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EXPERIMENTING WITH THE P4EST LIBRARY FOR AMR SIMULATIONS
OF TWO-PHASE FLOWS.

Florence Drui1, 2, Alexandru Fikl2, Pierre Kestener2, Samuel Kokh2, 3,
Adam Larat1, 4, Vincent Le Chenadec1 and Marc Massot1,4

Abstract. Many physical problems involve spatial and temporal inhomogeneities that require a
very fine discretization in order to be accurately simulated. Using an adaptive mesh, a high level of
resolution is used in the appropriate areas while keeping a coarse mesh elsewhere. This idea allows
to save time and computations, but represents a challenge for distributed-memory environments.
The MARS project (for Multiphase Adaptative Refinement Solver) intends to assess the parallel
library p4est for adaptive mesh, in a case of a finite volume scheme applied to two-phase flows.
Besides testing the library’s performances, particularly for load balancing, its user-friendliness in
use and implementation are also exhibited here. First promising 3D simulations are even presented.

Résumé. De nombreux problèmes physiques mettent en jeu des inhomogénéités spatiales et tem-
porelles, qui pour être simulées correctement requièrent une discrétisation très fine. Utiliser un
maillage adaptatif pour obtenir ce niveau de résolution dans les zones où elle est requise, et garder
un maillage grossier en-dehors, permet d’intéressantes économies en temps et ressources de calcul,
mais représente un défi pour le calcul distribué. Le projet MARS (Multiphase Adaptative Refine-
ment Solver) a pour objectif d’évaluer la librairie parallèle de maillage adaptatif p4est, appliquée
à un schéma de volumes finis pour un modèle bifluide d’écoulement diphasique. Outre les perfor-
mances de cette librairie, en particulier en terme d’équilibrage de charge, sa facilité d’utilisation et
d’implémentation sont mises en avant. Des premières simulations 3D prometteuses sont présentées.

1. Introduction

Adaptive Mesh Refinement (AMR) methods have been developed to solve problems dealing with phe-
nomena appearing at multiple and very different spatial and temporal scales. It is especially useful in the
resolution of the dynamics of localized fronts or interfaces in plasma physics, reactive and complex flows [18].
Combustion problems usually involve a very thin and localized flame front coupled to the hydrodynamics of
the flow [19]. In this project, we are more specifically looking at problems of diffuse interface modeling for
two-phase flows, where a good precision is needed for describing the dynamics of the interface between the
two phases.

One of the first comprehensive descriptions of AMR was given in [4], with an application to hyperbolic
partial differential equations. This paper was followed by an extension of the method which accounts for
the presence of shocks and greatly simplified the AMR-related algorithms [3]. Since then, AMR concepts
have been implemented in dedicated application codes such as RAMSES [34] in astrophysics, or Gerris [31] for
fluid and two-phase flow studies, among others. They mostly follow the ideas of the Fully Threaded Tree of
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(a) Example of overlapped grids illustrating block-based AMR. (b) Example of cell refinement process illustrating
cell-based AMR.

Figure 1. Illustration of two approaches to locally refined meshes.

Khokhlov [25]. These tree-based AMR techniques are close, in terms of implementation to the fully adaptive
multiresolution scheme (MR) introduced in [14, 29] from the ideas of Harten [22] and used in the MBARETE,
z-code codes [17,19] for various applications.

Unfortunately, these dedicated AMR or MR codes often lead to complex software designs due to the meth-
ods employed and suffer heavy difficulties in the development of new applications since the numerical method
and the AMR technique are closely entangled. In particular, the problem of domain decomposition and load
balancing for parallel computing in both shared and distributed memory architectures is very delicate and
necessitates costly complex methods coming from graphs partitioning theory [8,17]. Recently, several excep-
tions offering generic "hands-off " AMR frameworks have appeared such as CHOMBO [1] or p4est [9]. These
can be used with any solver or numerical scheme and do not necessarily rely on the Fully Threaded Tree
ideas.

Many other AMR codes exist and we suggest the interested reader to look at the survey article [21] for a
large review of several such frameworks.

In the context of the MARS project, we have created an interface between a two-phase flow finite volume
solver and a dedicated cell-based AMR library: p4est [9]. The objectives are to test the user-friendliness
and the performances of the library in the context of HPC and to reveal its advantages and disadvantages
compared with simple, non-adaptive algorithms.

The first part of this proceeding describes the principles of AMR methods and, more specifically, the
way p4est works. In the second part, we present the two-fluid homogeneous equilibrium model, derived
from [12], that involves a system of three conservative equations (in 1D) for an isothermal system of two
fluids. The discretization of these PDEs is performed through finite volume techniques and a Godunov-like
scheme: the Riemann problems at cells interfaces are solved approximately thanks to Suliciu’s relaxation
method (see [7, 33]). Second order approximations using a MUSCL-Hancock scheme (see [37]) were also
tested.

Several test cases are performed in order to evaluate different aspects of p4est library and of the numerical
methods. They are presented in the last part of this paper, with dedicated implementation details. The
two-phase model is finally tested in some realistic 2D and 3D configurations.

2. p4est Library: Description and Specificities

2.1. Presentation of AMR Techniques

There are multiple approaches for adapting a mesh to a specific problem, among which block-based AMR
(see Figure 1a), cell-based AMR (Figure 1b) or Wavelet-based AMR, also called adaptive Multi-Resolution
(MR) [14,29,32], which can lead to error control on the solution. Mesh-free methods, such as the Smoothed
Particle Hydrodynamics method and their multi-scale version [2, 13, 16, 26, 28], have also been successfully
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employed to offer an adapted discretization. Here, we are only interested in mesh-based methods, and more
particularly in cell-based AMR. The cell-based method involves modifications on an initial coarse mesh
(usually a single cell representing a rectangular domain) by means of recursively dividing its elements into
multiple sub-elements with a fixed ratio. Because of the continuously changing mesh, it is a large departure
from the usual methods involving static discretizations. To deal with the constant modifications, cell-based
AMR employs trees to store the mesh and easily refine and coarsen specific cells. Different types of trees
are used to store the individual refinements of each cell: binary trees for 1D domains, quadtrees for 2D
domains, and octrees for 3D (see Figure 2).

2.2. Challenges in cell-based AMR

Unlike block-based AMR, where trees are only used to handle the grid hierarchy, cell-based AMR makes
heavy use of tree structures to store the mesh and modify it. The use of this new data structure implies
new difficulties in implementing numerical methods (new integration routines, storage strategies and load
balancing techniques need to be developed). Indeed, during a simulation, different pieces of information about
the tree structure needs to be accessible permanently. Such a requirement raises several issues, especially in
high performance environments:

‚ Tree storage, that can be made in linear arrays, but then raises issues of cache locality;
‚ Tree partitioning for a better load balancing between computing processors;
‚ Scalable algorithms;
‚ Representation of complex geometries and not only square or rectangular domains.

Another challenge is to include these tools into existing codes that need to preserve their original data
structures.

Over time, various implementation choices have been made to deal with these issues. Recently, linear tree
storage, in the form of hash-maps or linear arrays, has been preferred to pointer-based tree representation
[17, 18, 24]. These solutions have proved to use less memory than, for example, Fully Threaded Trees [25],
have a better cache locality and are easier to parallelize.

p4est is one recent example of a cell-based AMR implementation that uses linear storage given by a
space-filling curve. The primary usage of space filling curves in numerical simulation, is to provide a simple
and efficient way of partitioning data for load balancing in distributed computing, but they can also be
used for organizing data memory layout as in p4est. Indeed, many space filling curves have a nice property
called compactness, which can be stated as: contiguity along the space-filing curve index implies, to a certain
extend, contiguity in the N-dimensional space of the Cartesian mesh. As a consequence of the compactness
property, one can expect also improved AMR performance due to a better cache memory usage resulting
from a certain degree of preserved locality between the computational mesh and the data memory layout.
p4est also implements specialized refining, coarsening and iterating algorithms for its specific choice of linear
storage that have proven scalability [9]. These points are real advantages in the frame of HPC where time
and space complexity have to be handled with extreme care. On the top of that, the concept of forest
of trees, allows to use multiple deformed but conforming and adjacent meshes (each tree), enabling, to a
certain point, to represent complex geometries, although this method does not offer the same flexibility as
unstructured meshes.

2.3. Meshing and data storage

In p4est, the discretization of a physical space Ω is represented by multiple trees, the forest, each tree
covering a subset Ωk of the domain, fitting its geometry. The trees are based on reference cubes r0, 2bsd, where
b is the maximum level of refinement and d is the space dimension. Each cube is sent to its corresponding
subset by the one-to-one transformation ϕk : r0, 2bsd Ñ Ωk. The trees, represented by their root cell, define
a macro-mesh of the domain, while their refined cells make up a finer micro-mesh. This approach enables
the user to define complex geometries and not only square or cubic domains. For example, let us consider a
2D annular of inner radius R and outer radius 2R. The macro-mesh is the splitting of the annular into four
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(b) The corresponding representation of the domain using a
quadtree.

Figure 2. z-order traversal of the quadrants in one tree of the forest and load partition into four
processes. Dashed line: z-order curve. Quadrant label: z-order index. Color: MPI processes.

four-edges fourth of an annular, pΩkqk“0,...,3. The corresponding one-to-one transformations are then:

ϕk :

"

r0, 2bs2 ÝÑ rR, 2Rs ˆ r0, π{2s
pX,Y q ÞÝÑ

`

r “ R
`

X{2b ` 1
˘

, θ “ π{2
`

Y {2b ` k
˘˘

The cells of the macro-mesh have to be conforming: each face (and edge in 2D) can only be shared by at
most two trees. As each tree can have its own spatial coordinate system, the inter-tree connectivity is static
and must be explicitly defined: this means specifying shared faces, edges and corners, relative orientations,
etc. Each cell in the micro-mesh is then associated with its position in the reference cube r0, 2bsd. Therefore,
each subdivision of the root node, called octant in 3D (and quadrant in 2D) is uniquely tracked by its
integer spatial coordinates px, y, zq P J0, 2bK3. Linear storage requires a one-to-one mapping from the spatial
coordinates px, y, zq to a linear index m. In p4est, this mapping is provided by the Morton space filling
curve, also called z-order curve. This is illustrated in Figure 2a, where we can see how the z-order curve, in
dashed line, covers a two-dimensional mesh. Figure 2b, illustrating the tree version of z-ordering, also shows
an example of load balancing for four processes: each color represents a different process and we clearly see
how the linear storage enables a simple distribution of the leaves of the tree.

The linear array containing all the cells is thus indexed by the Morton indexm, constructed by considering
the binary representations of the coordinates and interwoven in the following way:

m2
3i`2 “ z2

i , m2
3i`1 “ y2

i , m2
3i`0 “ x2

i , @i P J0, b´ 1K, (1)

where x2
i is the i-th bit of the binary representation of x, notation ¨ 2 indicating numbering in base 2. Using

this method, the connectivity inside each tree is stored implicitly. It enables easy finding of the direct
parents, children or siblings of a given cell by simple bit flips (details can be found in [9]). However, other
neighbors of a cell from the same tree require more work to be found because they need to be identified in
the linear array where they are stored. This is generally achieved by iterating over the faces, edges or corners
of a given cell. In the case when the concerned cell stands at the boundary of the tree, neighbors in the next
tree are found through the knowledge of its spatial coordinates and the one-to-one relation with its Morton
index. However, one has to be careful with the possible implicit change of coordinates in the neighboring
tree.
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2.4. Refining and coarsening

p4est creates the mesh only once, initially, and then adapt it at will by modifying the micro-mesh. While
adapting, the following steps are usually taken:

‚ Going through the linear array, the leaves are marked for refinement or coarsening or left unchanged,
following a criterion given by the user;

‚ The refinement and coarsening is then applied on each leaf, if possible. A very important feature
of the adapting algorithms is that the z-order is maintained while modifying the linear array. Both
algorithms run in OpNleavesq, but the refining algorithm requires additional space.

‚ 2:1 balancing is performed: for practical reasons, the level difference between an octant and each of
its neighbors is at most 1 (+1 or -1), so that the neighbors of a quadrant are at most 2 times smaller
or 2 times bigger; hence the 2:1 notation. Trees with such a property are also denoted "graded trees"
in [14, 17, 18, 20, 30]. Algorithms that perform the balancing are generally among the costliest parts
of AMR or Multi-resolution codes (see more details in [23]).

‚ Finally, as far as parallelization is concerned, load distribution is operated between processes by an
equal division of the new array of leaves.

3. Model and Numerical Methods

3.1. A Two-fluid Model

We consider a two-phase flow that involves two compressible fluids k “ 1, 2 governed by a barotropic
Equation of State (EOS) ρk ÞÑ pkpρkq, here ρk and pk denote, respectively, the density and the pressure of
the fluid k “ 1, 2. We make the classic assumption that p1k ą 0 which enables the definition of the pure fluid
sound velocities ck, k “ 1, 2, by c2kpρkq “ p1kpρkq. The global density of the medium is defined by:

ρ “ αρ1 ` p1´ αqρ2, (2)

where α (resp. 1´α) denotes the volume fraction of fluid 1 (resp. 2). We note Y “ ρ1α{ρ the mass fraction
of the fluid 1. Following [10, 12], we suppose that the pressure pρ, Y q ÞÑ p in the two-component medium is
defined by imposing an instantaneous pressure equilibrium between each fluid, namely:

p “ p1

ˆ

ρY

α

˙

“ p2

ˆ

ρp1´ Y q

1´ α

˙

, (3)

for given values of ρ and Y . The mechanical equilibrium relation (3) imposes that α is defined as a function
of ρ and Y . The uniqueness of α verifying (3) is ensured by the hypothesis p1k ą 0 and pressure is thus a
function of ρ and Y . Assumptions that ensure existence will be stated later, in the framework of a particular
choice of equations of state, used in section 4.

We note pex, ey, ezq the canonical base of R3. We suppose that both fluids k “ 1, 2 share the same velocity
u “ pux, uy, uzq, which gives the following governing equations for the flows:

BtW ` BxFxpWq ` ByFypWq ` BzFzpWq “ SpWq, (4)

where W “ rρ, ρY, ρux, ρuy, ρuzs
T , and the fluxes Fq verify the rotational invariance property FqpWq “

R´1
q FxpRqWq, with Fx “ rρux, ρY uy, ρu2

x` p, ρuxuy, ρuxuzs
T and Rq being defined as the rotation matrix:

Rx “

«

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

ff

, Ry “

«

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

ff

, Rz “

«

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

ff

.

The body force term S accounts for gravity with S “ p0, 0, 0,´ρg, 0qT .
The system obtained by considering (4) with S “ 0 is hyperbolic. For one-dimensional problems the

resulting eigenstructure is a set of three eigenvalues ux ˘ c, ux where the sound velocity of the mixture
c2pρ, Y q “ pBp{BρqY is given by Wood’s formula [38]:
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1

pρcq2
“

Y

pρ1c1pρ1qq
2
`

1´ Y

pρ2c2pρ2qq
2
, ρ1 “

ρ Y

αpρ, Y q
, ρ2 “

ρp1´ Y q

p1´ αpρ, Y qq
.

The fields associated with ux˘c (resp. ux) are genuinely nonlinear (resp. linearly degenerate). Introducing
the free energy F pρ, Y q “

şρ P pr,Y q
r2 dr, the system is also equipped with a mathematical entropy inequality:

BtrρF pρ, Y q ` ρ|u|
2{2` ρgys ` divrpρF pρ, Y q ` ρ|u|2{2` P ` ρgyqus ď 0.

3.2. Finite Volume Method

Dimensional Splitting and Finite Volume Discretization
In order to approximate the solutions of (4), we use a Finite Volume scheme based on a dimensional

splitting strategy, namely of the Lie splitting type. This consists, during a time step ∆t, in successively
solving one-dimensional problems, for each direction, using a discretization of (4) through a classic 1D finite
volume method. We adopt classic notations pertaining to unstructured meshes for describing the AMR grid:
the cell i is noted Ki whose volume is |Ki| while |Γij | and nij are respectively the surface and the unit normal
of the interface between two neighboring cells i and j. The vector nij is oriented from cell i to cell j. We
note Nqpiq, the set of cells neighboring cell i in the direction q “ x, y, z. The full scheme for advancing (4)
in cell i from time referenced by n to time n` 1 is:

W˚
i “ l∆t

x Wn
i , W˚˚

i “ l∆t
y W˚

i , Wn`1
i “ l∆t

z W˚˚
i . (5)

where the operator l∆t
q is defined by

l∆t
q Wi “Wi ´

∆t

|Ki|

ÿ

jPNqpiq

|Γij |pe
T
q nijqR

´1
q Φij , Φij “ ΦpRqWi, RqWjq, (6)

for q “ x, y, z and pWL,WRq ÞÑ Φ being a choice of numerical flux, which has to be provided.

First order Suliciu’s relaxation method
In order to define the numerical flux Φ we choose here the flux defined by the Suliciu’s relaxation ap-

proach [11, 33]. This method belongs to the family of HLLC solvers [35, 36] and using our notations we
have

ΦpWL,WRq “
1

2

”

FxpWLq ` FxpWRq ´

ˇ

ˇ

ˇ

ˇ

puxqL ´
a

ρL

ˇ

ˇ

ˇ

ˇ

pW˚
L ´WLq

´ |u˚|pW˚
R ´W˚

Lq ´

ˇ

ˇ

ˇ

ˇ

puxqR `
a

ρR

ˇ

ˇ

ˇ

ˇ

pWR ´W˚
Rq

ı

,

with u˚ “ puxqL`puxqR
2 ´ 1

2a ppR´pLq, 1{ρ˚L “ 1{ρL`
u˚
´puxqL
a , 1{ρ˚R “ 1{ρR´

u˚
´puxqR
a , Y ˚L “ YL, Y ˚R “ YR,

puyq
˚
L “ puyqL, puzq

˚
L “ puzqL, puyq

˚
R “ puyqR, puzq

˚
R “ puzqR and a is defined by a “ θmaxpρLcL, ρRcRq,

where cL and cR denote the sound velocity evaluated for the state WL and WR. The parameter θ ą 1 is a
constant. This choice of a complies with the subcharacteristic condition of Whitham for stability purposes
(see [11]).

Time step and CFL condition

The stability of the scheme is assured at each time step by the following CFL condition:

∆t ď C min
i

˜

∆xi
}ui} `

a
ρi

¸

, (7)

with C P r0, 1s. The time step is thus global over the whole mesh. Let us insist on the fact that local
time stepping can be an important additional feature in order to save computational time, which can be
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implemented for the resolution in time of the convective part of the system [15, 30]. Because of the frame-
work of the original project, it is not considered in this contribution, but stands within our list of further
improvements.

3.3. Higher-order discretization

We propose a simple second order extension of the Finite Volume Method presented in section 3.2 by
using a classic MUSCL-Hancock strategy [6, 37] for each sweep in the direction q “ x, y, z.

Evaluation of slopes within the cells
We consider here only the sweep in the direction x: the other cases can be deduced by substituting x

by y or z. Let Λ be the change of variables Λ : W ÞÑ rρ1α, ρ2p1 ´ αq, ux, uy, uzs “ V. For a cell Ki, for
each j P Nxpiq, the set of neighbors of Ki in the x direction, we define a slope σij for the variations of the
primitive variables in the direction x at each interface Γij with σij “ pVj ´ Viq{pMiMj ¨ exq, where Mr

is the center of the cell Kr and Vr “ ΛpWrq, r “ i, j. Then we evaluate a slope σi associated with the
variations along the x axis in the vicinity of Ki thanks to a simple minmod limiting procedure that accounts
for all σij by setting:

σi “

#

smint|σij |, j P Nxpiqu, if all σij for j P Nxpiq have the same sign s “ ˘1,
0, otherwise.

Prediction step
For a given cell i, the MUSCL-Hancock method involves the computation of the two left and right predicted

values Wn` 1
2

iL and W
n` 1

2

iR for the conservative variables as follows:

‚ compute Wn
iL and Wn

iR in the cell i with: Wn
iL “ Λ´1pVn

i ´
σi∆xi

2 q, Wn
iR “ Λ´1pVn

i `
σi∆xi

2 q.

‚ evaluate predicted left and right states Wn` 1
2

iL and W
n` 1

2

iR in the cell i with :

W
n` 1

2

iL “Wn
iL ´

1

2

∆t

∆x
pFpWn

iRq ´ FpWn
iLqq , W

n` 1
2

iR “Wn
iR ´

1

2

∆t

∆x
pFpWn

iRq ´ FpWn
iLqq , (8)

(9)

Let us note that the change of variables Λ for computing σij ensures the positivity of αρ1 and p1´ αqρ2.

Flux computation
The definition of the flux Φij at an interface Γij by the MUSCL-Hancock method is obtained by replacing

the left and right values in the flux Φ by the predicted values as follows: one replaces the choice of Φij in
relation (6) by ΦMH

ij where ΦMH
ij “ ΦpRxW

n` 1
2

iR , RxW
n` 1

2

jL q if eTxnij ą 0 and Φij “ ΦpRxW
n` 1

2

jR , RxW
n` 1

2

iL q

otherwise.

Strang splitting
Lie splitting formulae introduce an asymptotically first order global error, whereas using Strang splitting

formulae lead to a second order when the splitting substeps are resolved exactly [18, 27]. Second order is
maintained if each substep is integrated in time with a numerical scheme at least of second order [18]. In
our case one solves according to the x then y directions on a half time step, along the z direction on a full
time step, and again y then x directions on a half time step. The update procedure (5) is replaced by:

l
∆t{2
X l

∆t{2
Y l

∆t{2
Z l

∆t{2
Z l

∆t{2
Y l

∆t{2
X Wn

i , (10)

leading to a numerical scheme that is second order in time and space.
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3.4. Refinement criterion

The definition of efficient refinement criteria is a complex task that depends on the physical phenomena
involved in the simulation (see e.g. [4, 18]). We consider here only three simple heuristic criteria in order to
test the mesh adaptation functionality of p4est within our finite volume framework. The authors are aware
that this part is critical in the study of an AMR technique and definitely requires a deeper investigation. In
the following, we briefly describe the different criteria we have tested so far.

Each time the mesh-adapting algorithms are called, a given criterion CpWq is evaluated within each cell
and compared to a given threshold ξ. If CpWq ą ξ, then the current cell must be refined. If all siblings of a
given octant verify CpWq ď ξ, then the octant is marked for coarsening. The final configuration of the mesh
is obtained by accounting for the 2:1 balance constraint. During coarsening, the new coarser cell contains
the mean value of the to-be-removed cells. During refining, the new cells are fed with the mean value of
their parent cell, even when using second-order reconstruction. By experiment, feeding the new cells with
more accurate values has not shown substantial improvement. Let b denote a scalar or a vector value, we
note Dpbqi “ maxt

|bi´bj |
maxpbi,bjq

{ j P Nqpiq, q “ x, y, zu.
In the following tabular, we have ordered the criteria by increasing sensibility. The mildest α-gradient

allows to refine only at the interface. A mixed-criterion involving local jumps of density, velocity and
pressure with a rather high threshold ξ allows to moreover captures non-linear waves and strong variations
of the solutions. Finally, the criterion on the density only with a low threshold allows to capture all the
small variations in the solution, even possibly the acoustic features.

Name Description Use

α-gradient CpWqi “ maxt|αi ´ αj | { j P Nqpiq, q “ x, y, zu Evolution of the interface gas/liquid.

mixed-criterion CpWqi “ maxraDpρqi, bDppqi, cDpuqis
Ř

General criterion with selection of
prevailing non-linear waves according
to a, b, c weights.

ρ-gradient CpWqi “ Dpρqi
ŘŘ

Most sensible criterion. Cap-
tures all variations in the solution,
even small amplitude acoustic waves.

4. Results

We present 2D and 3D simulations performed with the code developed during the CEMRACS 2014
research session. These results aim at testing several elements: the AMR functionalities of p4est, the
computational cost reduction thanks to the compression of the mesh and the parallel performance of p4est.
We also propose simulations of gravity driven flows with the two-phase model of section 3.1. Let us emphasize
the fact that tests are early results that shall be more thoroughly investigated in the future.

In the sequel we shall consider that the EOS of each component k “ 1, 2 is barotropic Stiffened Gas law
of the form ρk ÞÝÑ pkpρkq “ pk,0 ` c

2
kpρk ´ ρk,0q, where pk,0, ρk,0 and ck are positive characteristic constants

of the fluid k. This choice of EOS ensures that α and P can always be uniquely defined thanks to explicit
formulas [10,12].

4.1. Scheme verification

We consider here several tests that consist in advecting a constant velocity and constant pressure profile
in a periodic 2D domain r0, 1s2 (all the physical dimensions will be given in SI units).

The initial condition is defined by ppx, 0q “ 105, upx, 0q “ p1, 1, 1qt and a given initial profile of α defined
by a function α0pxq. The exact solution of this problem is trivially αpx, tq “ α0px´ tuq with p and u kept
at their initial value.

8



(a) Illustration of α profile (first order in blue,
MUSCL-Hancock in purple). ∆xmax “ 2´3,
∆xmin “ 2´8. Cut along x “ y line.

(b) Convergence rate on uniform meshes for the first-order
and second-order schemes, with L1 and L2 norms.

Figure 3. Advection of a smooth α-profile, computed with first-order and second-order MUSCL-
Hancock schemes after 1s of simulation.

First, we want to evaluate the behavior of the MUSCL-Hancock method with the simple slope evaluation
described in section 3.3 in a AMR context. We suppose that α0 is given by a smooth profile

α0pxq “

$

&

%

λ` p1´ λq ¨ cos4

ˆ

π
|x´ x0|

0.6

˙

, if |x´ x0| ě 0.3,

λ, otherwise,
(11)

for λ “ 10´7, x0 “ p0.5, 0.5q and we choose to drive the AMR with the ρ-gradient criterion with a
threshold value of ξ “ 5.10´5. Figure 3a shows the resulting α-profile at t “ 1, with a space step ranging
from ∆xmax “ 2´3 to ∆xmin “ 2´8. As expected, the higher-order method clearly improves the accuracy of
the solution. In figure 3b, we verify that the convergence rate in the L1 and L2 norms are compatible with
the standard results [27]. The proposed evaluation, involving points for coarse meshes where order reduction
in the non-asymptotic regime is taking place, still gives a convergence rate of 0.8 for the first order scheme
and 1.6 for our MUSCL-Hancock implementation.

4.2. Tests of parallel AMR procedure

We consider again the transport problem at constant pressure and constant velocity of section 4.1 with a
sharp profile of volume fraction defined by α0pxq “ 1´λ if |x´x0| ă 0.1, α0pxq “ λ otherwise. The domain
is periodic. AMR is governed by the ρ-gradient criterion with the same refinement threshold as in the 4.1
case. Figure 4 shows the resulting profiles obtained with the MUSCL-Hancock scheme at several instants
with a color representation of the 12 MPI processes domain decomposition. The refinement criterion and
the 2:1 balance property are well-managed by p4est.

4.2.1. Adapted versus uniform meshes
In this section we compare results obtained with uniform grids and adapted meshes in order to assess the

ability of the AMR procedure to act as a compression technique, preserving accuracy while decreasing the
computational needs. In the following, ∆xmin is the space step of the reference uniform mesh. It is equal to
the size of the most refined cell in the AMR simulation and it is fixed for a series of simulation. On the other
hand ∆xmax is the largest allowed space step for the AMR simulation. It varies from ∆xmin to 26∆xmin, so

9



Figure 4. View of the adaptive meshing and domain decomposition, load-balancing and 2:1 balance
for the disk advection test case. ∆xmax “ 2´3, ∆xmin “ 2´8. 2nd-order MUSCL-Hancock scheme.

(a) ξ “ 5 ˆ 10´4 (b) ξ “ 5 ˆ 10´5

Figure 5. L1-error versus level of compression of the mesh. Each compressed mesh is compared with
its equivalent uniform mesh (log2 p∆xmaxq ´ log2 p∆xminq “ 0) given in the same color. The study is
lead for two different values of the threshold ξ for ρ-gradient refinement criterion.

that the so called level of compression, log2 p∆xmaxq ´ log2 p∆xminq varies from 0 to 6. The second order
scheme and the ρ-gradient refinement criterion have been used to perform the different simulations.

Figure 5 shows the evolution of the L1-error with the level of compression for two different values of the
refinement threshold ξ. There, we see that for too large a refinement criterion, the compression error may
prevail over the scheme consistency error when the space step ∆xmin goes to zero. This can be seen in Figure
5a for ∆xmin “ 2´9 and ∆xmin “ 2´10 (red and blue lines), where the L1 errors of the compressed meshes
are significantly higher than the L1 error of the equivalent uniform mesh and do not seem to decrease with
finer ∆xmin. However, decreasing the threshold ξ for the refinement criterion enables to recover the expected
accuracy of the compressed simulations, as shown in Figure 5b. Then, there exists a subtle equilibrium for
the refinement criterion: too small a value implies refinement everywhere and cancelation of the advantages
of the AMR technique, whereas too large a value makes the compression error so large that mesh convergence
is lost.

When the refinement criterion is sufficiently small, the accuracies of the uniform and AMR solutions are
comparable, and the computational time on the compressed mesh is indeed better. This is illustrated in
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(a) At a fixed highest level of refinement ∆xmin, we com-
pare the total CPU time (full line and marks) and com-
pression rates (dashed lines) of the uniform mesh (in black)
and the meshes with 1, 2 and 6 levels of compression
(∆xmax “ 21,2 or 6∆xmin). Performed on 1 MPI process.

(b) Mean computation times (total time, time spent in
finite volume solver and time for mesh management) per
quadrant, for different problem sizes but with a same
amount of work per process (weak scaling).

Figure 6. Adaptive mesh resolution and computational costs

Figure 6a. This figure also displays the resulting compression rate, namely the ratio between the number
of cells in the compressed mesh and in the equivalent uniform mesh. However, due to the rather large level
of diffusion in the α-advection test case, the compression rate is not as high as expected. We think that
a less diffusive numerical scheme would enlarge uniform regions and therefore improve the AMR efficiency,
needed for example in the case of the dynamics of a sharp interface between two phases. Anyway, even
though the AMR technique brings a certain overload for the management of the non-uniform mesh, the high
compression rate allows an overall gain in terms of CPU time.

4.2.2. Parallel performance
In this section, we present few cases testing some aspects of the parallel performance. Nonetheless, we

need to emphasize that the code here is a raw first version that did not benefit from any optimization. It
may be significantly improved in term of computational efficiency.

Strong scaling
We use our α-profile transport test with a number of MPI processes ranging from 1 to 96. The runs are

set in order to preserve the total number of cells approximately equal to 4.6 ˆ 106 cells. Figure 7a allows
to evaluate the resulting speed-ups: for a low number of MPI processes the speed-up is very close to 1.
However, in our case, for greater numbers of processes, the number of cells handled by the solver in each
process is not sufficient to match the communication cost that becomes predominant. Indeed, as shown in
Figure 4, the domain decomposition by even split of the z-curve does not always provide convex domains
(some are not even connected). Therefore, the more MPI processes involved, the more the domain space is
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(a) Strong scaling of total time of computation, of
solver resolution and of mesh adaptation algorithms
for about 4.6 ˆ 106 cells.

(b) Repartition of the computational time among the main tasks
of the code according to meshes of different sizes and compression
rates. 24 MPI-processes were used.

Figure 7. Strong scaling and time repartition for the α-advection simulation.

fragmented and the ratio of cells at the frontiers of each subdomain by its total number of cells increases,
and so does the communications between the subdomains.

Basic code profiling
We perform an elementary profiling analysis in order to compare the CPU time allocated to the adaptation

process versus the time spent in the Finite Volume solver given meshes that are successively refined, thus
increasing their number of cells, for a fixed number of 24 MPI processes. In Figure 7b we display different
tasks identified in the code. We can see that the part dedicated to the mesh management given by the
seven first colors (from light pink to dark red) decreases when the number of cells in the mesh increases. In
particular, the part dedicated to the 2:1 balancing task, the longest one, is significantly reduced.

To sum up, Figures 7a and 7b show that p4est has good computation efficiency for important enough
work loads, i.e. for a high number of cells in the mesh. When the work load of each process is too low, an
excessive time seems to be spent in communications between the processes compared to the time spent in
the solver.

Weak scaling
We now evaluate the evolution of the computational time when increasing the number of working processes

at a constant workload (see Figure 6b). We maintain a number around 1.2ˆ 104 cells (the number of cells
changes during the computation due to diffusion) managed by each process by increasing the global number
of cells. The times of computation per quadrant are averaged over the 1000 first time steps. While we did
not succeed in preserving an exactly constant computational time per quadrant, the results are good and
agree with similar results already obtained in [9].

4.3. 2D and 3D gravity driven two-phase flows

In this section, we take the gravity source term S “ p0, 0, 0,´ρg, 0qT into account by adding an additional
operator l

∆t{2
S in our splitting sequence (5) or (10), following standard lines. For a given discrete state ĂWi

We set l
∆t{2
S

ĂWi “ rrρi,ĆpρY qi,
Čpρuxqi,

Čpρuyqi ´ rρig∆t{2, Ćpρuzqis. For three-dimensional problems, the overall
12



Figure 8. Simulation of a liquid drop falling onto a free surface with the refinement criterion α-
gradient. Mapping of the volume fraction α.

splitting strategy becomes:

l
∆t{2
X l

∆t{2
Y l

∆t{2
S l

∆t{2
Z l

∆t{2
Z l

∆t{2
Y l

∆t{2
S l

∆t{2
X .

We emphasize that the following tests aim at assessing the overall behavior of the code. While the physical
behavior of the solutions is roughly correct, a more careful setup and systematic comparison with physical
observations are still to be conducted in order to obtain a thorough validation.

2D bubble drop test
We consider the simulation of a falling drop of liquid (fluid 2) surrounded by a gas (fluid 1) toward a

resting free surface separating a liquid bath from the gas. At t “ 0, we suppose that ρ1 “ 1.0pkg{m3q and
ρ2 “ 1.0ˆ 103pkg{m3q. We use solid wall boundary conditions.

We choose to use the α-gradient refinement criterion, with ξ “ 5ˆ10´4 in order to refine the mesh mainly
in the vicinity of the gas/liquid interface. The simulation is performed on a mesh with a minimum refining
level of 3 and maximum of 9. Using 48 MPI processes, the time of computation is about 15 minutes on the
computing Mesocenter of Ecole Centrale Paris, which is an Altix ICE 8400 LX. Each node is composed of two
six-core Intel Xeon X5650 processors. Figure 8 provides the mapping of the computed α at several instants
along with the adapted mesh. The mesh hits the finest refinement level in the vicinity of the interface where
gradients of α are strong. Due to the numerical diffusion, we see that far from the interface gradients of α
are detected and the mesh is also refined.

3D dam break test
13



The second gravity-driven flow considered here deals with the evolution of a free surface in a dam break
situation. This problem has been studied in many works featuring simulations and experiments (see e.g.
[5,39]). We show in Figure 9 the results of a 3D simulation. The computation was performed on 64 nodes of
8 CPU cores each of the computing Mesocenter of Centrale Paris. A physical time of 1.5s has been reached:
typically, given our initial conditions, the flow of liquid reaches the opposite side of the domain within 0.3s
and a second wave comes back within 1s. The whole computation took about 4h for 5.59 ˆ 105 iterations.
The highest level of refinement is 8 and the lowest 3. At the beginning of the simulation, the number of cells
was 5.88 ˆ 104 (3.5 ˆ 10´3 compression rate), at the end, due to diffusion and acoustic effects, it reached
1.25 ˆ 106 (7.4 ˆ 10´2 compression rate), while the equivalent uniform mesh would have around 1.7 ˆ 107

cells.
The refinement criterion is still α-gradient and leads to an affordable computational cost, whereas the

resolution of the problem on the finest grid would require a much longer time as well as a much larger
memory. The volume fraction iso-surface α ă 0.5, standing for the liquid phase, as well as the mesh at the
domain boundaries are represented in the subfigures of Figure 9 at several time steps. At time t “ 0, both
fluids are still. Due to gravity, the liquid flows into the chamber. These results are very encouraging, even
if they require further validation, as already stated, and if the influence of the refinement criterion on the
dynamics of the solution has to be studied carefully.

5. Conclusion and perspectives

The AMR library p4est brings solutions to some issues for tree-based AMR, ranging from mesh and data
structure using linear arrays, to cache locality thanks to the interesting properties of the z-order curve, and
parallel efficiency through load balancing. Understanding the main functionalities of p4est and testing its
ease of use and basic performance were the main objectives of the six weeks of CEMRACS 2014. Within this
framework, we have achieved a first version of a code, using a finite volume scheme of the relaxation type,
at first and second order in space and time, applied to a simple but representative two-fluid two-phase flow
model. The scheme has been verified through classical test cases (advection, shock tube, double rarefaction)
and a convergence analysis has been conducted.

Some very promising simulations in 2D and 3D have been achieved and the code possesses all the good
features in terms of parallel efficiency and accuracy, which allow both conducting reasonable size computa-
tions within a short amount of time (typically on a Mesocenter type of machine where the AMR strategy and
its implementation lead to a solution at the same level of accuracy as uniform meshes but with significant
savings in computational cost and memory requirement), and envisioning large scale and efficient simulations
on larger massively parallel machines. Such conclusions can be drawn, even if the tool requires both further
optimization and detailed and thorough study in terms of validation and accuracy of refinement criteria for
the two-phase test-cases under study.

Let us also underline that there are some issues, which were not tackled in the present study. Among
them, the problems we have studied do not involve a very large spectrum of time scales in terms of the
dynamics of the problem [19] and the issue of local time stepping/multi-scale treatment will require some
effort. Higher order numerical method will also require adapting the strategy proposed in the paper, as well
as solving for elliptic equations such as in plasma physics and low speed flows (Low Mach approximation or
incompressible flows). Such issues, even if interesting, were out of reach during the time of the project.
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