.4. Proposal formulation stage

Each contacted HRA,, checks its plan of intervention. According
to its availability, it responses to the MCA'’s call. We suppose that
each contacted HRA,, can have several intervals of availability, so
it sends several proposals to the MCA. A proposal is composed
of: the activity identifier CBMy, a list of Availability intervals Al,,
and a processing time 517’,; that it could take to execute the activity,

P}, is defined by three points [p}, ;. Pj,. Pips- Algorithm 1 describes

the behavior of each contacted HRA,,.

Algorithm 1. HRA, Behavior.

Let I;S’Vm the time proposed by HRA, for processing
CBM;; activity, [Imin,;, Imax;;] the suggested
interval of intervention proposed by the MCA and
Prop_list the 1list of proposals.

Casel. When the HRA, receives a CFP it proceeds as
follows:

Stepl. It identifies the processing time EJZ/;
Step2. From Imin;; and while Imax;; is not
exceeded, for each availability
interval with a length >= pgms ,it
inserts this interval into Prop_list
Step3. It sends the Prop_list to MCA.
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Fig. 4. Multi-agent activity diagram.

Case2. When the HRA, receives an intervention
confirmation; it updates its plan and its
availability

3.2.5. Reception stage

In this stage, MCA receives responses from contacted HRAs. It
retains positive responses (acceptations) and transmits them to
the SMA.

3.2.6. Scheduling and evaluation stage
The SMA proceeds by evaluating proposals in order to select the
best one according to its objective. We define “a position” that is a

date where we can insert the maintenance activity (see Fig. 6(0)). It
is located between each completion time of a production job and
starting date of the following TBM activity. The SMA selects first
a maintenance strategy (maintenance or production oriented strat-
egy), and then tries to insert CBMj; in the most adapted position
that fits the best with HRA availability intervals. If no proposal is
done in a strategy intervention interval, the SMA moves to the
other strategy. If despite this, no proposal fits with the new inter-
vention interval, rescheduling is executed. In positive case, it
schedules production jobs in order to optimize the production

objective function (f~1) (Algorithm 2). Finally, it evaluates all result-
ing schedules (according to the objective function f) then selects
the one that minimizes best f.



Algorithm 2. The SMA behavior.

Stepl. SMA chooses a maintenance strategy (MOS or
POS)

Step2. It identifies all positions where it can
insert CBM;; in its schedule

Step3. Many cases may appear:

— Ifno position is available, it changes the
maintenance strategy and re-executes Step2

- If no other strategy can be chosen, it
reschedules all production and maintenance
tasks, moves to Step8

Step4. It removes all production jobs from its pre-
dictive schedule
Stepb5. For each position ¢‘pos", the SMA:

- Inserts CBM;j at ¢ ‘pos"

— Computes fy, the CBM tardiness.

— Inserts production jobs one by one in their
initial order according to the available
place.

- Constructs two lists P and PA. P Contains
tardy jobs and PA contains early jobs

- for each job p in P do:

While (p has not been permuted with a job pa of

PA), the SMA:

e Permutes p and pa

e Computes fl, the average tardiness of pro-
duction jobs

e If f; is improved then it retains the new
schedule

End while

End for ~

- Computes the global objective function f

Stepb. SMA selects the schedule that optimizes best]E
Step7. It identifies the selected HRA
Step8. End

3.2.7. Finalization stage

After evaluation, the SMA sends its decision to the MCA that
will inform after that the corresponding HRA of the decision by
sending a confirmation proposal. Also a disconfirmation message
will be sent to the rest of contacted HRAs. The selected HRA then
updates its availability plan by inserting CBM;; and notifies the cor-
respondent real human resource by sending a message to him. He
is informed that changes were brought to his schedule.

3.2.8. Illustrative example

We consider an SMA with a plan presented in Fig. 5. Table 1
summarizes all data relative to this plan tasks. Through this exam-
ple, we will describe the proposed one-machine resolution.

(a) Initialization stage: We suppose that an anomaly has been
detected during the execution of P, at tg. While waiting for
P4 completion time, the SMA treats the signal. It sends an
analysis request to the MCA.

(b) Analysis stage: We suppose that MCA identifies needed
maintenance activity, potential interveners able to execute
it and RUL =[100,120,140]. This stage takes 3 time units.

(c) Call for intervention stage: the MCA sends a call for pro-
posal to identified HRAs. We suppose that it chooses a
MOS for managing maintenance activities. Consequently,
the suitable interval for intervention will be [t11,t90]

(d) Proposal formulation stage: We suppose that two inter-
veners HRA; and HRA; proposed respectively ((4,7,9), [t20,

t40]) and ((3,6,9), [t76,t105]) for processing time and avail-
ability interval.

(e) Evaluation stage: As the MOS is adopted, objective function
weights w; and w, will be respectively 0.75 and 0.25. SMA
proceeds by evaluating the two proposals:

(e.1) HRA; proposal evaluation: According to its plan, the

SMA has only the position t24 (Fig. 5(0)) where it can
insert CBMj; between t20 and t40. Consequently,
fo =Max(0,(24 — 8))=16.
In order to build its new schedule, the SMA, removes,
firstly, all production jobs from the current plan and
leaves TBM activities (Fig. 6(1)). After that, it tries to
add production jobs one by one according to their order
in the predictive schedule i.e. P3, P,, and P;. SMA’s
scheduling can be summarized into two steps:

Step1: It schedules P,, P, and P; according to their

order: First, it tries to insert P5 just after CBM; but it
cannot because its processing time is bigger than the
idle time between CBMj; and M; (46 >37). Also, it
cannot insert it between M; and M, for the same
reason. Consequently, it inserts P; after M, and puts
after it P, and finally P; (Fig. 6(2)).

Step2: It tries to improve plan’s average tardiness by

permutation process: in this step, the SMA tries to
improve the average tardiness (f;) of the production
jobs generated in stepl. Table 2 describes production
jobs characteristics (release date r;, completion date ¢;,

due date d; and tardiness T~i) resulting after step1. The
SMA constructs two lists: (1) a P list that contains tardy
jobs and (2) a PA list that contains early jobs (PA can
contain idle times (“A” jobs)). The SMA permutes each
P job with a PA job, computes f; and retains the one
which best improves f;. For our example, As illustrated
in Fig. 6(3), as P, arrives at t39, SMA permuted P; with
an “A” job (located between CBM;; and My ). It permuted,
after that, P, with an “A” job (located between P; and
M;). Retained plan is illustrated in Fig. 6(4) and resulting
calculations are summarized in Table 3.

(e.2) HRA, proposal evaluation: in this case, the SMA has
only the position t103 where it can insert the CBMj
(Fig. 7(0)). According to Table 4, there are still 32TU
before reaching the deadline DdIS; which is 100t. Thus,
the MOS is retained and resulted CBM tardiness is
fo=Max(0,(103 — 8)) = 95.

The SMA leaves P; and P, in their positions because the HRA
proposed interval begins at t103. It removes P; (Fig. 7(1)) and
inserts CBMj at t103 and after it the Py (Fig. 7(2)). So, the retained
plan will be the one illustrated in Fig. 7(3) and resulting calcula-
tions are summarized in Table 4.

Table 5 presents the two HRA proposals evaluation. We remark
that the best proposal is the one of HRA;

3.3. Multi-machine resolution

After local resolution, the SMA’s new schedule may affect the
schedule of its neighbors: upstream or downstream machines.
That’s why we identify upstream and downstream inconsistency.

- Upstream inconsistency is identified when execution date t;,
of production job k on a machine i is less than its completion
date c;_1y on the upstream machine (ti < ¢i_1y)-

- Downstream inconsistency is identified when completion
date c;, of production job k on machine i is greater than its exe-
cution date f:1) on the downstream machine (Cix > t(i+1y)-
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Fig. 5. SMA’s current execution plan.

Table 1
Data relative to initial SMA execution plan.
Task order Task Id Processing time Starting date Completion date Release date Due date HR Id Maint. type
1 Py 20 4 24 0 60 / /
2 Ps 46 24 70 24 40 / /
3 M, 20 70 90 / / 2 TBM
4 P, 6 90 96 39 93 / /
5 M, 7 96 103 / / 1 TBM
6 Py 21 103 124 20 110 / /

Position where CBM);; activity can be inserted
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. Production task
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TBM activity
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Fig. 6. Construction of the joint production and maintenance schedule according to HRA; proposal.



Table 2

Data relative to the intermediate schedule constructed according to HRA; proposal.

Tasks order ~ Tasks Id Processing time  Stating date ~ Completion date Release date  Due date RH Id Maint. type  Tardiness  f; fo
1 CBM; (4,7,9) 24 (28,31,33) / / 1 CBM / 79 16
4 Ao 14 (28,31,33) 70 / / / / /
5 M, 20 70 90 / / 1 TBM /
6 A 0 90 96 / / / / /
7 M, 7 96 103 / / 2 TBM /
8 P3 46 103 149 24 40 / / 109
3 P, 6 149 155 39 93 / / 62
2 Py 21 155 176 20 110 / / 66
Table 3
Data relative to the final schedule constructed according to HRA; proposal.
Tasks order ~ Tasks Id  Processing time  Stating date  Completion date  Release date  Due date RHId  Maint. type  Tardiness f; fo
1 CBM; (4,7,9) 24 (28,31,33) / / 1 CBM / 3633 16
2 P1 21 (28,31,33)  (49,52,54) 20 110 / / 0
3 P2 6 (49,52,54) (55,58,60) 39 93 / / 0
5 M; 20 70 90 / / 1 TBM /
6 A 6 90 96 / / / / /
7 M, 7 96 103 / / 2 TBM /
8 P3 46 103 149 24 40 / / 109
A/ Position where CBM;; activity can be inserted
Machines . Production task
ﬁ TBM activity
N -
(0) &\\ CBM activity
SM M, A/ M, A/ A/
: . >
04 08 24 70 90 96 103 124 t
Machines -
(1)
SM
H i >
90 96 103 t
Machines
(2)
SM
90 96 103 109112 t
Machines
(3)

SM

920 96 103 112 133

Thus, a re-negotiation is unavoidable in order to readjust
the actual schedule with respect to each machine local plan.
According to the contacted MAs position, we identify the upstream
negotiation and the downstream negotiation

3.3.1. Upstream negotiation

The upstream negotiation is necessary when a production
job must be put forward (the job has to be executed before its

»
L

t

Fig. 7. Construction of the joint production and maintenance schedule according to HRA, proposal.

completion date on the upstream machine: c¢;_1)c > ti). In this case,
the SMA formulates an Update_Message (U_Message) in which it
specifies concerned jobs. Also it specifies jobs that can be executed
later according to its plan. It sends the U_Message to its UMA.

(a) U_Message Treatment: when a MA receives an U_Message,
it tries to re-schedule production jobs of its plan according to
the sender jobs order (Fig. 8). Two cases are possible:



Table 4
Data relative to the final schedule constructed according to HRA, proposal.

Tasks Tasks Processing Stating date Completion Release Due RH Maint. Tardiness TU Before fi fo
order Id time date date date Id type DdIS
1 P; 46 24 70 24 40 / / 30 38 (21,22,23) 95
2 M; 20 70 90 / / 2 TBM / 38
5 P, 6 103 109 39 93 / / 16 32
4 M, 7 96 103 / / 1 TBM / 32
3 CBM;  (3,6,9) 103 (106,109,112) | / 2 CBM /
6 P, 21 (106,109,112) (127,130,133) 20 110 / / (17,20,23) |/
Table 5 UMA MA, DMA
Comparing HRA proposals.
HRA HRA; HRA; I
Ui
f1=Average tardiness 36.33 (21,22,23) Modefying inc::;r;aerc
. Y
fo=CBM tardiness 16 95 locally the
f=0.75%f; +0.25 % f5 31.2475 (39.5,40.25,41) "I'a" _ ="
Retained HRA X | -7
(a.1) It succeeds readjusting its local plan and absorbs incon-
sistency: In this case, it formulates an Informa- T nessese
tion_Message (I_Message) in which it specifies new :’r—e'::‘:::i: T
completion dates of jobs. It sends it to its downstream T~
machine agent (DMA). | ~l~
. . . . . First MA in the
(a.2) It detects at its turn inconsistency with its upstream 9 g
- B - - ® production line
MA’s (UMA) plan: in this case, if the considered

machine is not the first one in the production line, it
sends at its turn an U_Message to its UMA in order to
try rescheduling its plan and so on until the total
absorption of the inconsistency. Whereas, if the consid-
ered machine is the first one in the production line, it
formulates an I_Message to its DMA to inform it of its
final schedule.

(b) I_Message treatment: as explained before, a contacted MA
can send an “I_Message” after modifying its own plan
(Fig. 8). The receiver of this message has to readjust its plan
according to the sender job completion dates. If the receiver
is not the last MA in the production line, it sends at its turn an
I_Message to its DMA in order to inform it of the new dates.

3.3.2. Downstream negotiation

At the end of upstream negotiation, the SMA updates its plan.
This plan may not be similar to local resolution approach one
because it depends on the last received I_Message. If the new
schedule affects the one of its DMA, the SMA formulates an
[_Message and sends it to the DMA. Consequently, this stage is a
propagation of resulted schedules to all downstream machine
agents (Fig. 9).

4. Experimental results

In this chapter, we present results of a series of computational
experiments conducted to test the effectiveness of the newly
proposed approach. We use a personal computer with an Intel pro-
cessor Core i3, 2.53 GHz (4 CPUs), 4 Go of RAM and Windows7
(32 bits) operating system. In what follows, we describe first,
simulation software, material and design. After that, we present
and discuss results of experiments.

4.1. Simulation material and software

Different set of inputs are tested using ETOMA (Bouzidi-Hassini,
Saboun, Bourahla, Benbouzid-Sitayeb, & Khelifati, 2014), a multi-
agent framework dedicated to developing and testing production
and maintenance schedules. It is composed of three modules. The

Fig. 8. U_Message treatment activity.

first one called Develop defines the user multi-agents’ solution by
defining all system agents and their behavior. The second one
called Test manages tests and the third one called Blackboard
insures communication between the two previous modules.
ETOMA does not impose any architecture for the system that
represents the workshop nether for agents to be defined by users.
It covers the three shops’ configuration: Flow-shop, Job-shop and
Open-shop.

4.2. Simulation design

We consider for our experiments a flow-shop with release and
due dates. To our knowledge, there is no instance for the joint
production and maintenance scheduling problem as it is defined
in our approach. Therefore, we generate data relative to produc-
tion, maintenance and human resources. We generate different
predictive plans composed of production and maintenance tasks
scheduled jointly. After that, we simulate the arrival of anomaly
event and we observe the behavior of our system. The date of
anomaly arrival can be at the beginning, middle or end of the
scheduling horizon in order to study all possible scenarios.

4.2.1. Production data

Due to lack of benchmarks that take into consideration release
and due dates for each production job, we generate our own
instances. We adapt the Taillard benchmarks (Taillard, 1993) by
generating release date r; and due date d; for each job j on a
machine i according to respectively (Egs. (5) and (6)).

Tij = T(i—1) + Dii—1) (3)

dij = (dj —17) * P/ D (6)

4.2.2. Predictive joint production and maintenance schedules
For each machine, several TBM activities are planned. Their pro-
cessing times are randomly generated from an interval fixed by
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user. Maintenance activities cannot be planned randomly because
it depends on machines’ operating duration. A period T; between
two maintenance activities of type j is calculated as follows
(Eq. (7)):

T; = MP; NPT (7)

where MP; represents the average processing time of production
jobs that will be executed on the machine, NPT the number of
production jobs between two maintenance activities. It's a parame-
ter that can be fixed by user. In our simulations we took NPT =4,

4.2.3. Human resource instances

We vary HRA number between 2 and 8 in order to evaluate its
influence on the approach performances. We stopped on 8 HRAs
because we have only one CBM activity to insert at a time.

If there are multiple CBM activities with different resolution
times to be inserted in between production process, the SMA treats
CBM activities one by one.

We generate an availability plan for each HRA;, in the work-
shop. It depends on the maintenance activities number planned
on machines and also on the number of existent human resources
in the maintenance service. Consequently, the average period
TRH,, that separates two interventions of any HRA,, is calculated
according to (Eq. (8)).

TRH,, = p/HRN,, (8)

HRN,, = NMA/NHR (9)

where p represents the scheduling horizon, HRN,, the average
number of maintenance activities affected to HRA,,, it is calculated
according to (Eq. (9)). NMA is the total number of planned mainte-
nance activities and NHR is the number of existent human
resources in the maintenance service.

In order to construct an HRA,, plan, we calculate its availability
intervals IA;, = {IA1,IAm2,...}. Each interval 1A, is defined as
[IAmin,,, IAmax,,.] (Eqs. (10) and (11)).

IAming, = [AmaXy_1 + P, + 01 (10)

IAmax = [Aming + [ py,, + 0 (11)

o and op are random numbers with —py /2 <= oy <=2« p},,/3
and 0 <= o <=2 * pj,, i is a coefficient that characterizes interval

width {3 for long, 2 for middle, 1 for small}.

4.2.4. Fuzzy data

Base width bw of the membership function (Fig. 10) represents
the distance between the most probable value of the fuzzy
measure and its maximum or minimum value.

As known, we proposed two fuzzy measures: RUL; and p},. The
choice of bw value has an impact on resolution approach results.

For RUL;, the bw value influences interval widths of both MOS
and POS. In fact, there is no sense for strategies existence if we con-
sider a very large interval nether a very short interval for mainte-
nance strategies. Because if the interval is very large, results may
be unrealistic. Also, when it is very short, the probability of finding
available HRAs for CBM execution will be very small. The aim of
considering a deadline for CBM planning is to evaluate the case
of planning CBM while delaying production jobs and the case of
keeping actual schedule unchanged by delaying CBM planning.
So it is important to propose a realistic length for maintenance
strategies interval. For these reasons, we choose the value 0.4 for
bw of the RUL; (tf + ff * 040)

Whereas, bw of pj, influences the number of possible positions
where CBM can be inserted. We choose the value 0.2
(Pjm £ Pj + 0.2) which is medium and reflects a rational impreci-
sion regarding processing time for maintenance activities.

4.2.5. Simulating the anomaly arrival

In order to study the influence of anomaly’s arrival date, we
generate a signal at beginning, middle and end of the SMA’s plan.
Therefore, we divide the SMA'’s plan on three equivalent intervals.
For every experiment to be executed, we generate a signal
randomly in one of these intervals. For the SMA’s order in the
flow-shop, we select in each benchmark, the middle machine to
obtain significant results.

4.3. Simulation results

We report on three sets of experiments. In the first experiments
set, we evaluate the system reactivity by measuring the influence
of machines number myg, jobs number m;, human resources’ num-
ber my, the adopted strategy and, the moment of anomaly arrival
on the resolution time. In the second one, we evaluate the capacity
of our approach to minimize the average production lateness.
Finally, in the last experimental set, we measure the effect of each
sub-objective function f; and f, on the global objective function f.

4.3.1. System’s reactivity

System’s reactivity is an important propriety in the online
(reactive) phase of scheduling. It is the resolution time taken to
insert a CBM activity in the current schedule. In order to evaluate
this propriety, we vary machines number (myg), jobs number (m;)
and human resources number (m4). We compute after that, the
resulting resolution time in the one-machine and multi-machine
resolution phases. We simulate the anomaly event arrival at the
beginning; middle and end of the schedule. We apply both mainte-
nance oriented (MOS) and production oriented strategy (POS) for
maintenance planning in order to analyze results. Results are
reported in Table 6.

According to Table 6, one can notice that multi-machine resolu-
tion time is always lower than the one-machine resolution time. In
fact, the inconsistency has been detected rarely between machines,
which mean that proposed one-machine resolution approach has
absorbed the event of inserting the new CBM without disturbing
the other machine schedules.

Human resources number does not influence the multi-
machine resolution time; it influences only the one-machine reso-
lution one because HRA with MCA and SMA negotiate CBM plan-
ning. In most cases, when HRA number increases, one-machine
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resolution time increases but stills reasonable (less than 10 s). We
remark in certain cases that increasing the HRA number does not
necessarily increase the resolution time (ex. the two gray cases
in Table 6). It depends on HRA availability. The existence of 8
HRA at the maintenance service does not mean that the 8 HRA
are available for intervention.

When jobs number increases, one-machine resolution time
increases too because SMA, after inserting CBM activity, has to
reschedule an important number of production jobs which signifi-
cantly increases the resolution time. Increasing jobs number
increases multi-machine resolution time but not with the same
degree as one-machine resolution time because inconsistency
has been detected rarely and so upstream or downstream negotia-

Table 6
Influence of jobs, machines and human resources number on the resolution time.

tions number is small. It increases because the SMA neighbor
machines if they have to readjust their schedules, they will
reschedule an important number of jobs which will take time.
Also, results shown that one-machine resolution time is higher
when MOS strategy is adopted because the number of jobs to read-
just is greater than the one when POS is adopted. This is due to the
interval width of MOS strategy which is larger than the POS one.

4.3.2. Measuring the contribution of both production tardiness and
CBM tardiness in the global objective function

In this series of experiments, we compare both production and
CBM tardiness values in order to measure their effect on global
objective function value. We compare also the initial production

tardiness f,, with ﬂ after inserting CBM activity (as f,, is exact,

we compare it with the maximal value of f~1 ). We analyze the case
of anomaly arrival at the middle of the predictive plan. Results are
summarized in Table 7.

We remark that when human resources number increases, pro-
duction tardiness decreases. We can explain this result by the fact
that SMA evaluates all HRA proposals and chooses the one that
minimizes jobs tardiness. When proposals number is important,
the probability to not increasing jobs tardiness is high.

When machines and jobs number increase, production tardi-
ness increases. In fact, tardiness of a given job depends on tardiness
of its previous jobs. If these latter are late, automatically the actual
job will be late and its tardiness is the sum of previous jobs tardi-
ness on the different upstream machines.

We can remark also that as CBM tardiness is calculated accord-
ing to the date where CBM activity will be planned (Section 2.3), its
value is always higher than the production tardiness value. More-
over, when MOS is followed, production tardiness is important and

mo m; my One-machine resolution (ms) Multi-machine resolution (ms)
Beginning Middle End Beginning Middle End
MOS POS MOS POS MOS POS MOS POS MOS POS MOS POS
5 20 2 40.21 31.33 34.52 23.65 20.21 21.33 7.00 3.33 4.23 1.50 2.05 1.75
4 55.56 40.35 45.33 55.63 25.55 20.33
8 70.33 42.36 80.25 65.33 20.33 22.25
50 2 120.33 80.33 130.25 136.23 120.23 100.23 20.33 16.33 13.89 13.67 12.56 12.86
4 200.33 100.55 253.33 152.33 150.33 145.33
8 213.66 125.36 363.23 226.3 223.36 235.33
100 2 200.23 145.33 123.66 130.33 123.33 140.25 24.44 21.56 17.89 17.11 13.78 12.44
4 250.36 150.33 223.33 250.23 223.33 189.33
8 286.33 160.25 250.23 200.33 260.33 190.66
10 20 2 465.33 333.25 330.25 236.25 300.33 350.25 28.00 26.22 14.22 13.33 12.00 11.78
4 350.25 245.33 320.25 250.25 250.23 220.36
8 250.25 260.33 350.25 360.25 325.25 356.3
50 2 350.5 265.33 460.36 350.25 356.62 250.25 22.33 20.44 17.44 17.56 15.26 12.85
4 365.23 277.33 420.25 450.25 450.23 350.23
8 425.55 330.25 450.25 400.25 350.25 325.25
100 2 678.55 550.25 700.25 650.25 500.25 650.25 36.33 33.25 22.22 21.11 10.33 9.67
4 650.33 45433 650.25 500.85 423.36 350.25
8 780.23 550.25 885.25 900.25 650.52 589.25
20 20 2 120.33 50.33 220.36 120.25 200.25 140.25 28.03 28.25 24.78 23.40 11.89 13.00
4 253.33 298.23 265.25 270.25 198.23 150.23
8 986.33 1120.33 1125.25 1203.25 985.25 900.55
50 2 1985.33 1325.25 2540.33 1983.33 1203.25 956.56 31.35 23.25 27.56 16.33 17.78 16.50
4 2536.36 2352.33 2436.33 2456.33 2123.25 1985.25
8 4536.33 3256.33 4856.33 3562.33 2003.25 2013.25
100 2 7965.33 4134.00 6402.33 5360.23 3652.25 2546.35 49.58 42.65 35.25 35.25 18.00 19.89
4 8563.33 5840.00 6135.33 4652.33 4563.25 3252.25
8 9563.22 7862.00 9635.33 8523.33 6523.23 6235.23




Table 7
Objective functions in the case of anomaly arrival at the middle.

Mo m; my fio Production tardiness f; CBM tardiness f; Objective function f
MOS POS MOS POS MOS POS
5 20 2 0.00 0 0.00 84.00 251.00 21 188.25
4 0.00 0 0 94.00 324.00 235 243
8 0.00 0 0 44.00 317.00 11 237.75
50 2 16.00 (12,15,18) (7.2,9,10.8) 97.00 403.00 (33.25,35.5,37.75) (304.05,304.5,304.95)
4 16.00 (10.4,13,15.6) (9.6,12,14.4) 93.00 318.00 (31.05,33,34.95) (240.9,241.5,242.1)
8 16.00 (8,10,12) (5.6,7,8.4) 33.00 296.00 (14.25,15.75,17.25) (223.4,223.75,224.1)
100 2 11.00 (10.4,13,15.6) (7.2,9,10.8) 33.00 176.00 (16.05,18,19.95) (133.8,134.25,134.7)
4 11.00 (8.8,11,13.2) 10 14 366.00 (10.1,11.75,13.4) 277
8 11.00 10.5 9 101.00 452.00 33.125 341.25
10 20 2 32.00 (20,25,30) (19.2,24,28.8) 74.00 265.00 (33.5,37.25,41) (203.55,204.75,205.95)
4 32.00 (20,25,30) (15.2,19,22.8) 50.00 328.00 (27.5,31.25,35) (249.78,250.75,251.7)
8 32.00 (35.2,44,52.8) (24.8,31,37.2) 29.00 562.00 (33.65,40.25,46.85) (427.7,429.25,430.8)
50 2 38.00 (16.8,21,25.2) 5.00 147.00 553.00 (49.35,52.5,55.65) 416
4 38.00 38.00 (16,20,24) 10.00 336.00 31 (256,257,258)
8 38.00 (31.2,39,46.8) (16,20,24) 68.00 345.00 (40.4,46.25,52.1) (262.75,263.75,264.75)
100 2 86.00 (59.2,74,88.8) (32,40,48) 56.00 380.00 (58.4,69.5,80.6) (293,295,297)
4 86.00 (52,65,78) (35.2,44,52.8) 3.00 352.00 (39.75,49.5,59.25) (272.8,275,277,5)
8 86.00 (48,60,72) (52.8,66,79.2) 15.00 227.00 (39.75,48.75,57.75) (183.45,186.75,190.05)
20 20 2 570.00 (432,540,648) (451.2,564,676.8) 86.00 522.00 (345.5,426.5,507.5) (504.3,532.5,560.7)
4 570.00 568.33 (411.2,514,616.8) 244.00 293.00 487.25 (322.55,348.25,373.95)
8 570.00 576.00 (405.6,507,608.4) 15 330.00 435.75 (348.9,374.25,399.6)
50 2 311.00 310.00 306.00 66.00 431.00 249 399.75
4 311.00 308.00 311.00 64.00 451.00 247 416
8 311.00 (197.6,247,296.4) 311.00 69.00 312.00 (165.45,202.5,239.55) 311.75
100 2 193.00 (88.8,111,133.2) (122.4,153,183.6) 51.00 278.00 (79.35,96,112.65) (293.1,246.75,254.4)
4 193.00 432.00 150.00 23 276.00 104.75 2445
8 193.00 (96.8,121,145.2) 152.00 22.23 342.00 (78.16,96.04,114.46) 2945
Table 8
One-machine and multi-machine tardiness according to the maintenance strategy adopted and human resources number.
my One-machine tardiness Multi-machine tardiness
Unchanged Improved Deteriorated Unchanged Improved Deteriorated
MOS (%) POS (%) MOS (%) POS (%) MOS (%) POS (%) MOS (%) POS (%) MOS (%) POS (%) MOS (%) POS (%)
2 32.85 31.13 65 62.23 215 6.64 77.90 77.14 20.40 21.63 1.70 1.23
4 35.67 32.34 61 65.31 3.33 2.35 77.14 83.42 22.66 13.33 3.25 3.25
8 32.74 31.29 62 60.37 5.26 8.34 71.80 7241 25.26 25.12 2.94 2.47

CBM tardiness is small and vice versa when POS is applied. Conse-
quently, the objective function value is small when MOS is adopted

In conclusion, the results of MOS are better than those of
production oriented one because it offers minimal CBM tardiness
and a much closed production tardiness to the one offered by
POS. But if the aim is to minimize the reaction time, POS is more
interesting.

4.3.3. Capacity of the approach to absorb the average production
tardiness

In this section, we compare average production tardiness on the
SMA before and after the CBM activity insertion. Moreover, we
compare the global average production tardiness that can be
detected on the last machine in the flow-shop. For every test exe-
cuted, we noted how many times the average production tardiness
has been improved, was unchanged or has increased. Results are
presented in Table 8. One can notice that whatever human
resources’ number or the adopted maintenance strategy, in more
than 60% of cases, the one-machine production tardiness has been
improved and in more than 70% of cases, the Multi-machine
production tardiness has been unchanged which means that the
goal of disturbing at least the actual plan has been achieved.

5. Conclusion and future work

In this work, we proposed a reactive model which responses to
the event of inserting new CBM activity. We propose a partial
re-scheduling in order to maintain stability in the workshop with
a two-level resolution process: one-machine and multi-machine
resolution. We propose also two maintenance strategies for
planning CBM activity: Maintenance oriented and production
oriented strategy.

The one-machine resolution describes the SMA’s behavior in
response to the anomaly event apparition. Whereas the multi-
machine resolution describes behavior of adjacent machines in
case of inconsistency detection between machines’ schedules.
Uncertainty is considered by proposing fuzzy estimation of the
equipment RUL and CBM processing time.

In order to measure the proposed method performances, we
made several series of tests. Results shown that adopted one-
machine resolution could absorb locally the event and minimizes
the global tardiness of the whole production jobs in the workshop.
Also, MOS offered best results in term of production and CBM
tardiness. In term of reaction time, POS is more interesting in the
case of anomaly arrival at the end.



There are several directions in which this research can be
extended. In this paper, we do not consider human resources com-
petence formulation. It could be interesting to consider a formula-
tion of competence profiles in order to allocate maintenance
activities to the best human resource based on its competence
and not only based on its estimation of processing time. Another
direction consists on considering other events like machines’
breakdowns and human resources’ defection.
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