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PDE for joint law of the pair of a continuous

di�usion and its running maximum

Laure Coutin∗, Monique Pontier†

September 22, 2017

Abstract

Let X be a d-dimensional di�usion process and M the running supremum of
the �rst component. In this paper, in case of dimension d, we �rst show that
for any t > 0, the law of the pair (Mt, Xt) admits a density with respect to
Lebesgue measure. In uni-dimensional case, we compute this one. This allows
us to show that for any t > 0, the pair formed by the random variable Xt and
the running supremum Mt of X at time t can be characterized as a solution
of a weakly valued-measure partial di�erential equation.

Keywords: Partial di�erential equation, running supremum process, joint
law.

A.M.S. Classi�cation: 60J60, 60H07, 60H10.

In this paper one was interested in the joint law of the pair (a continuous di�usion
process, its running maximum). In case of a Brownian motion the result is well
known, see for instance [9]. For general Gaussian processes, the law of the maximum
is studied in [1].

Concerning the maximum law, the main part of literature is devoted to maximum
of martingales, their terminal value, their maximum at terminal time. For instance
look at Rogers et al. [15, 7, 2]. Cox-Obloj [5] aim, given a price process S, is to
exhibit an hedging strategy of the so-called �no touch option�, meaning that the
payo� is the indicator of the set {ST < b;ST > a}. They are not concerned with
the law of the pair (process, its running maximum). A lot of papers are mainly
interested in the hedging of barrier option, for instance [2].
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†pontier@math.univ-toulouse.fr, IMT: Institut Mathématique de Toulouse, Université Paul

Sabatier, 31062 Toulouse, France.
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The case of general Lévy processes is studied by Doney and Kyprianou [6]. In
particular cases driven by a Brownian motion and a compound Poisson process,
Roynette-Vallois-Volpi [16] provide the Laplace transform of undershot-overshot-
hitting time law. In [11, 4] a weak partial integro di�erential equation for the pair
(process-its running maximu) law density is done. Lagnoux-Mercier-Vallois [10]
provide the law density of such a pair, but in case of re�ected Brownian motion.

Concerning the di�usion processes, for instance the Ornstein Uhlenbeck process,
the density of the running maximum law is given in [13]. Quote Yor et al. [9] for
the one dimensional di�usion process: a PDE is obtained for the law density of the
process stopped before hitting a moving barrier. In [8] a multi-dimensional di�usion
(whose corresponding di�usion vector �elds are commutative) joint distribution is
studied at the time when a component attains its maximum on �nite time interval;
under regularity and ellipticity conditions the smoothness of this joint distribution
is proved.

In [4] a Lévy process (Xt, t ≥ 0), starting from zero, right continuous left limited
is considered: X is the sum of a drifted Brownian motion and a compound Poisson
process, called a mixed di�usive-jump process, then the density function of the pair
formed by the random variable Xt and its running supremum Mt is provided. Fi-
nally we quote [3] which proves that the hitting time law admits a density and we
here use some of its basic ideas.

We here look for more general (but continuous) cases where this density exists.
We have results in d−dimensional case, but without closed expression. In uni-
dimensional case we get the existence and a closed expression for the joint law
density.

The model is as following: on a �ltered probability space (Ω, (Ft = σ(Wu, u ≤
t))t≥0,P) where W := (Wu, u ≥ 0) is a d-dimensional Brownian motion. Let a
di�usion process taking its values in Rd, solution to

dXt = B(Xt)dt+
d∑
i=1

Ai(Xt)dWt, X0 = x∈ Rd, t > 0,

where B: Rd → Rd and A: Rd → Rd×d satisfy

A and B ∈ C1
b . (1)

Let Mt := sups≤tX
1
s . We �rst prove that the law of Vt = (Mt, Xt) is absolutely

continuous with respect to the Lebesgue measure in a general case with some stan-
dard assumptions on the coe�cients A and B. Then in Section 2, we turn to the
uni-dimensional case. Here the density of the pair (process, running maximum)
is provided in a weak form. Section 3 is devoted to prove a PDE concerning this
density. Finally, an Appendix gives some tools and intermediate results.
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1 The law of Vt is absolutely continuous

Here it is proved that for any t > 0, the joint law of Vt := (Mt, Xt) admits a density
with respect to the Lebesgue measure. For this purpose, we use �Malliavin calculus�
speci�cally Nualart's results [12].

Proposition 1.1. We assume that B and A satisfy Assumption (1) and there exists
a constant c > 0 such that

c∥v∥2 ≤ v′A(x)A(x)′v, ∀v, x ∈ Rd. (2)

Then the joint law of Vt := (Mt, Xt) admits a density with respect to the Lebesgue
measure for all t > 0.

The next subsection recalls some useful de�nitions and results.

1.1 Short Malliavin calculus summary

The material of this subsection is taken in section 1.2 of [12]. Let H = L2([0, T ],Rd)
endowed with the usual scalar product ⟨., ⟩H and the associated norm ∥.∥H.
For all h, h̃ ∈ H,

W (h) :=

∫ T

0

h(t)dWt

is a centered Gaussian variable with variance equal to ∥h∥2H. If ⟨h, h̃⟩H = 0 then the
random variables W (h) and W (h̃) are independent.

Let S denote the class of smooth random variables F de�ned as following:

F = f(W (h1), ...,W (hn))(W (h1), ...,W (hn)) (3)

where n ∈ N, h1, ..., hn ∈ H and f belongs to Cb(Rn).

De�nition 1.2. The derivative of a smooth variable F as (3) is the H valued random
variable given by

DF =
n∑
i=1

∂if(W (h1), ...,W (hn))hi.

Proposition 1.3. The operator D is closable from Lp(Ω) into Lp(Ω,H) for any
p ≥ 1.

For any p ≥ 1, we denote the domain of the operator D in Lp(Ω) by D1,p meaning
that D1,p is the closure of the class of smooth random variables S with respect to
the norm

∥F∥1,p = [E[|F |p] + E[∥DF∥pH]]
1/p .

Malliavin calculus is a powerful tool to prove the absolute continuity of random
variables law. Namely Theorem 2.1.2 page 97 [12] states:
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Theorem 1.4. Let F = (F 1, ..., Fm) be a random vector satisfying the following
conditions

(i) F i belongs to D1,p for p > 1 for all i = 1, ...,m,
(ii) the Malliavin matrix γF = (⟨DF i, DF j⟩H)1≤i,j≤m is invertible.

Then the law of F is absolutely continuous with respect to the Lebesgue measure on
Rm.

According to this theorem, the proof of Proposition 1.1 will be a consequence
of the following that we have to prove:

• X i
t , i = 1, ..., d and Mt belongs to D1,p p > 1, Lemma 1.5;

• the (d + 1) × (d + 1) matrix γV (t) := (⟨DV i
t , DV j

t ⟩)1≤i,j≤d+1 is almost surely
invertible, Proposition 1.6.

1.2 Malliavin di�erentiability of the supremum

Lemma 1.5. We assume that B and A satisfy Assumption (1)
then X i

t , i = 1, ..., d and Mt belongs to D1,p ∀p ≥ 1 for all t > 0.

Proof. Using Theorem 2.2.1 [12], under Assumption (1),

• X i
t , i = 1, d belong to D1,∞ for all t > 0,

• ∀t ≤ T, ∀p > 0, ∀i = 1, · · · , d, there exists a constant Cp
T such that

sup
0≤r≤t

E
(

sup
r≤s≤T

∣∣DrX
i
s

∣∣p) = Ct ≤ Cp
T < ∞, (4)

• the Malliavin derivative DrXt satis�es DrXt = 0 for r > t almost surely and
for r ≤ t almost surely, using Einstein's convention:

DrX
i
t = Ai(Xr) +

∫ t

r

A
i

k,α(s)Dr(X
k
s )dW

α
s +

∫ t

r

B
i

k(s)Dr(X
k
s )ds (5)

where Ak,α(s) := ∂kAα(Xs) and Bk := ∂kB(Xs) are in Rd.
In order to prove that Mt belongs to D1,p we follow the same lines as the proof of

Nualart's Proposition 2.1.10 with index p instead of 2. Then, for any i = 1, ..., d, we
establish that the H valued process (D.X

i
t , t ∈ [0, T ]) has a continuous modi�cation

and satis�es E(∥D.X
i
t∥
p
H) < ∞.

We now use Appendix (A.11) in Nualart [12], as a corollary of Kolmogorov's conti-
nuity criterion. Namely if there exist positive real numbers α, β,K such that

E[∥D.X
i
t+τ −D.X

i
t∥αH ] ≤ Kτ 1+β, ∀t ≥ 0, τ ≥ 0
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then DX i admits a continuous modi�cation. Moreover E(sups∈[0,T ] ∥D.X i
s∥αH) < ∞.

Let τ > 0, Equation (5) yields

∆τDr(X
i
t) : = Dr(X

i
t+τ )−Dr(X

i
t)

=

∫ max(t+τ,r)

max(r,t)

B
i

k(s)Dr(X
k
s )ds+

∫ max(t+τ,r)

max(r,t)

A
i

k,α(s)Dr(X
k
s )dW

α
s .

Using the de�nition of H

∥∆τD.(X
i
t)∥2H =

∫ T

0

|
∫ max(t+τ,r)

max(r,t)

B
i

k(s)Dr(X
k
s )ds+

∫ max(t+τ,r)

max(r,t)

A
i

k,α(s)Dr(X
k
s )dW

α
s |2dr.

According to Jensen's inequality for p ≥ 2

∥∆τD.(X
i
t)∥

p
H ≤ T

p
2
−1

∫ T

0

|
∫ max(t+τ,r)

max(r,t)

B
i

k(s)Dr(X
k
s )ds+

∫ max(t+τ,r)

max(r,t)

A
i

k,α(s)Dr(X
k
s )dW

α
s |pdr.

Using (a+ b)p ≤ 2p−1(ap + bp),

∥∆τD.(Xt)∥pH ≤ 2p−1T
p
2
−1

∫ T

0

[
|
∫ t+τ

t
B
i
k(s)Dr(X

k
s )ds|p + |

∫ t+τ

t
A
i
k,α(s)Dr(X

k
s )dW

α
s |p
]
dr.

The expectation of the �rst term is bounded using Jensen's inequality and (4) for any
r ∈ [0, T ]:

E

[
|
∫ t+τ

t
B
i
k(s)Dr(X

k
s )ds|p

]
≤ ∥B∥p∞τp−1 sup

r
E[ sup

r≤s≤T
|Dr(X

k
s )|pτ ] = ∥B∥p∞τpCp

T .

Using once again (4), Burkholder-Davis Gundy' and Jensen's inequalities, the expectation
of the second term satis�es for any r ∈ [0, T ]:

E

[
|
∫ t+τ

t
A
i
k,α(s)Dr(X

k
s )dW

α
s |p
]
≤ CpE

[
(

∫ t+τ

t
|Aik,α(s)Dr(X

k
s )|2ds)p/2

]

≤ Cp∥A∥p∞τp/2−1

∫ t+τ

t
E( sup

r≤s≤T
|Dr(X

i
s)|p)ds ≤ Cp∥A∥p∞τp/2−1Cp

T τ,

thus for any τ ∈ [0, 1] there exists a constant D = T p/22p/2−1Cp
T (∥B∥p∞τp/2 + Cp|A∥p∞)

such that for any i = 1, ...d,

E[∥D.(X
i
t+τ )−D.(X

i
t)∥

p
H ] ≤ Dτp/2.

Kolmogorov's lemma applied to the process {D.(Xt), t ∈ [0, T ]}, taking it values in the
Hilbert space H, proves the existence of a continuous version, meaning: there exist positive
real numbers α, β,K such that

E[∥D.(X
i
t+τ )−D.(X

i
t)∥αH ] ≤ Kτ1+β.

With α = p > 2, β = p/2− 1, K = D, we get the existence of a continuous version of the
process t 7→ D.(Xt) from [0, T ] to the Hilbert space H. Finally, we conclude as Nualart's
Proposition 2.1.10 proof with index p instead of 2. •
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1.3 Invertibility of the Malliavin matrix

Proposition 1.6. Assume that B and A are in C1
b and there exists a constant c > 0 such

that
c∥v∥2 ≤ v′A(x)A(x)′v, ∀v ∈ Rd, ∀x ∈ Rd

then for all t > 0 the matrix γV (t) := (⟨DV i
t , DV j

t ⟩H)1≤i,j≤d+1 is almost surely invertible.

Proof. The key is to introduce a new matrix which will be invertible:

for all (s, t), 0 < s < t, γG(s, t) := (⟨DGi(s, t), DGj(s, t)⟩H)1≤i,j≤2(d+1) (6)

where Gi(s, t) := Xi
t , i = 1, ..., d and Gi+d(s, t) = Xi

s, i = 1, ..., d.
On another hand we will prove, t > 0 being �xed, P(X1

t = Mt) = 0.
Step 1: We introduce

• N1,t := {ω, ∃s ∈ [0, t], DX1
s ̸= DMt and X1

s = Mt},

• N2,t := {ω, ∃s ∈ [0, t[, det(γG(s, t)) = 0},

• N3,t := {ω, X1
t = Mt},

• Nt = {ω, det(γV (t)) = 0}.

Then,

Nt ⊂
(
Nt ∩ ∩3

i=1N
c
i,t

)
∪ ∪3

i=1Ni,t.

Proof. Note that P(Nt ∩ ∩3
i=1N

c
i,t) = 0. Indeed if ω ∈ Nt ∩ ∩3

i=1N
c
i,t, since X1

. admits a

continuous modi�cation there exists s0 such that X1
s0 = Mt. The fact that ω ∈ N c

3,t implies

that s0 < t, and γV (t) = (Γi,jG (s0, t))(i,j)∈{1,··· ,d+1}2 is a sub matrix of γG(s0, t). The fact
that γV (t) is not invertible contradicts the fact that γG(s0, t) is invertible. Then, it remains
to prove that P(Ni,t) = 0 for i = 1, · · · , d+ 1.
Step 2: Using the same lines as the proof of Proposition 2.1.11 [12], we prove that almost
surely

{s : X1
s = Mt} ⊂ {s : DMt = DX1

s }

meaning P(N1,t) = 0. We skip the details for simplicity.
Step 3: For all t> 0, almost surely for all s < t, the 2d × 2d matrix γG(s, t) is invertible,
meaning that ∀t, the event N2,t is negligible.

Proof. This matrix γG(s, t) is symmetrical and using (2.59) and (2.60) in [12] yields:

γG(s, t) =

(
Y (t)C(t)Y (t)′ Y (s)C(s)Y (t)′

Y (t)C(s)Y (s)′ Y (s)C(s)Y (s)′

)
(7)

where, using Einstein's convention to avoid
∑

k,
∑

k′ ,
∑

l ...

Ci,j(t) :=

∫ t

0
Y −1(u)ikA

k
l (Xu)Y

−1(u)jk′A
k′
l (Xu)du

Y i
j (t) := δi,j +

∫ t

0
A
i
k,l(u)Y

k
j (u)dW

l
u +

∫ t

0
B
i
k(u)Y

k(u)du, i, j ∈ {1, · · · , d}
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Let us denote
Ci,j(s, t) := Ci,j(t)− Ci,j(s).

According to (2.58) [12] there exists a process Z such that almost surely for all h ∈ [0, T ]

Z(h)Y (h) = Id

thus for all t the matrices Y (t) are invertible.
Actually for all i and j

Y i
j (t) = Y i

j (s) +

∫ t

s
A
i
k,l(u)Y

k
j (u)dW

l
u +

∫ t

s
B
i
k(u)Y

k
j (u)du,

and multiplying this equality by Y (s)−1 one deduces:

Y (t)Y (s)−1 = Id+

∫ t

s
A
.
.,l(u)Y (u)Y (s)−1dW l

s +

∫ t

s
B(u)Y (u)Y (s)−1ds

so the (d, d) matrix Y (s, t) := Y (t)Y (s)−1 is invertible.
Then γG(s, t) (7) can be rewritten as a matrix composed with four (d, d) blocks:

γG(s, t) :=

(
Y (s, t)Y (s)[C(s) + C(s, t)]Y (s)′Y (s, t)′ Y (s)C(s)Y (s)′Y (s, t)′

Y (s, t)Y (s)C(s)Y (s)′ Y (s)C(s)Y (s)′

)
The second line of blocks multiplied by Y (s, t)′ and this one subtracted to the �rst line
yield:

det [γG(s, t)] =

∣∣∣∣ Y (s, t)Y (s)C(s, t)Y (s)′Y (s, t)′ 0
Y (s, t)Y (s)C(s)Y (s)′ Y (s)C(s)Y (s)′

∣∣∣∣ .
The properties of block trigonal matrix determinants prove that

det [γG(s, t)] =
∣∣Y (s, t)Y (s)C(s, t)Y (s)′Y (s, t)′Y (s)C(s)Y (s)′

∣∣
The processes Z are Y are di�usion processes so each of them admits a continuous

modi�cation satisfying Z(h)Y (h) = Id, ∀h ∈ [0, T ]. Thus, almost surely the continuous
process Z is invertible so satis�es almost surely for all 0 ≤ s ≤ t ≤ T∫ t

s
det(Z(h))2dh > 0.

Let σ(x) =
∑d

l=1Al(x)Al(x)
′. Formula (2.61) page 127 [12] shows

C(s) =

∫ s

0
Y −1(h)σ(Xh)(Y (h)−1)′dh, C(s, t) =

∫ t

s
Y −1(h)σ(Xh)(Y (h)−1)′dh

We now follow the proof of Theorem 2.3.1 page 127 [12]: for v ∈ Rd, using the uniform
ellipticity Assumption (2)

v′σ(Xs)v ≥ c|v|2, ∀s.
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With v = (Y (h)−1)′u we get

u′Y (h)−1σ(Xh)(Y (h)−1)′u ≥ cu′Y (h)−1(Y (h)−1)′u

and

u′C(s)u =

∫ s

0
u′Y (h)−1σ(X(h))(Y (h)−1)′udh ≥ c

∫ s

0
u′Y (h)−1(Y (h)−1)′udh = c|u|2

∫ s

0
det(Z(h))2dh.

Similarly

u′C(s, t)u =

∫ t

s
u′Y (h)−1σ(X(h))(Y (h)−1)′udh ≥ c|u|2

∫ t

s
det(Z(h))2dh.

Thus almost surely for all s ∈]0, t[, C(s) and C(s, t) are invertible. As a consequence,
the matrix γG(s, t) is invertible.
The process t → D.(Xt) taking its values in H admits a continuous modi�cation and the
sets of invertible matrix is an open set then,

P({ω,∃s ∈ [0, t[, det(γG(s, t)) = 0}) = P(N2,t) = 0.

•
Step 4: Under Assumptions (1) and (2), time t being �xed, almost surelyMt > X1

t meaning
the event N3,t is negligible.

Proof. For sake of completeness we prove this result, more or less included in Proposition
18 [8] but stronger assumptions are used there.
The set {Mt = X1

t } is detailed as follows:

{ω,Mt(ω) = X1
t (ω)} (8)

= {ω,∃s < t| ∀u ∈ [s, t], X1
u(ω) = X1

t (ω)} ∪ {ω| ∀u < t, X1
u(ω) < X1

t (ω)}.

Using (1) and (2), A−1B is bounded, thus an equivalent change of equivalent probability
measure can be operated using Girsanov Theorem: the probability measure P0 is de�ned
as

dP0

dP |Ft

= Lt, Lt := exp

(
−
∫ t

0
(BA−1)i(Xs)dW

i
s −

1

2

∫ t

0
∥(BA−1(Xs)∥2ds

)
.

Then X1 is a (F ,P0) martingale:

X1
t = X1

0 +

∫ t

0

∑
j

A1,j(Xs)dW̃
j
s (9)

where W̃ is a (F ,P0) d-dimensional Brownian motion. The bracket of X1, actually inde-
pendent of the probability measure in continuous case, is

⟨X1, X1⟩t =
∫ t

0

∑
j

(A1,j(Xs))
2ds.
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Assumption (2) on A applied to v = (1, 0, ..., 0) implies that for any x,
∑

j A
1,j(x)A1,j(x) ≥

c > 0. This have two consequences:
• For all rational numbers q < q′ in [0, T ]

⟨X1, X1⟩q′ − ⟨X1, X1⟩q > c(q′ − q) > 0.

According to Proposition 1.13 page 119 [14], for all rational numbers q < q′ in [0, T ] X1 is
not constant on the interval [q, q′]. But

{ω, ∃s > t| u ∈ [s, t], X1
u(ω) = X1

t (ω)} ⊂ ∪q<q′<T, q,q′∈Q{ω| u ∈ [q, q′], X1
u(ω) = X1

q (ω)}

thus

P0

(
{ω| ∃s > t, ∀u ∈ [s, t], X1

u(ω) = X1
t (ω)}

)
= 0.

The probability measures P0 and P are equivalent so

P
(
{ω,∃s > t| ∀u ∈ [s, t], X1

u(ω) = X1
t (ω)}

)
= 0. (10)

• Using Dambis-Dubins-Schwarz' Theorem (cf.Theorem 1.6 Chapter V [14]), and once
again that

∑
j(A

1,j(Xs))
2 ≥ c, then

⟨X1, X1⟩∞ =

∫ ∞

0

∑
j

(A1,j(Xs)
2ds = +∞.

So there exists a P0 Brownian motion B such that

X1(t) = B⟨X1,X1⟩t , ∀t > 0.

Here is followed step by step the proof of Theorem 2.7 Chapter I [14] (Lévy's modulus of
continuity), but without absolute value: for all N ∈ R

P0

lim sup
ε→0

 sup
0 ≤ t1, t2 ≤ N
t1 − t2 < ε

Bt1 −Bt2
h(ε)

= 1



 = 1

where h(s) =
√

2s log(1/s), s ∈ [0, 1].
This is equivalent to

P0

lim inf
ε→0

 sup
0 ≤ t1, t2 ≤ N
t1 − t2 < ε

Bt1 −Bt2
h(ε)

̸= 1



 = 0.
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We remark that{
ω, ∀s ∈ [0, t], X1(s) < X1(t)

}
=
{
ω, ∀s ∈ [0, t], B⟨X1,X1⟩s < B⟨X1,X1⟩t

}

⊂ ∪N ∪n ∩k≥n

 sup
0 ≤ t1, t2 ≤ N
t1 − t2 < 1/k

Bt1 −Bt2
h(1/k)

≤ 0



⊂ ∪N lim inf
1/n→0

 sup
0 ≤ t1, t2 ≤ N
t1 − t2 < 1/n

Bt1 −Bt2
h(1/n)

̸= 1


thus P0

({
ω, ∀s ∈ [0, t], X1

s (ω) < X1
t (ω)

})
= 0.

The probability measures P and P0 are equivalent, so

P
({

ω, ∀s ∈ [0, t], X1
s (ω) < X1

t (ω)
})

= 0. (11)

Finally (8), (10), (11) prove that

P
({

Mt = X1
t

})
= P(N3,t) = 0. (12)

•
As a conclusion, Proposition 1.1 proof is done.

1.4 Monotonous image of the Brownian motion

Before the study of the one-dimensional case, we start with a �rst simple example which
is completely solvable.

• Firstly one recalls the standard result concerning the Brownian motion. The density
of the law of (W ∗

t ,Wt) is well known, cf. [9] Section 3.2, and is de�ned on R2 by

pW (b, a; t) := 2
(2b− a)√

2πt3
e−

(2b−a)2

2t 1] sup(0,a),∞[(b). (13)

It could be checked that Theorem 3.1 provides for all t > 0, a partial di�erentiable equation
and boundary conditions for the density of the law of Vt := (W ∗

t ,Wt):

∂tpW (b, a; t) =
1

2
∂2
22pW (b, a; t), ∀b > max(0, a), t > 0

∂1pW (b, b; t) + 2∂2pW (b, b; t) = 0, ∀b > 0, t > 0, (14)

∂tpW ∗(b, t) +
1

2
(∂1pW (b, b, t) + ∂2pW (b, b, t)) = 0.

• Another case is easily deduced: the particular case of a 1−dimensional monotonous
image of the Brownian motion, as following:

dXt = σ(Xt)dWt+1/2σ′(Xt)σ(Xt)dt, X0 = x0

10



with σ ∈ C1 and infx∈R σ(x) ≥ c > 0. Let φ be the solution to the di�erential equation

d

dx
φ(x) = σ(φ(x)), φ(0) = x0

then X = φ(W ). Moreover since φ is continuous and increasing, M = φ(W ∗) where W ∗

is the running maximum of the Brownian motion.
Thus, using pW de�ned in (13), the law of the pair Vt = (Mt, Xt) = (φ(W ∗

t ), φ(Wt)) admits
the density on R2: pV (m,x; t) := 1

σ(m)σ(x)pV (φ
−1(m);φ−1(x); t) and similarly pM (m; t) :=

1
σ(m)pW ∗(φ−1(m); t).

Standard change of variables, starting from the partial di�erentiable system (14), pro-
vides for all t > 0, a partial di�erentiable system for the density of the law of Vt = (Mt, Xt):

∂tpV (m,x; t) =
1

2
[σ′(x)2 + σσ”(x)]pV (m,x; t) +

3

2
σσ′(x)∂2p(m,x; t) +

1

2
σ(x)2∂2

22p(m,x; t),

3σ′(m)pV (m,m; t) + σ(m)[∂1 + 2∂2](pV )(m,m; t) = 0, ∀m > 0, (15)

∂tpM (m, t) + σ′(m)pV (m,m; t) +
1

2
σ(m)(∂1 + ∂2)(pV )(m,m; t) = 0.

Remark 1.7. This example is the �Example 4� in [8], but there only the law of Mt is
studied instead of the pair as we do.

Remark 1.8. Note that if L is the in�nitesimal generator of X then its adjoint is

L∗F (x) =
1

2
[σ′(x)2 + σσ”(x)]F (x) +

3

2
σσ′(x)F ′(x) +

1

2
σ(x)2F”(x).

The aim of the following section is to prove such results in case of one dimensional
Brownian di�usions. In Theorem 2.1 we compute the expectation of the Itô formula as [4]
Theorem 2.1 for Lévy processes. We derive the associated partial di�erential equations in
Section 3.

We stress that, in Proposition 2.11, we succeed to show the continuity of V law density
closed to the diagonal and obtain useful bounds on pV only in the one dimensional case.

2 Brownian di�usion model, one dimension

Let the following stochastic di�erential equation

dXt = B(Xt)dt+A(Xt)dWt, X0 = x, t ∈ [0, T ], (16)

where B ∈ C1
b (R)) and A ∈ C2

b (R) satisfy (2), W is a Brownian motion. In particular,
Assumption (2) means that there exists c > 0 such that

(∗) ∀x ∈ R, A2(x) ≥ c.

Moreover this assumption with (∗) above yield A−1B is bounded.
We denote V := (M,X) and we recall the notation

Mt = sup
s≤t

Xs, t ∈ R.

11



From Proposition 1.1, the law of the pair Vt = (Mt, Xt) admits a density. Below, a
weak PDE concerning this density is provided. The �rst step is the following expectation
of Itô formula.

Theorem 2.1. Let B ∈ C1
b (R)) and A ∈ C2

b (R) which satis�es Assumption (2). Let be
Φ ∈ C2

b (R2,R),

E[Φ(Vt)]− Φ(V0) = E[

∫ t

0

[
B(Xs)∂2Φ(Vs) +

1

2
A2(Xs)∂

2
22Φ(Vs)

]
ds

+
1

2

∫ t

0
E[∂1Φ(Ms,Ms))A

2(Ms)
pV (Ms,Ms, s)

pM (Ms, s)
]ds

where pV (m,x, t) is the density of the law of the pair Vt and pM (., t) is the one of Mt.

Remark 2.2. This result is to be compared to Theorem 2.1 and Proposition 4.4 in [4].

2.1 Reduction to a Brownian plus drift

Since we are in an one dimensional setting, we use a Lamperti transformation in order
to reduce the problem to the case of a di�usion with additive noise. A priori dXt =
B(Xt)dt+A(Xt)dWt. We look for an increasing function φ ∈ C2

b such that the coe�cient
of dW would be 1. Itô formula yields

dφ(Xt) = φ′(Xt)B(Xt)dt+
1

2
φ”(Xt)A

2(Xt)dt+ φ′(Xt)A(Xt)dWt.

A su�cient condition is to choose φ such that φ′ = 1
A . As is A, φ

′ is bounded above and
below uniformly. Then Y = φ(X) satis�es

dYt =

[
B

A
◦ φ−1(Yt)−

1

2
A′ ◦ φ−1(Yt)

]
dt+ dWt. (17)

Remark that B̃ = B
A ◦φ−1 − 1

2A
′ ◦φ−1 ∈ C1

b as a consequence of (2), A ∈ C2
b and B ∈ C1

b .
Moreover φ′ being positive, φ is increasing and Y ∗

t = φ(X∗
t ). From Proposition 1.1, the

law of the pair (Y ∗
t , Yt) admits a density with respect to Lebesgue measure.

Lemma 2.3. We assume that B is C1
b (R) and A ∈ C2

b (R) satis�es (2). Then the density
law of (Mt, Xt) pV (., ., t) satis�es

pV (b, a; t) =
pY ∗,Y (φ(b), φ(a); t)

A(b)A(a)

where φ is de�ned by φ′(x) = 1
A(x) and pY ∗,Y (., ., t) is the pair (Y ∗

t , Yt) law density.

Proof. It is enough to identify the density law of the pair Vt = (Mt, Xt) using, for any
bounded measurable F , the following

E[F (Mt, Xt)] = E[F (φ−1(Y ∗
t ), φ

−1(Yt))] =

∫
F (φ−1(β), φ−1(α))pY ∗,Y (β, α; t)dβdα.

We operate the change of variables b = φ−1(β), a = φ−1(α), so dβ = φ′(b)db = 1
A(b)db and

dα = φ′(a)da = 1
A(a)da get the result. •
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Proposition 2.4. We assume that B is C1
b (R) and A ∈ C2

b (R) satis�es (2) and that
Theorem 2.1 is proved in case A = 1, B̃ = B

A ◦ φ−1 − 1
2A

′ ◦ φ−1, then Theorem 2.1 is
proved: for any Φ ∈ C2

b (R2,R) :

E[Φ(Vt)] = Φ(V0) + E[

∫ t

0

[
B(Xs)∂2Φ(Vs) +

1

2
A2(Xs)∂

2
22Φ(Vs)

]
ds

+
1

2

∫ t

0
E[∂1Φ(Ms,Ms))A

2(Ms)
pV (Ms,Ms, s)

pM (Ms, s)
]ds

where pV (m,x, t) is the pair Vt = (Mt, Xt) law density and pM (., t) is the one of Mt.

Proof. We apply Theorem 2.1 to (Y ∗
t , Yt) and F (β, α) = Φ(φ−1(β), φ−1(α)); since φ′ > 0,

then φ is increasing, φ(X∗
t ) = Y ∗

t and Φ(Vt) = F (Y ∗
t , Yt).

Note that

∂2F (β, α) = ∂2Φ(φ(β)
−1, φ−1(α))

1

φ′(φ−1(α))
= ∂2Φ(φ(β)

−1, φ−1(α))A(φ−1(α)),

∂2
22F (β, α) = ∂2

22Φ(φ(β)
−1, φ−1(α))A2(φ−1(α)) + ∂2Φ(φ(β)

−1, φ−1(α))(AA′)(φ−1(α)),

so

B̃(α)∂2F (β, α) +
1

2
∂2
22F (β, α) = B(φ−1(α))∂2Φ(φ(β)

−1, φ−1(α)) +
1

2
A2(φ−1(α))∂2

22Φ(φ(β)
−1, φ−1(α)).

Then,∫ t

0
E
[
B̃(Ys)∂2F (Y ∗

s , Ys) +
1

2
∂2
22F (Y ∗

s , Ys)

]
ds = E[

∫ t

0

[
B(Xs)∂2Φ(Vs) +

1

2
A2(Xs)∂

2
22Φ(Vs)

]
ds.

Note that

∂1F (β, α) = ∂1Φ(φ(β)
−1, φ−1(α))

1

φ′(φ−1(β))
= ∂1Φ(φ(β)

−1, φ−1(α))A(φ−1(β))

thus∫ t

0
E[∂1F (Y ∗

s , Y
∗
s )

pY ∗,Y (Y
∗
s , Y

∗
s , s)

pY ∗(Y ∗
s , s)

]ds =

∫ t

0

∫
R+

∂1Φ(φ(β)
−1, φ−1(α))A(φ−1(β))pY ∗,Y (β, β, s)dβds.

We perform the change of variable b = φ−1(β)∫ t

0
E[∂1F (Y ∗

s , Y
∗
s )

pY ∗,Y (Y
∗
s , Y

∗
s , s)

pY ∗(Y ∗
s , s)

]ds =

∫ t

0

∫
R+

∂1Φ(b, b)pY ∗,Y (φ(b), φ(b), s)dbds

and we use Lemma 2.3 which tells us pY ∗,Y (φ(b), φ(b), s) = pV (b, b, s)A
2(b):∫ t

0
E[∂1F (Y ∗

s , Y
∗
s ))A(Y ∗

s )
pY ∗,Y (Y

∗
s , Y

∗
s , s)

pY ∗(Y ∗
s , s)

]ds =

∫ t

0

∫
R+

∂1Φ(b, b)A
2(b)pV (b, b, s)dbds

and �nally∫ t

0
E[∂1F (Y ∗

s , Y
∗
s ))A(Y

∗
s )

pY ∗,Y (Y
∗
s , Y

∗
s , s)

pY ∗(Y ∗
s , s)

]ds =

∫ t

0
E[∂1Φ(Ms,Ms))A

2(Ms)
pV (Ms,Ms, s)

pM (Ms, s)
]ds

•
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2.2 Theorem 2.1 proof in case A = 1, �rst step

Let Φ be a C2
b function on R2. Before applying Itô formula to s → Φ(Vs), one remarks

that the component Mt is a non decreasing continuous process, so it is a �nite variation
process thus the brackets d⟨X,M⟩t = 0, and d⟨M⟩t = 0. Itô's formula yields

Φ(Vt)− Φ(V0) =

∫ t

0

∂Φ

∂x
(Ms, Xs)dWs +

∫ t

0

∂Φ

∂m
(Vs)dMs +

∫ t

0
LΦ(Vs)ds

where L is the in�nitesimal generator B(x)∂x +
1
2∂

2
xx.

The �rst term on the right hand side above is a martingale so its expectation is equal
to 0. So

E[Φ(Vt)− Φ(V0)] = E[

∫ t

0
LΦ(Vs)ds] + E[

∫ t

0

∂Φ

∂m
(Vs)dMs].

Now the deal is to look at

E[

∫ t

0

∂Φ

∂m
(Vs)dMs].

Namely, without losing in general, we look at E[
∫ t
0 Ψ(Vs)dMs] where Ψ ∈ C1

b .

Proposition 2.5. Let A = 1 and B be C1
b on R, Ψ a Borel bounded function, then the

application t → E[
∫ t
0 Ψ(Vs)dMs] is absolutely continuous on all �nite interval [0, T ].

Proof. (i) Using Criterion 11.7 page 364 [17] since
∣∣∣E[
∫ b
a Ψ(Vs)dMs]

∣∣∣ ≤ ∥Ψ∥∞E[Mb−Ma],

it is enough to prove the result in case of Ψ = 1, meaning the study of t → E[Mt].
(ii) We operate an equivalent change of probability measure, Q = LTP, with

dLt = −LtB(Xt)dWt, Lt = exp[

∫ t

0
−B(Xs)dWs −

1

2

∫ t

0
B2(Xs)ds]

so that under Q the process X is a Brownian motion and

EP[Mt] = EQ[L
−1
t X∗

t ].

Lemma 2.6. Let A = 1 and B be C1
b on R. For all T > 0 there exists a constant CT such

that for all a, b, 0 < a < b ≤ T,

EP[Mb−Ma] ≤ CT

[∫ b

a
EQ
[
c2cosh(cWs)W

∗
s

]
ds+

∫ b

a
EQ
[
cosh(cWs)

pW (W+
s ,Ws; s)

gW (Ws; s)

]
ds

]
(18)

where pW is introduced in (13) and gW (., s) is the density of the law of Ws.

Proof. Abusing of notation, under Q, we here use W instead of X which is a Q-Brownian
motion. Moreover we denote the process L−1 as Z.
Denoting B such that B′ = B, and B(0) = 0, so B(Wt) =

∫ t
0 B(Ws)dWs +

1
2B

′(Ws)ds,

Zt = exp[B(Wt)−
1

2

∫ t

0
B′(Ws)ds−

1

2

∫ t

0
B2(Ws)ds]. (19)
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Firstly, B and B′ are bounded, so there exists a constant C such that for any T , Zt ≤
exp[B(Wt)+CT ], secondly B ∈ C1

b is sub linear, there exists C such that |B(Wt)| ≤ C|Wt|
thus Zt ≤ CeCT (exp(cWt) + exp(−cWt)) = CeCT cosh(cWt). So

EP[Mb −Ma] = EQ[Zb(W
∗
b −W ∗

a )] ≤ CeCTEQ[cosh(cWb)(W
∗
b −W ∗

a )] (20)

≤ CeCT {EQ[cosh(cWb)W
∗
b − cosch(cWa)W

∗
a ] + |EQ[(cosh(cWb)− cosch(cWa))W

∗
a ]|} .

We introduce two sequences of C2
b positive functions, fN and gN such that fN (x) ↑

cosh(cx), gN (x) ↑ x, f”N (x) ↑ c2cosh(cx), g′N (x) ↑ 1, when N goes to in�nity.
According to Theorem 2.1 [4] in case of a null drift,

EQ (gN (W ∗
t )fN (Wt)) = gN (0)fN (0)+

1

2

∫ t

0

E [f”N (Ws)gN (W ∗
s )] ds+

1

2

∫ t

0

E
[
g′N (W ∗

s )fN (Ws)
pW (W+

s ,Ws; s

gW (Ws; s)

]
ds.

(21)
Both hands are monotonous with respect to N, so using Lebesgue's monotonous conver-
gence Theorem, we get

EQ (cosh(cWt)W
∗
t ) =

1

2

∫ t

0

EQ

[
c2cosh(cWs)W

∗
s

]
ds+

1

2

∫ t

0

EQ

[
cosh(cWs)

pW (W+
s ,Ws; s

gW (Ws, s)

]
ds.

(22)

Using Itô formula and the fact that W ∗ is an increasing process

|EQ[(cosh(cWb)− cosch(cWa))W
∗
a ]| = EQ[

c2

2

∫ b

a
cosh(cWs)dsW

∗
a ] ≤ EQ[

c2

2

∫ b

a
cosh(cWs)W

∗
s ds].

(23)

Plugging estimations (22) and (23) into (20) yields (18). •

This lemma concludes the proof of Proposition 2.5 using Criterion 11.7 page 364 [17]
since for all 0 < a < b ≤ T

EP[Mb −Ma] ≤
CT
2

∫ b

a
E
[
c2cosh(cWs)W

∗
s

]
ds+ CT

1

2

∫ b

a
E
[
cosh(cWs)

pW (W+
s ,Ws; s)

gW (Ws, s)

]
dt.

•

Corollary 2.7. Since the application FΨ : t → E[
∫ t
0 Ψ(Vs)dMs] is absolutely continuous,

there exists fΨ such that E[
∫ t
0 Ψ(Vs)dMs] =

∫ t
0 fψ(s)ds.

2.3 Computation of FΨ derivative, case additive noise, sec-

ond step

Let now a drifted Brownian motion be de�ned as: dXt = B(Xt)dt+dWt, X0 = x, t ∈ [0, T ]

where B ∈ C1
b . Let Ψ ∈ C1

b and recall the function Fψ : t 7→ E
(∫ t

0 Ψ(Vs)dMs

)
. Using

Corollary 2.7, this function FΨ is absolutely continuous with respect to Lebesgue measure,
so almost di�erentiable with derivative that we denote fΨ. Actually fΨ = limh→0 TΨ(h, .)
where

TΨ(h, t) :=
1

h
E
(∫ t+h

t
Ψ(Vs)dMs

)
. (24)
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Theorem 2.8. Let the process X be de�ned as dXt = B(Xt)dt + dWt, with B ∈ C1
b ,,

Mt = sup0≤s≤tXs and Ψ ∈ C1
b . Then E[

∫ t
0 Ψ(Vs)dMs] =

∫ t
0 fΨ(s)ds where

fΨ(t) =
1

2
EP

[
Ψ(Mt,Mt)

pX(Mt,Mt, t)

pM (Mt, t)

]
.

The proof is a consequence of the three following propositions.

Proposition 2.9. Let A = 1, B be C1
b , Ψ be C1

b then for any t such that (TΨ(h, t))h
converges when h → 0,

fΨ(t) = lim
h→0

T 1
Ψ(h, t) where T 1

Ψ(h, t) = 2E
(
Ψ(Mt,Mt)

1√
h
H

(
Mt −Xt√

h

))
where

H(B) :=
1√
2π

e−
B2

2 −BΦG(−B)

and ΦG is the Gaussian distribution function.

Proof. (i) Adding and subtracting Ψ(Vt)
Mt+h−Mt

h we get

TΨ(h, t) = E
(
Ψ(Vt)

Mt+h −Mt

h

)
+

1

h
E
(∫ t+h

t
[Ψ(Vs)−Ψ(Vt)] dMs

)
.

Since the function Ψ ∈ C1
b , Cauchy-Schwartz inequality yields

∣∣∣∣1hE
(∫ t+h

t
[Ψ(Vs)−Ψ(Vt)] dMs

)∣∣∣∣ ≤ K

√√√√E

(
sup

t≤u≤t+h
∥Vu − Vt∥2

)
1

h
E[(Mt+h −Mt)2].

Using Lemmas 4.1 and 4.2 with p = 2 and the fact that Mu −Ms ≤ supt≤s≤u |Xs −Xt|,

lim
h→0

∣∣∣∣1hE
(∫ t+h

t
[Ψ(Vs)−Ψ(Vt)] dMs

)∣∣∣∣ = 0

meaning, t being �xed, that

TΨ(h, t) ∼ E
(
Ψ(Vt)

Mt+h −Mt

h

)
.

(ii) We introduce the processes:

Xt,h := B(Xt)h+A(Xt)[Wt+h −Wt], Xt,0 = 0 ; Mt,h := sup
u≤h

Xt,u, Mt,0 = 0.

Then, according to Lemma 4.4

E [|Mt+h −Mt − (Mt,h −Xt +Mt)+|] = o(h)

so

TΨ(h, t) ∼ E
(
Ψ(Vt)

(Mt,h −Xt +Mt)+
h

)
.
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(iii) Concerning the right hand above, we use the Ft conditional expectation and Proposi-
tion 4.8 in case A = 1:

lim
h→0

∣∣∣∣Tψ(h, t)− 2E
(
Ψ(Mt,Mt)

1√
h
H

(
Mt −Xt√

h

))∣∣∣∣ = 0.

•
We now provide a decomposition of pV .

Proposition 2.10. Assuming A = 1, B ∈ C1
b and de�ning B such that: B(0) = 0 and

B′ := B, C := −1
2B

′−1
2B

2, for all t > 0, the density of the pair (Mt, Xt) satis�es

pV (b, a, t) =

3∑
i=1

piV (b, a, t)

where

p1V (b, a, t) = eB(a)pW (b, a, t)

p2V (b, a, t) =

∫ t

0
EP

[
C(Xs)e

B(a)−B(Xs)1Ms<bpW (b−Xs, a−Xs, t− s)
]
ds

p3V (b, a, t) = 1b>a

∫ t

0

∫ b

−∞
C(x)eB(a)−B(x)pV (b, x, s)

e
− (a−x)2

2(t−s) − e
− (2b−a−x)2

2(t−s)√
2π(t− s)

dxds,

and pW (13) denotes the density of the law of the pair Brownian motion-its running
maximum.

Proof. (i) Let F be a positive function, remark that

EP[F (Mt, Xt)] = EQ[ZtF (Mt, Xt)]

and that under Q, X is a Brownian motion. Recall that Z (19) could be expressed as

Zt = exp

(
B(Xt) +

∫ t

0
C(Xs)ds

)
.

So Z could be expressed as

Zt = expB(Xt)

(
1 +

∫ t

0
C(Xs)e

∫ s
0 C(Xu)duds

)
.

Then

EP[F (Mt, Xt)] = EQ

[
expB(Xt)

(
1 +

∫ t

0
C(Xs)e

∫ s
0 C(Xu)duds

)
F (Mt, Xt))

]
.

(ii) Using Xt = Xs + Xt − Xs and Mt = sup(Ms, Xs + sup0≤u≤t−sXu+s − Xs) and the
independence under Q of X.+s −Xs and Fs,

EP[F (Mt, Xt)] =

∫
R2

F (b, a) exp(B(a))pW (b, a, t)dbda (25)
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+

∫ t

0

∫
R2

EQ[exp(B(Xs+α))C(Xs)e
∫ s
0 C(Xu)duF (sup(Ms, Xs+β), Xs+α)]pW (β, α, t−s)dβdαds.

Recall that e
∫ s
0 C(Xu)du = Zs exp(−B(Xs)), the integrand of the second term is

EQ[exp(B(Xs + α)− B(Xs))C(Xs)ZsF (sup(Ms, Xs + β), Xs + α)]pW (β, α, t− s).

Under the probability measure P = Zs.Q this one is

EP[exp(B(Xs + α)− B(Xs))C(Xs)F (sup(Ms, Xs + β), Xs + α)]pW (β, α, t− s).

Thus the expectation EP[F (Mt, Xt)] satis�es

EP[F (Mt, Xt)] =

∫
R2

F (b, a) exp(B(a))pW (b, a, t)dbda+

∫ t

0

∫
R2

EP[e
B(Xs+α)−B(Xs)C(Xs)F (sup(Ms, Xs + β), Xs + α)]pW (β, α, t− s)dβdαds.

(iii) We split the second term according to the subset {Ms ≤ Xs+β} and its complement:

I1 =

∫ t

0

∫
R2

EP[e
B(Xs+α)−B(Xs)C(Xs)F (Xs+β,Xs+α)1{Ms≤Xs+β}]pW (β, α, t−s)dβdαds,

I2 =

∫ t

0

∫
R2

EP[e
B(Xs+α)−B(Xs)C(Xs)F (Ms, Xs + α)1{Ms>Xs+β}]pW (β, α, t− s)dβdαds.

In the �rst term I1, we perform the change of variable b = Xs + β, a = Xs + α, so

I1 =

∫ t

0

∫
R2

EP[e
B(a)−B(Xs)C(Xs)F (b, a)1{Ms≤b}pW (b−Xs, a−Xs, t− s)]dbdads. (26)

(iv) Concerning I2, we use the density of the law under P of the pair (Ms, Xs) that we
denote as pX(m,x, s), so

I2 =

∫ t

0

∫
R4

eB(x+α)−B(x)C(x)F (m,x+α)1{m>x+β}pV (m,x, s)pW (β, α, t−s)dβdαdmdxds.

We operate the change of variable b = m, a = x+ α, so

I2 =

∫ t

0

∫
R4

eB(x+α)−B(x)C(x)F (b, a)1{b>x+β}pV (b, x, s)pW (β, a− x, t− s)dβdbdadxds.

Using the expression of pW , [9] Section 3.2 or (13),

pW (β, a, t) = 2
2β − a√
2πt3

e−
(2β−a)2

2t 1{β>0,β>a},

we integrate with respect to β between max(0, a−x) and b−x and note that (2max(0, a)−
a)2 = a2 then

I2 =

∫ t

0

∫
R3

eB(a)−B(x)C(x)F (b, a)
e
− (a−x)2

2(t−s) − e
− (2b−a−x)2

2(t−s)√
2π(t− s)

1{b>a}pV (b, x, s)dbdadxds. (27)
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Gathering Expressions (25), (26), (27) and using Tonelli Theorem, we get the result. •

The following proposition proves that the density pV is continuous closed to the diag-
onal when X is a one dimensional di�usion with additive noise. We also provides a useful
estimation for using Lebesgue's dominated convergence Theorem.

Proposition 2.11. Let A = 1 and B ∈ C1
b , for all t, u, in R+ − {0}, h ∈ (0, 1], then

almost surely in b ∈ R+

lim
h→0,h>0

pV (b, b− u
√
h, t) = pV (b, b, t).

and there exists a constant C independent of t such that:

p1V (b, b−
√
hu, t) ≤ Ce∥B∥∞[u+b] 1√

2πt2
e−

b2

4t (28)

p2V (b, b−
√
hu, t) ≤ Ce3/2t∥B∥2∞t+∥B∥∞u (29)

p3V (b, b−
√
hu, t) ≤ 4∥C∥∞

∫ t

0
EP[e

∥B∥∞[b−Xs+u]|Ms = b]
pM (b, s)√
2π(t− s)

ds. (30)

Proof. According to Proposition 2.10, we recall the decomposition of pV (b, a; t) in the sum
of the three terms piV (b, a; t), i = 1, 2, 3 :

p1V (b, a, t) = eB(a)pW (b, a, t)

p2V (b, a, t) =

∫ t

0
EP

[
C(Xs)e

B(a)−B(Xs)1Ms<bpW (b−Xs, a−Xs, t− s)
]
ds

p3V (b, a, t) = 1{b>a}

∫ t

0

∫ b

−∞
C(x)eB(a)−B(x)pV (b, x, s)

e− (a−x)2

2(t−s) − e
− (2b−a−x)2

2(t−s)√
2π(t− s)

 dxds.

(i) Bound of p1V : Let b and t be �xed. Since B is ∥B∥∞ Lipschitz continuous and a 7→
pW (b, a; t) de�ned in (13) is continuous on ]−∞, b] then

lim
a→b,a<b

p1V (b, a; t) = p1V (b, b; t).

Moreover the Lipschitz property of B and the de�nition of a 7→ pW (b, a; t) (13), for u > 0,
h ∈ (0, 1], b > 0 so 0 < b < 2b− (b− u

√
h) = b+ u

√
h < b+ u, yield

p1V (b, b−
√
hu, t) ≤ e∥B∥∞[u+b] 2(b+ u

√
h)√

2πt3
e−

(b+u
√
h)2

2t

≤ e∥B∥∞[u+b] 2C1√
2πt2

e−
(b+u

√
h)2

4t ≤ e∥B∥∞[u+b] 2C1√
2πt2

e−
b2

4t (31)

using C1 = supx>0 xe
−x2

4 .
(ii) Bound of p2V : Let b, u in R+ and t be �xed. The integrand in p2V (b, b − u

√
h; t) is

p2V (b, u, t, s, ω, h) where

p2V (b, u, t, s, ω, h) = C(Xs)e
B(b−u

√
h)−B(Xs)1Ms<bpW (b−Xs, b−Xs − u

√
h, t− s).
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Once again the Lipschitz property of B is used and since a 7→ pW (b, a; t) (13) is continuous
on ]−∞, b] then

lim
h→0,h>0

p2V (b, u, t, s, ω, h) = p2V (b, u, t, s, ω, 0).

Recall that the function C is bounded, then the factor C(Xs)e
B(b−u

√
h)−B(Xs) is bounded

by ∥C∥∞e∥B∥∞[b−Xs+u] on the set {ω, Ms(ω) < b} ⊂ {ω, Xs(ω) < b}.
Now using 2(b−Xs)− (b−Xs−u

√
h) = b−Xs+u

√
h > 0 and Cα = supx x

αe−x
2/4, ∀h ∈

(0, 1],

pW (b−Xs, b−Xs − u
√
h, t− s) = 2

b−Xs + u
√
h√

2π(t− s)3
e
− (b−Xs+u

√
h)2

2(t−s) 1Xs≤b

≤ 2C1+ε
1√

2π(t− s)2−ε(b−Xs + u
√
h)ε

e
− (b−Xs+u

√
h)2

4(t−s)

≤ 2C1+ε
1√

2π(t− s)2−ε(b−Xs)ε
e
− (b−Xs)

2

4(t−s) 1Xs≤b.

We gather these both bounds to get:

|p2V (b, u, t, s, ω, h)| ≤ 2∥C∥∞e∥B∥∞[b−Xs+u]C1+ε
1√

2π(t− s)2−ε(b−Xs)ε
e
− (b−Xs)

2

4(t−s) 1Xs≤b.

According to Lemma 4.10 for 0 < ε < 1/2 and α = ∥B∥∞ there exists a constant C(ε) > 0
such that ∀t > 0, 0 < s < t, b > 0

EP

[
e∥B∥∞[(b−Xs)]1{Ms<b}

1√
2π(t− s)2−ε(b−Xs)ε

e
− (b−Xs)

2

4(t−s)

]
≤ C(ε)

e∥B∥2∞(t−s+t/2)

s1/4(t− s)3/4
. (32)

Then, the dominating function

(s, ω) 7→ 2∥C∥∞e∥B∥∞[(b−Xs)+u]Cε
1√

2π(t− s)2−ε(b−Xs)ε
e
− (b−Xs)

2

4(t−s) 1{Xs≤b}

is integrable with respect to ds.dP on [0, t]×Ω and from Lebesgue's dominated convergence
Theorem

lim
h→0,h>0

p2V (b, b−
√
hu; t) = p2V (b, b; t).

Integrating the bound (32) with respect to s we obtain for all t > 0, b, u > 0, h ∈ (0, 1]
and 0 < ε < 1

2 and using B(14 ,
3
4) =

∫ t
0 (t− s)−3/4s−1/4ds

p2V (b, b−
√
hu, t) ≤ C(ε)e3t/2∥B∥2∞+u∥B∥∞B(

1

4
,
3

4
). (33)

(iii) Bound of p3V : Let b, u in R+ and t be �xed. The integrand in p3V (b, b − u
√
h; t) is

p3V (b, u, t, s, x, h) where

p3V (b, u, t, s, x, h) = C(x)eB(b−u
√
h)−B(x)pV (b, x, s)

e− (b−x−u
√

h)2

2(t−s) − e
− (b−x+u

√
h)2

2(t−s)√
2π(t− s)

 .
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Once again the Lipschitz property of B is used �rstly to get

lim
h→0,<h

p3V (b, u, t, s, x, h) = p3V (b, u, t, s, x, 0) = 0

and secondly, with h ∈ (0, 1], u > 0, to dominate the function p3V (b, u, t, s, x, h) by

(b, u, t, x, s) 7→ 2∥C∥∞e∥B∥∞[b−x+u] pV (b, x; s)√
2π(t− s)

. (34)

Applying Lemma 4.11 with α = ∥B∥∞, for any s ≥ 0,∫
R2

e∥B∥∞[b−x]pV (b, x; s)dxdb = EP [exp ∥B∥∞[Ms −Xs]] ≤ 2 exp 4s∥B∥2∞,

so ∫ t

0

∫
R2

e∥B∥∞[b−x] pV (b, x; s)√
2π(t− s)

dxdbds ≤ 4

√
t

2π
e4t∥B∥2∞ .

Then, almost surely in b,

(s, x) 7→ ∥C∥∞e∥B∥∞[b−x+u] pV (b, x; s)√
2π(t− s)

is integrable with respect to dsdP on [0, t]×Ω and from Lebesgue's dominated convergence
Theorem

lim
h→0,h>0

p3V (b, b−
√
hu; t) = p3V (b, b; t).

Moreover, integrating the dominating function (34) with respect to x and s yields for all
t > 0, b > 0, u > 0 and h ∈ (0, 1]

p3V (b, b− u
√
h, t) ≤ 4∥C∥∞

∫ t

0
EP[e

∥B∥∞[b−Xs+u]|Ms = b)
pM (b, s)√
2π(t− s)

ds.

Gathering these three cases we get the result •

2.4 Proof of Theorem 2.8, last step

The key of this proof is the uniform (with respect to b) bounds of piV (b, b−u
√
h, t), i = 2, 3

which are obtained in Proposition 2.11. Thus, �rstly we prove Theorem 2.8 for Ψ with
compact support. This proof is split in three parts according to piV , i = 1, 2, 3, Proposition
2.10. Then, using Lebesgue's dominated convergence Theorem, we derive the case of
bounded Ψ.
(i) According to Proposition 2.9, for any t such that (Tψ(h, t))h→0 converges,

fΨ(t) = lim
h→0

T 1
Ψ(h, t) where T 1

Ψ(h, t) = 2E
(
Ψ(Mt,Mt)

1√
h
H

(
Mt −Xt√

h

))
.

Using the density of the law of the pair (Mt, Xt)

T 1
Ψ(h, t) =

∫
R2

Ψ(b, b)
1√
h
H(

b− a√
h

)pV (b, a, t)dbda
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We perform the change of variable u = b−a√
h
, then

T 1
Ψ(h, t) = 2

∫
R2
+

Ψ(b, b)H(u)pV (b, b− u
√
h, t)dbdu. (35)

Using Proposition 2.11, if Ψ is with compact support, using H(u) ≤ e−u2/2
√
2π

, we only need

to uniformly bound ∀h

Ψ(b, b)
e−u

2/2

√
2π

pV (b, b− u
√
h, t)

by a function in L1(R2
+).

Using the decomposition of pV in Proposition 2.10, T 1
Ψ(h, t) is the sum of three terms

T 1
Ψ(h, t) =

3∑
i=1

T 1,i
Ψ (h, t)

where

T 1,i
Ψ (h, t) ≤

∫
R2

Ψ(b, b)
e−u

2/2

√
2π

piV (b, b− u
√
h, t)dbdu.

Now using the bound of each terms piV i = 1, 2, 3 (cf. Proposition 2.11), we bound each
terms separately to use Lebesgue's dominated convergence Theorem.

(ii) a) Using the bound (28), the integrand in T 1,1
Ψ (h, t) is bounded by

∥Ψ∥∞
e−u

2/2

√
2π

Ce∥B∥∞[u+b] 1√
2πt2

e−
b2

4t .

Thus this dominating function is, up to a multiplicative constant, the product of

two integrable functions on R+: u → e∥B∥∞ue−
u2

2 and b → e∥B∥∞be−
(b)2

4t . This allow
to apply Lebesgue's dominated convergence Theorem and to obtain

lim
h↓0

T 1,1
Ψ (h, t) =

∫
R2
+

Ψ(b, b)H(u)eB(b)pW (b, b; t)dbdu.

(ii) b) Using the bound (29), the integrand in T 1,2
Ψ (h, t) is bounded by

|Ψ(b, b)|Ce3/2∥B∥2∞t+∥B∥∞u e
−u2

2

√
2π

.

Lebesgue's dominated Theorem yields for Ψ with compact support

lim
h↓0

T 1,2
Ψ (h, t) =

∫
R2
+

Ψ(b, b)p2v(b, b, t)H(u)dbdu.

(ii) c) Using the bound (30), the integrand in T 1,3
Ψ (h, t) is bounded by
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∥Ψ∥∞∥C∥∞
e−u

2/2

√
2π

∫ t

0

EP[e
∥B∥∞[b−Xs+u]|Ms = b]

pM(b, s)√
2π(t− s)

ds.

Note that ∫
R2
+

e−u
2/2

√
2π

∫ t

0

EP[e
∥B∥∞[b−Xs+u]|Ms = b]

pM(b, s)√
2π(t− s)

dsdudb

=

∫
R+

e−u
2/2+∥B∥∞u

√
2π

du

∫ t

0

EP[e
∥B∥∞[Ms−Xs]]

1√
2π(t− s)

ds.

According to Lemma 4.11 with α = ∥B∥∞

EP [exp ∥B∥∞[Ms −Xs]] ≤ exp
3

2
∥B∥∞s,

so

∫ t

0

EP[e
∥B∥∞[Ms−Xs]]

1√
(t− s)

ds ≤
∫ t

0

1√
(t− s)

exp[
3

2
∥B∥∞s]ds = 2

√
t exp[

3

2
∥B∥∞t].

Then, using that u → e−u2/2
√
2π

e∥B∥∞u is integrable on R+, the dominated function
is integrable with respect u this allow to apply Lebesgue's dominated convergence
Theorem for Ψ with compact support.
iii) We now can exchange limit and integral in (35) thus

fΨ(t) = 2

∫
(R+)2

Ψ(b, b)H(u)pV (b, b, t)dbdu.

Multiplying and dividing by the density of Mt and using
∫∞
0

H(u)du = 1
4
,

fΨ(t) =
1

2
EP[Ψ(Mt,Mt)

pV (Mt,Mt, t)

pM(Mt, t)
].

(iv) Let (Ψn)n an increasing sequence of continuous function with compact support
converging to 1 then t 7→ E(

∫ t
0
Ψn(Ms)dMs) is absolutely continuous with respect

to the Lebesgue measure, its derivative, namely t 7→ 1
4

∫
R+

Ψn(b)pV (b, b, t)db, is inte-
grable

E(
∫ t

0

Ψn(Ms)dMs) =
1

2

∫ t

0

∫
R+

Ψn(b)pV (b, b, s)dbds.

Then letting n going to in�nity with monotonous convergence theorem

E(Mt) =
1

2

∫ t

0

∫
R+

pV (b, b, s)dbds.
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That means (s, b) 7→ pV (b, b, s) belongs to L1([0, t]× R+).
Now let Ψ be a continuous bounded function then, (m,x) 7→ Ψn(b)Ψn(x)Ψ(b, x)

is continuous with support compact and

E(
∫ t

0

Ψ(Vs)dMs) = lim
n→∞

E(
∫ t

0

Ψ(Vs)Ψn(Xs)Ψn(Ms)dMs)

= lim
n→∞

1

2

∫ t

0

∫
R+

(Ψn(b))
2Ψ(b, b)pV (b, b, s)dbds

=
1

2

∫ t

0

∫
R+

Ψ(b, b)pV (b, b, s)dbds

since (s, b) 7→ pV (b, b, s) ∈ L1([0, t]×R+). This achieves the proof of Theorem 2.8. •

3 Integration by parts to go to a weak PDE

Let Φ ∈ C2
b (R+ × R); via Ito's formula, since (Mt, Xt) law admits a density which

is denoted pV (., ., t) (Proposition 1.1), and using Theorem 2.8:

E[(Φ(Mt, Xt)] = Φ(0, 0) +

∫ t

0

∫
m≥x+

LΦ(m,x)pV (m,x; s)dxdmds+
1

2

∫ t

0

EP

[
∂mΦ(Ms,Ms)

pV (Ms,Ms, s)

pM (Ms, s)
ds

]
(36)

where L is the in�nitesimal generator of the di�usion X

Xt = B(Xt) +Wt, Mt = sup
s≤t

Xs.

Theorem 3.1. Let B be C1
b on R and A = 1. On the domain {(m,x), x < m}, pV

satis�es the PDE

∂tpV (m,x, s) = −B′(x)pV (m,x, s)−B(x)∂xpV (m,x, s) +
1

2
∂2
xxpV (m,x, s).

On the diagonal x = m there is two boundary conditions

(i) B(m)pV (m,m; t)− 1

2
[∂m + 2∂x](pV )(m,m; t) = 0.

(ii) ∂tpM(m, t) = −1

2
(∂mpV (m,m, t) + ∂xpV (m,m, t)),

Proof. split in four parts:
a) Firstly we consider Φ ∈ C2(R+ × R) with compact support included in

{(m,x),m ≥ x+}\{(0, 0)}. We use integration by part with respect to x to develop
the �rst integrand in the right hand side of (36)∫
m≥x+

LΦ(m,x)pV (m,x, s)dxdm =

∫
Φ(x,m)L∗(pV )(m,x, s)dxdm

+

∫ t

0

∫
R+

[(
B(m)pV (m,m; s)− 1

2
∂xpV (m,m; s)

)
Φ(m,m) +

1

2
pV (m,m; s)∂xΦ(m,m)

]
dm
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with L∗ = −B′(x)pV (m,x, s)−B(x)∂xpV (m,x, s)+ 1
2
∂2
xxpV (m,x, s). Then equation

(36) becomes

E[(Φ(Mt, Xt)] =

∫ t

0

∫
m≥x+

L∗pV (m,x; s)Φ(m,x)dxdmds+∫ t

0

∫
R+

[{B(m)pV (m,m; s)− 1

2
∂xpV (m,m; s)}Φ(m,m) +

1

2
pV (m,m; s)[∂xΦ(m,m) + ∂mΦ(m,m)]dmds.

Using integration by part with respect to m in the right hand side last two terms

E[Φ(Mt, Xt)] =

∫ t

0

∫
m≥x+

L∗pV (m,x; s)Φ(m,x)dxdmds (37)

+

∫ t

0

∫
R+

[B(m)pV (m,m; s)− 1

2
[∂m + 2∂x]pV (m,m; s)]Φ(m,m)dmds.

b) Now taking Φ with compact support in {(m,x),m > x+}, (37) yields that on
this domain x < m, pV satis�es the PDE

∂tpV (m,x, s) = −B′(x)pV (m,x, s)−B(x)∂xpV (m,x, s) +
1

2
∂2
xxpV (m,x, s).

c) Coming back to Φ ∈ C2(R+ × R) but with compact support included in
{(m,x),m ≥ x+} \ {(0, 0)}, since the diagonal has null Lebesgue measure, (37)
becomes

0 =

∫ t

0

∫
R+

[B(m)pV (m,m; s)− 1

2
[∂m + 2∂x]pV (m,m; s)]Φ(m,m)dmds.

which leads to boundary condition (i).
d) Finally concerning the boundary condition (ii) we consider a regular function

Φ with compact support in R+ \ {0} so from Theorem 2.8

E (Φ(Mt)) =
1

2

∫ t

0

E
(
Φ′(Ms)

pV (Ms,Ms; s)

pM(Ms; s)

)
ds.

Actually we perform integration by part on R+

EP

[
Φ′(Ms)

pV (Ms,Ms, s)

pM(Ms, s)

]
=

∫
R+

Φ′(m)pV (m,m, s)dm

= −
∫
R+

Φ(m)(∂mpV (m,m, s) + ∂xpV (m,m, s))dm.

So we get

E[(Φ(Mt)] = −1

2

∫ t

0

∫
R+

Φ(m)(∂mpV (m,m, t) + ∂xpV (m,m, t))dm.
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With pM(m, t) =
∫
x+≤m pV (m,x, t)dx it yields a boundary condition on the diagonal

∂tpM(m, t) = −1

2
(∂mpV (m,m, t) + ∂xpV (m,m, t)).

•

In case of A ̸= 1, this proposition provides a PDE for the pair (Y ∗, Y ) de�ned
in Section 2.1 and pV is deduced from pY ∗,Y via Lemma 2.3.

4 Appendix

4.1 Control in �rst step Euler scheme approximation

Here are provided some estimations controlling the processes X and M .

Lemma 4.1. Under assumption (1), ∀h > 0, ∀t, ∀s, ∀p ≥ 1

E
(
sup
s≤h

|Xt+s −Xt|p
)

≤ 2p−1(1 + Cp)[h
p + hp/2]2Kp

where K := max(∥A∥∞, ∥B∥∞), and Cp the constant in Burkholder Davis Gundy
inequality.

Proof. Using (a+ b)p ≤ 2p−1 [ap + bp]:

sup
s≤h

|Xt+s −Xt|p ≤ 2p−1

[
sup
u≤h

(∫ t+u

t

B(Xs)ds

)p
+ sup

u≤h

(∫ t+u

t

∑
α

A(Xs)dWs

)p]
.

The expectation then Burkholder Davis Gundy inequality imply

E(sup
s≤h

|Xt+s−Xt|p) ≤ 2p−1(1+Cp)E

[(∫ t+h

t

|B(Xs)|ds
)p

+

(∫ t+h

t

|A(Xs)|2ds
)p/2]

.

Jensen's inequality yields

E(sup
s≤t

|Xt+s −Xt|p) ≤ 2p−1(1+Cp)[h
p−1+hp/2−1]E

[∫ t+h

t

|B(Xs)|pds+
∫ t+h

t

∥A(Xs)∥pds
]
.

Assumption (1) with K = max(∥A∥∞, ∥B∥∞) concludes the proof:

E(sup
s≤t

|Xt+s −Xt|p) ≤ 2p−1(1 + Cp)[h
p + hp/2]2Kp

•
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Lemma 4.2. Under Assumption (1), the following bound is satis�ed, ∀t ≤ T, ∀p≥ 1:

E (|Mt+h −Mt|p) ≤ 2p
√
1 + C2p(h

p + hp/2)Kp, (38)

E (|Mt+h −Mt|p) = o(hp/2)

where K = max(∥A∥∞, ∥B∥∞) and Cp the constant in Burkholder Davis Gundy
inequality.

Proof. One remarks that

Mt+h −Mt =

(
Xt −Mt + sup

0≤u≤h
(Xt+u −Xt)

)
+

where (x)+ = max(x, 0). For any a > 0, (x− a)+ ≤ |x|1x>a thus

0 ≤ Mt+h −Mt ≤ | sup
0≤u≤h

(Xt+u −Xt)|1{sup0≤u≤h(Xt+u−Xt)>Mt−Xt}.

Cauchy-Schwartz inequality yields:

0 ≤ E ([Mt+h −Mt]
p) ≤

√
E
(
| sup
0≤u≤h

(Xt+u −Xt)|2p
)
P({ sup

0≤u≤h
(Xt+u −Xt) > Mt −Xt}).

Lemma 4.1 in case 2p proves the bound (38) and that the almost sure limit
limh→0 sup0≤u≤h(Xu −Xt) = 0.
According to Proposition 1.1 the pair (Mt, Xt) law admits a density, and Step
4 of Proposition 1.6 proves (12), meaning P({0 = Mt − Xt}) = 0. So actually
E ([Mt+h −Mt]

p) is bounded by the product of hp/2 and a factor going to zero, so it
is an o(hp/2). •

For any t let the process (Xt,h, h ∈ [t, T ]) and its running maximum de�ned as

Xt,h:=B(Xt)h+ A(Xt) [Wt+h −Wt] , Mt,h := sup
0≤u≤h

Xt,u. (39)

Lemma 4.3. Under Assumption (1), the following bound is satis�ed ∀t ≤ T,:

E
(
sup
s≤h

|Xs+t −Xt −Xt,s|p
)

≤ 22p−1(1 + Cp)
2(hp + hp/2)2K2p

where K = max(∥A∥∞, ∥B∥∞, ∥A′∥∞, ∥B′∥∞) and Cp is the constant in Burkholder
Davis Gundy inequality.

Proof. By de�nition, with W̃u := Wt+u −Wt, u ≥ 0

Xs+t −Xt −Xt,s =

∫ s

0

[B(Xu+t)−B(Xt)] du+

∫ s

0

[A(Xu+t)− A(Xt)] dW̃u.
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Using (a+ b)p ≤ 2p−1(ap + bp)

sup
s≤h

|Xs+t −Xt −Xt,s| ≤ 2p−1[(∫ h

0

|B(Xu+t)−B(Xt)| du
)p

+ sup
s≤h

∣∣∣∣∫ h

0

[A(Xu+t)− A(Xt)] dW̃u

∣∣∣∣p
]
.

Expectation and Burkholder Davis Gundy inequality prove:

E
(
sup
s≤h

|Xs+t −Xt −Xt,s|p
)

≤ 2p−1(1 + Cp)[
E
(∫ h

0

|B(Xu+t)−B(Xt)| du
)p

+ E
∣∣∣∣∫ h

0

[|A(Xu+t)− A(Xt)|]2 du
∣∣∣∣p/2
]
.

A and B Lipschitz property and Jensen's inequality imply

E
(
sup
s≤h

|Xs+t −Xt −Xt,s|p
)

≤ 2p−1(1+Cp)(h
p−1+hp/2−1)Kp

[
E
(∫ h

0

|Xu+t −Xt|p du
)]

.

Then Lemma 4.1 allows to bound the last factor so

E
(
sup
s≤h

|Xs+t −Xt −Xt,s|p
)

≤

2p−1(1 + Cp)(h
p−1 + hp/2−1)Kp2p−1(1 + Cp)[h

p + hp/2]2Kph = 22p−1(1 + Cp)
2(hp + hp/2)2K2p.

•

Lemma 4.4. Under Assumption (1)

(i) sup
0≤t≤T ; 0≤h≤1

h−1E
(∣∣Mt+h −Mt − (Mt,h −Mt +Xt)+

∣∣) < ∞,

(ii) lim
h→0

h−1E
(∣∣Mt+h −Mt − (Mt,h −Mt +Xt)+

∣∣) = 0.

Proof. Considering that

Mt+h −Mt =

(
sup

0≤u≤h
(Xu+t −Xt)−Mt +Xt

)
+

and that for all a ∈ R∣∣(x− a)+ − (y − a)+
∣∣ ≤ |x− y|

[
1{x>a} + 1{y>a}

]
,

yields ∣∣Mt+h −Mt − (Mt,h −Mt +Xt)+
∣∣ ≤∣∣∣∣ sup

0≤u≤h
(Xu+t −Xt)−Mt,h

∣∣∣∣ [1{sup0≤u≤h(Xu+t−Xt)>Mt−Xt} + 1{Mt,h>Mt−Xt}

]
.
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If x and y are functions on [0, T ], ∀s ∈ [0, T ],

x(s)− sup
u≤T

y(u) ≤ x(s)− y(s) ≤ |x(s)− y(s)| ≤ sup
v≤T

|x(v)− y(v)|,

so

sup
s≤T

x(s)− sup
u≤T

y(u) ≤ sup
v≤T

|x(v)− y(v)|.

Here the role of y and x are symmetrical so

sup
s≤T

y(s)− sup
u≤T

x(u) ≤ sup
v≤T

|x(v)− y(v)|,

meaning that
∣∣sups≤T y(s)− supu≤T x(u)

∣∣ ≤ supv≤T |x(v)− y(v)|.
This is applied to the functions u → Xu+t−Xt and u → Xt,u:∣∣∣Mt+h −Mt − (Mt,h −Mt +Xt)+

∣∣∣ ≤ sup
u≤h

|Xu+t −Xt −Xt,u|
[
1{sup0≤u≤h(Xu+t−Xt)>Mt−Xt} + 1{Mt,h>Mt−Xt}

]
.

Cauchy Schwartz inequality and (a+ b)2 ≤ 2(a2 + b2) get

E
(∣∣Mt+h −Mt − (Mt,h −Mt +Xt)+

∣∣)
≤

√
2E
(
sup
u≤h

|Xu+t −Xt −Xt,u|2
)(

P
(
{ sup
0≤u≤h

(Xu+t −Xt) > Mt −Xt}
)
+ P ({Mt,h > Mt −Xt})

)
.

Lemma 4.3 with p = 2 insures that h 7→ h−1

√
2E
(
supu≤h

∣∣X1
u+t −X1

t −X1
t,u

∣∣2)
is uniformly bounded in t.

Concerning the second factor,
• �rstly the almost sure continuity with respect to h insures that the limits
limh→0 sup0≤u≤h(Xu+t −Xt) and limh→0Mt,h are equal to 0;
• secondly the pair (Mt, Xt) law admits a density according to Proposition 1.1 and
P{0 = Mt −Xt} = 0. Thus the limit of the second factor is equal to 0.

This concludes the proof. •

4.2 Conditional expectation and approximation

Proposition 4.5. For A and B ∈ C1
b and (2), meaning ∥A∥ ≥ c > 0,

E [(Ms,h − (Ms −Xs))+|Fs] = 2∥A(Xs)∥
√
hH

(
Ms −Xs −B(Xs)h

∥A(Xs)∥
√
h

)
− 2hR(s, h)

where

H(B) :=

∫ ∞

B

1√
2π

(y −B)e−
y2

2 dy =
1√
2π

e−
B2

2 −BΦG(−B),

R(s, h) := B(Xs)h

∫ ∞

Ms−Xs
∥A(Xs)∥

√
h

(z − Ms −Xs

∥A(Xs)∥
√
h
)e

2zB(Xs)
√

h
∥A(Xs)∥ ΦG(−(z +

B(Xs)
√
h

∥A(Xs)∥
))dz,

(40)

ΦG being the Gaussian distribution function.
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Remark 4.6. Let us remark that H ′(b) = −ΦG(−b) ≤ 0, H is decreasing, bounded

by 1√
2π
e−

B2

2 when B ≥ 0, where ΦG(u) =
∫ u
−∞

1√
2π
e−

v2

2t dv is the Gaussian distribution

function. Thus H is bounded on R+: ∀x ≥ 0, H(x) ≤ H(0).

Proof. (i) Denoting

Z(m)t = mt+Wt, Z(m)∗t = sup
0≤s≤t

Z(m)s,

the density of the pair (Z(m)∗t , Z(m)t) is

2
(2b− a)√

2πt3
e−

(2b−a)2

2t
+ma−m2t

2 1{b>0,b>a}.

cf. [9] p. 145 et seq. Corollary 3.2.1.2. By integration with respect to a we get the
density of Z(m)∗t , cf. [11] (3.2.8):

pZ∗(b;m, t) = 21{b>0}

[
1√
2πt

e−
(b−mt)2

2t −me2mbΦG(−
b+mt√

t
)

]
.

We now introduce

Yt = mt+ σWt = σ[
m

σ
t+Wt], Y ∗

t = sup
u≤t

Yu = σZ(
m

σ
)∗t .

We remark that conditionally to Fs, (Ms,h − (Ms − Xs))+ law is the one of the
process Y with m = B(Xs), σ = A(Xs). In order to use the Markov property we
now deal with E[(Y ∗

t −B)+].

(ii) For any B > 0

E
(
(Y ∗

t −B)+
)
= σE

((
Z(

m

σ
)∗t −

B

σ

)
+

)
. (41)

We now deal with

E
(
(Z(m)∗t −B)+

)
=

∫ ∞

B

(z −B)+pZ∗(z;m, t)dz

= 2

∫ ∞

B

(z −B)
1√
2πt

e−
(z−mt)2

2t dz − 2m

∫ ∞

B

(z −B)e2zmΦG(−
z +mt√

t
)dz = 2(I1 + I2).

We operate the change of variable y = z−mt√
t

in the �rst integral:

I1 =
√
t

∫ ∞

B√
t
−m

√
t

(y +m
√
t− B√

t
)

1√
2π

e−
y2

2 dy,

developed as following

I1 =

√
t√
2π

exp(−(B −mt)2

2t
) + (mt−B)ΦG(−

B√
t
+m

√
t) =

√
tH(

B√
t
−m

√
t).
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Finally, we operate the change of variable y = z√
t
in the second integral:

E
(
(Z(m)∗t −B)+

)
= 2

√
tH

(
B√
t
−m

√
t

)
− 2mt

∫ ∞

B√
t

(y − B√
t
)+e

2ym
√
tΦG(−(y +m

√
t))dy.

(iii) Recalling (41)

E
(
(Y ∗

t −B)+
)
= σE

((
Z(

m

σ
)∗t −

B

σ

)
+

)
= 2σ

√
tH

(
B −mt

σ
√
t

)
− 2mt

∫ ∞

B
σ
√

t

(z − B

σ
√
t
)+e

2zm
√

t
σ ΦG(−(z +

m
√
t

σ
))dz

that we apply to t = h, σ = ∥A(Xs)∥, m = B(Xs), B = Ms − Xs and using the
Markov property we get the result:

E ((Ms,h − (Ms −Xs))+|Fs) = 2∥A(Xs)∥
√
hH

(
Ms −Xs −B(Xs)h

∥A(Xs)∥
√
h

)
− 2B(Xs)h

∫ ∞

Ms−Xs
∥A(Xs)∥

√
h

(z − Ms −Xs

∥A(Xs)∥
√
h
)+e

2zB(Xs)
√

h
∥A(Xs)∥ ΦG(−(z +

B(Xs)
√
h

∥A(Xs)∥
))dz.

•

Proposition 4.7. Let A and B ∈ C1
b and (2), and let us denote for a bounded

function Ψ

T̃Ψ(h, t) = E
[
Ψ(Vt)

(Mt,h −Mt +Xt)+
h

]
then

T̃Ψ(h, t) ∼ 2E
(
Ψ(Vt)

1√
h
|A(Xt)|H

(
Mt −Xt −B(Xt)h

|A(Xs)|
√
h

))
.

Proof. Using Proposition 4.5 actually

T̃Ψ(h, s)− E
(
Ψ(Vs)

2√
h
∥A(Xs)∥H

(
Ms −Xs −B(Xs)h

∥A(Xs)∥
√
h

))
= −2E [Ψ(Vs)R(s, h)] .

Since Ψ is bounded, we only need to prove that

lim
h→0

E (R(s, h)) = 0.

From equation (40) in Proposition 4.5, the integrand is the product of the bounded
∥B(Xs)∥ and the factor (where necessarily z ≥ 0):

r(s, h, z) := (z − Ms −Xs

∥A(Xs)∥
√
h
)+e

2zB(Xs)
√

h
∥A(Xs)∥ ΦG

(
−(z +

B(Xs)
√
h

∥A(Xs)∥
)

)
.
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Firstly, since P({Ms −Xs≤0}) = 0, almost surely limh→0 r(s, h, z) = 0.
Secondly two cases are now to be checked:

• On the set {B(Xs) ≥ 0}, z+B(Xs)
√
h

∥A(Xs)∥ ≥ z
∥A∥∞ . Since ΦG is increasing then

ΦG(− z+B(Xs)
√
h

∥A(Xs)∥ ) ≤ ΦG(− z
∥A∥∞ ) and using the standard formula xΦG(−x) ≤ 1√

2π
e−x

2/2

for x ≥ 0, since z ≥ 0 and c being the constant in Assumption (2):

r(s, h, z) ≤ ze2
z∥B∥∞

c ΦG(−
z

∥A∥∞
) ≤ ∥A∥∞√

2π
e2

z∥B∥∞
c

− z2

2∥A∥∞ .

•On the set {B(Xs) < 0}, z+B(Xs)
√
h

∥A(Xs)∥ ≥ z−∥B∥∞
∥A∥∞ and ΦG(− z+B(Xs)

√
h

∥A(Xs)∥ ) ≤ ΦG(− z−∥B∥∞
∥A∥∞ ).

Note that e
2zB(Xs)

√
h

∥A(Xs)∥ ≤ 1 and for x > 0

ΦG(−x) ≤ e−
x2

4

∫ ∞

x

e−
y2

4

√
2π

dy ≤
√
2e−

x2

4 ,

and since z ≥ 0

r(s, h, z) ≤ zΦG(−
z − ∥B∥∞
∥A∥∞

) ≤
√
2ze−

(z−∥B∥∞)2

4∥A∥∞ + ∥B∥∞1z≤∥B∥∞ .

Thus we can apply Lebesgue's dominated convergence Theorem:

lim
h→0

E
(∫ ∞

0

|r(s, h, z)dz
)

= 0.

•

Proposition 4.8. For A and B ∈ C1
b and (2), and Ψ Lipschitz continuous bounded

T̃Ψ(h, t) ∼ 2E
[
Ψ(Mt,Mt)

1√
h
∥A(Xt)∥H

(
Mt −Xt

∥A(Xt)∥
√
h

)]
.

Proof. (i) Since A is bounded from below by c, using Proposition 4.7, the deal is to
cancel B(Xt) inside the function H, meaning to study the di�erence
1√
h
H
(
Mt−Xt−B(Xt)h

∥A(Xs)∥
√
h

)
− 1√

h
H
(

Mt−Xt

∥A(Xs)∥
√
h

)
when h → 0. Since the function H is

di�erentiable with negative derivative x 7→ −ΦG(−x) where ΦG is the Gaussian
distribution function, we apply the �nite increments formula:

Dh :=
1√
h

∣∣∣∣H (Ms −Xs −B(Xs)h

∥A(Xs)|
√
h

)
−H

(
Ms −Xs

∥A(Xs)∥
√
h

)∣∣∣∣
≤∥B∥∞

c
max

[
ΦG

(
− Ms −Xs

∥A(Xs)∥
√
h

)
,ΦG

(
−Ms −Xs −B(Xs)h

∥A(Xs)∥
√
h

)]
≤ ∥B∥∞

c
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so Dh is uniformly bounded.
On the set {Ms−Xs > 0} which satis�es P{Ms−Xs > 0} = 1, by Proposition 1.1

lim
h→0

Ms −Xs −B(Xs)h

∥A(Xs)∥
√
h

= lim
h→0

Ms −Xs

∥A(Xs)∥
√
h
= +∞;

then since limx→−∞ΦG(x) = 0, the almost sure limh→0 Dh = 0.

Since Dh is bounded for any h by ∥B∥∞
c

on both subsets, Lebesgue's dominated
convergence Theorem yields:

T̃Ψ(h, t) ∼ lim
h→0

2E
(
Φ(Vt)

1√
h
|A(Xt)|H

(
Mt −Xt

|A(Xt)|
√
h

))
.

(ii) The Lipschitz property of Ψ yields

|Ψ(Vs)−Ψ(Ms,Ms)| ≤ ∥Ψ∥lip (Ms −Xs) .

Since H(x) = e−
x2

2√
2π

−xΦG(−x), for x ≥ 0 there exists C > 0 such that 0 ≤ xH(x) ≤

x e
−x2

2√
2π

≤ Ce−
x2

4 . Thus

|Ψ(Vs)−Ψ(Ms,Ms)|
1√
h
∥A(Xs)∥H

(
Ms −Xs

∥A(Xs)∥
√
h

)
≤ ∥Ψ∥lip∥A(Xs)∥2Ce

− (Ms−Xs)
2

4h∥A(Xs)∥2

Once again for all s Ms−Xs > 0 P almost surely and A is bounded, so almost surely

lim
h→0

|Ψ(Vs)−Ψ(Ms,Ms)|
1√
h
H

(
Ms −Xs

∥A(Xs)∥
√
h

)
= 0.

By hypotheses B, ∥A∥ and Ψ are bounded, and Remark 4.6 gives 0 ≤ infx>0H(x) ≤
supx>0 H(x) ≤ H(0) < ∞, so Lebesgue's dominated convergence Theorem yields:

T̃Ψ(h, s) ∼ 2E
(
Ψ(Ms,Ms)

1√
h
∥A(Xs)∥H

(
Ms −Xs

∥A(Xs)∥
√
h

))
.

•

4.3 Some more tools for Proposition 2.11 proof

Lemma 4.9. Let 0 < ε < 1 and G be the standard Gaussian variable, there exists
a constant C(ε) such that for all T > 0, b > 0

E[(b−G)−ε exp−(b−G)2

2T
1{b>G}] ≤ C(ε)

√
T

1−ε
.
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Proof. Using the density of G,

J := E[(b−G)−ε exp−(b−G)2

2T
1{b>G}] =

∫
R
(b− g)−ε exp[−(b− g)2

2T
− g2

2
]1{b>g}

dg√
2π

.

We integrate by part

J =

∫
R

(b− g)1−ε

1− ε
[
(b− g)

T
−g] exp[−(b− g)2

2T
− g2

2
]1{b>g}

dg√
2π

.

We share J = J1 + J2 where:

J1: =

∫
R

(b− g)2−ε

T (1− ε)
exp[−(b− g)2

2T
− g2

2
]1{b>g}

dg√
2π

,

and

J2 : =−
∫
R

(b− g)1−ε

1− ε
g exp[−(b− g)2

2T
− g2

2
]1{b>g}

dg√
2π

.

Using Cα = supx>0 x
αe−

x2

4

J1 ≤
(
√
T )1−ε

1− ε
C2−ε

∫
R
exp[−(b− g)2

4T
]

dg√
2πT

=
(
√
T )1−ε

1− ε
C2−ε

√
2.

Similarly

|J2| ≤
(
√
T )1−ε

1− ε
C1−εC1

∫
R
exp[−g2

4
]
dg√
2π

≤ (
√
T )1−ε

1− ε
C1−εC1

√
2.

The sum yields the result with C(ε) = C2−ε

√
2

1−ε + C1−εC1

√
2

1−ε . •

Lemma 4.10. Assume that d = 1, A = 1 and B is C1
b . Let ε ∈]0, 1

2
[ there exists a

constant C(ε) such that for all 0 < s < t, α ∈ R and b ∈ R then

EP

[
expα(b−Xs)1b>Xs

1

(b−Xs)ε
e−

(b−Xs)
2

2(t−s)

]
≤ C(ε)

(t− s)
1−2ε

4

s1/4
eα

2(t−s)+ t∥B∥2∞
2 .

Proof. Under the equivalent probability measure Q = LsP, where
Ls = exp

[∫ s
0
−B(Wu)dWu+

1
2

∫ s
0
B(Wu)

2du
]
, the process X is a Q-Brownian motion

so, abusing the notation W instead of X:

K :=EP

[
expα(b−Xs)

1

(b−Xs)ε
1b>Xse

− (b−Xs)
2

2(t−s)

]
= EQ

[
L−1
s expα(b−Ws)

1

(b−Ws)ε
1b>Wse

− (b−Ws)
2

2(t−s)

]
.

Using Cauchy-Schwartz inequality

K ≤
√

EQ [L−2
s ]

√
EQ
[
exp 2α(b−Ws)

1

(b−Ws)2ε
1b>Wse

− (b−Ws)2

(t−s)

]
.
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Using the inequality 2xy = 2
√
2(t− s)x y√

2(t−s)
≤ 2(t − s)x2 + y2

2(t−s) applied to

x = α and y = b−Ws we obtain

2|α(b−Ws)| ≤ 2(t− s)α2 +
(b−Ws)

2

2(t− s)

so

K ≤ eα
2(t−s)

√
EQ [L−2

s ]

√
EQ
[

1

(b−Ws)2ε
1b>Wse

− (b−Ws)2

2(t−s)

]
. (42)

On the one hand

L−2
s = exp

[∫ s

0

2B(Wu)dWu−2

∫ s

0

B(Bu)
2du

]
exp

∫ s

0

B(Wu)
2du

so for any s ∈ [0, t] √
EQ [L−2

s ]] ≤ e
t∥B∥2∞

2 . (43)

On the other hand, G denoting a standard Gaussian random variable, the law of
1

(b−Ws)2ε
1b>Wse

− (b−Ws)
2

2(t−s) is the one of

1
√
s
2ε

1

(b/
√
s−G)2ε

1b/√s>G exp− s

2(t− s)
[b/

√
s−G]2.

Using Lemma 4.9 for 2ε and T = t−s
s

we obtain√
EQ
[

1

(b−Ws)2ε
1b>Wse

− (b−Ws)2

2(t−s)

]
≤ C(ε)

(
t− s

s

) 1−2ε
4 1√

s
ε = C(ε)

(t− s)
1−2ε

4

s
1
4

.

(44)

Plugging inequalities (43) and (44) into (42) achieves the proof of the lemma. •

Lemma 4.11. Assume that A = 1 and B is C1
b . For all α ∈ R, s > 0

EP [expα(Ms −Xs)] ≤
√
2e2s(α

2+∥B∥2∞).

Proof. Using once again the equivalent probability measure Q = LsP where Ls =
exp

[∫ s
0
−B(Wu)dWu+

1
2

∫ s
0
B(Wu)

2du
]
, under which X is a Q-Brownian motion:

EP [expα(Ms −Xs)] = EQ
[
L−1
s expα(W ∗

s −Ws)
]
.

Using Cauchy Schwartz inequality,

EP [expα(Ms −Xs)] ≤
√

EQ [L−2
s ]EQ [exp 2α(W ∗

s −Ws)].
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Firstly recall (43)
√

EQ [L−2
s ]] ≤ e

s∥B∥2∞
2 .

Secondly under Q, the law of (W ∗
s −Ws) is the one of |Ws|, then

EQ [exp 2α(W ∗
s −Ws))] =

2√
2π

∫ ∞

0

e2α
√
sxe−

x2

2 dx= e4α
2s 2√

2π

∫ ∞

0

e−
(x−2α

√
s)2

2 dx ≤ 2 exp(4α2s).

Finally, multiplying both bounds

EP [expα(Ms −Xs)] ≤
√
2e

s∥B∥2∞
2

+2α2s

which concludes the proof. •

References

[1] J. M. Azaïs, M. Wschebor, On the regularity of the distribution of the
maximum of one-parameter Gaussian processes. Probab. Th. Rel. Fields 119
(2001), no. 1, 70-98.

[2] H. Brown, D. Hobson, L.C.G. Rogers, Robust hedging of barrier options.
Math. Finance 11, 285-314 (2001)

[3] L. Coutin and D.Dorobantu, First passage time law for some Lévy processes
with compound Poisson: existence of a density. Bernoulli 17 (2011), no. 4, 1127-
1135.

[4] L. Coutin, W. Ngom, M. Pontier, Joint distribution of a Lévy process and
its running supremum, 2017, submitted.

[5] A.M.G. Cox, J. Obloj, Robust pricing and hedging of double no-touch op-
tions. Finance Stochast. 15, 573-605 (2011).

[6] R.A. Doney, A.E. Kyprianou, Overshoots and undershoots of Lévy pro-
cesses. Ann. Appl. Probab. 16 (2006), no. 1, 91?106.

[7] M. Duembgen, L. C. G. Rogers, The Joint Law of the Extrema, Final Value
and Signature of a Stopped Random Walk, Chapter in `Memoriam Marc Yor',
Séminaire de Probabilités XLVII, L. N. in Mathematics Vol. 2137 pp 321-338.

[8] M. Hayashi and A. Kohatsu-Higa, Smoothness of the distribution of the
supremum of a multi-dimensional di�usion process, Potential Analysis, 2013,
38/1, pp. 57-77.

[9] M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer, 2009.

36



[10] A. Lagnoux, S. Mercier, P. Vallois, Probability that the maximum of the
re�ected Brownian motion over a �nite interval [0, t] is achieved by its last zero
before t. Electron. Commun. Probab. 20 (2015), no. 62, 9 pp.

[11] W. Ngom, thesis: Contributions à l'étude de l'instant de défaut d'un processus
de Lévy en observation complète et incomplète, IMT, 2016.

[12] D. Nualart, The Malliavin calculus and related topics Second Edition,
Springer-Verlag New-Yor, 2006.

[13] L. Alili, P. Patie, J.L. Pedersen, Representations of the �rst hitting time
density of an Ornstein-Uhlenbeck process. Stoch. Models 21 (2005), no. 4,
967?980.

[14] A. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Third
edition, Springer Verlag, 2004.

[15] L. C. G. Rogers, The Joint Law of the Maximum and Terminal Value of
a Martingale, Probability Theory and Related Fields 95(4):451-466 · December
1993.

[16] B. ROYNETTE, P. VALLOIS, A. VOLPI, Asymptotic behavior of the
passage time, overshoot and undershoot for some Lévy processes ESAIM PS
VOL. 12, 2008, pp. 58-93.

[17] E.C. Titchmarsh, The theory of functions, second edition, Oxford University
Press, 1939.

37


