PDE for joint law of the pair of a continuous diffusion and its running maximum

Laure Coutin, Monique Pontier

To cite this version:

Laure Coutin, Monique Pontier. PDE for joint law of the pair of a continuous diffusion and its running maximum. 2019. hal-01591946v1

HAL Id: hal-01591946
https://hal.science/hal-01591946v1
Preprint submitted on 22 Nov 2019 (v1), last revised 22 Sep 2017 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PDE for joint law of the pair of a continuous diffusion and its running maximum

Laure Coutin, Monique Pontier ${ }^{\dagger}$

November 20, 2019

Abstract

Let X be a d-dimensional diffusion process and M the running supremum of the first component. In this paper, we first show that for any $t>0$, the pair $\left(M_{t}, X_{t}\right)$ density law with respect to Lebesgue measure can be characterized as a weak solution of a partial differential equation on an open set. In the one-dimensional case, this density is the unique weak solution of a partial differential equation (PDE) on the set $\left\{(m, x) \in \mathbb{R}^{2}, m \geq x\right\}$.

Keywords: Partial differential equation, running supremum process, joint law.
A.M.S. Classification: 60J60, 60G70, 60H10.

In a previous work [9], using Malliavin calculus and specifically Nualart's seminal book [21], we prove that the joint law of a pair $(X, M), X$ being a d-dimensional diffusion, and M the running maximum of its first component, is absolutely continuous with respect to Lebesgue's measure. In the present work, we go on, proving that in the open set $\left\{(m, x), m>x^{1}\right\}$ the density is a weak solution to a PDE. In the one-dimensional case, we prove moreover that there is boundary conditions on the diagonal $\left\{(m, x), m=x^{1}\right\}$. This work follows the previous paper [9] and Waly Ngom's thesis [20].

When the process X is a Brownian motion such results are well known, see for instance [17]. In the literature there exist other studies on the law of this running maximum: For instance, multidimensional diffusion case in [16], random walk in [13], reflected Brownian motion [18], martingale case is studied by Rogers [23, 13]. In case of boundaries problem, some numerical studies are provided by Hermann and Tanré [15] or Sacerdote et al. [25]. For general Gaussian processes, the law of the maximum is studied in [2]. The cases where the process X is a Lévy process are deeply studied in the literature, see for instance [12]. In case of linear diffusion, we refer to [11]. Some specific diffusion processes as Ornstein-Uhlenbeck [1] and [4] are also investigated.

Such studies concerning this running maximum are useful in financial area which get out hitting times, for instance for the pricing of barrier option. It is known that the law of such stopping time is closely related to the one of the running maximum, see [6, 7, 26]. An application of our work is

[^0]the case of a financial product with price process X, which products a benefit $f\left(X_{t}\right)$ at time t but only when the running maximum belongs to an interval $[a, b]$; in such a case the joint law is useful to compute such a benefit (for instance a barrier option).

The model is as following: on a filtered probability space $\left(\Omega, \mathbb{F}=\left(\mathcal{F}_{t}=\sigma\left(W_{u}, \quad u \leq t\right)\right)_{t \geq 0}, \mathbb{P}\right)$, $W:=\left(W_{u}, u \geq 0\right)$ is a d-dimensional Brownian motion, where the filtration \mathbb{F} is completed and càd. Let a diffusion process taking its values in \mathbb{R}^{d}, solution to

$$
\begin{equation*}
d X_{t}=B\left(X_{t}\right) d t+A\left(X_{t}\right) d W_{t}, \quad \text { law of } X_{0}=\mu_{0} \text { on } \mathbb{R}^{d}, t>0 \tag{1}
\end{equation*}
$$

where X_{0} is independent of the Brownian motion and A and B are defined on \mathbb{R}^{d} to respectively $d \times d$ matrices, \mathbb{R}^{d}. Let us denote $C_{b}^{i}\left(\mathbb{R}^{d}\right)$ the set of the functions i times differentiable, bounded, with bounded derivatives. We specify the cases where $X_{0}=x_{0} \in \mathbb{R}^{d}, t>0$ meaning that the initial law is Dirac one.
We assume that B and A satisfy both hypotheses:

$$
\begin{equation*}
B \in C_{b}^{1}\left(\mathbb{R}^{d}\right) \text { and } A \in C_{b}^{2}\left(\mathbb{R}^{d}\right),\|B\|=\sup _{x \in \mathbb{R}^{d}}|B(x)| \tag{2}
\end{equation*}
$$

and there exists a constant $c>0$ such that

$$
\begin{equation*}
c\|v\|^{2} \leq v^{T} A(x) A^{T}(x) v, \quad \forall v, x \in \mathbb{R}^{d} . \tag{3}
\end{equation*}
$$

Let $M_{t}:=\sup _{s \leq t} X_{s}^{1}$. In [9], it is proved that for all $t>0$, the law of $\left(M_{t}, X_{t}\right)$ has a density p_{V} with respect to the Lebesgue measure. The aim of this article is to show that this density is solution of a PDE, and it is the unique one in dimension 1.

Section 1 presents the main results: in d dimension, p_{V} is a weak solution of a PDE on the open subset of $\mathbb{R}^{d+1}\left\{(m, x), m>\max \left(x^{1}, x_{0}^{1}\right)\right\}$. In one-dimensional case the density is the unique weak solution of a PDE with boundary conditions. Section 1.1 gives the proofs with the expectation of the Itô formula as [8] Theorem 2.1 for Lévy processes. The key Proposition 1.5 concerning d-dimensional case is proved in Section 2. The proof in one-dimensional case (Section 3) needs more sophisticated tools. This section develops some crucial properties of the density p_{V} in one dimension and Section 3.4 provides useful tools to conclude the proof in one dimension case. Section 4 provides a uniqueness theorem for this PDE and as a corollary the uniqueness of the weak solution in case $d=1$.

1 Main results

We start with some useful notations:

$$
\Delta=\left\{(m, x) \in \mathbb{R}^{d+1}, m \geq x^{1}, x=\left(x^{1}, \cdots, x^{d}\right)\right\}
$$

According to the model (1), let us denote the infinitesimal generator

$$
\begin{equation*}
\mathcal{L}=B^{i} \partial_{x_{i}}+\frac{1}{2} \partial_{x_{i}, x_{j}}^{2}\left(A A^{T}\right)^{i j} . \tag{4}
\end{equation*}
$$

Abusing of notation, even if the $d+1$ coordinate m appears, keep the notation \mathcal{L}.
Recall Assumptions: $A \in C_{b}^{2}\left(\mathbb{R}^{d}\right), B \in C_{b}^{1}\left(\mathbb{R}^{d}\right)$; there exists a constant $c>0$ such that

$$
c\|v\|^{2} \leq v^{T} A(x) A^{T}(x) v, \quad \forall v, x \in \mathbb{R}^{d}
$$

and the notations $M_{t}=\sup _{0 \leq s \leq t}\left\{X_{s}^{1}\right\}$ and $V_{t}=\left(M_{t}, X_{t}\right) \in \mathbb{R}^{d+1}$.

Theorem 1.1 Let B and A satisfy Assumptions (2) and (3). Let the initial condition V_{0} be a random variable taking its values in $\left\{x \in \mathbb{R}^{d+1}, x^{1}=x^{2}\right\}$. Let $\Phi \in C_{b}^{2}\left(\mathbb{R}^{d+1}, \mathbb{R}\right)$, such that supp Φ is included in the interior of Δ. Then

$$
\begin{equation*}
E\left[\Phi\left(V_{t}\right)-\Phi\left(V_{0}\right)\right]=E\left[\int_{0}^{t} \mathcal{L}(\Phi)\left(V_{s}\right) d s\right] \tag{5}
\end{equation*}
$$

According to [9], for all $t>0$, the process V_{t} law admits a density $p_{V}(. ; t)$ with respect to Lebesgue's measure.

Corollary 1.2 Let B and A satisfy Assumptions (2) and (3). Then the density $p_{V}(., . ; t)$ is a weak solution on the interior of Δ of the PDE

$$
\partial_{t} p_{V}(. ; t)=\mathcal{L}^{*} p_{V}(. ; t)
$$

where \mathcal{L}^{*} is the adjoint operator of \mathcal{L}.
The proof of Corollary 1.2 is a standard consequence of some integration by parts.
In one-dimensional case, we can deal with the boundary conditions.
Theorem 1.3 Let $B \in C_{b}^{1}(\mathbb{R})$, let $A \in C_{b}^{2}(\mathbb{R})$ satisfy Assumption (3) and let $\Phi \in C_{b}^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$. Let $p_{V}(., . ; t)$ be the law density of the pair $V_{t}=\left(M_{t}, X_{t}\right)$ and $p_{M}(., t)$ be the one of M_{t} :

$$
\begin{align*}
E\left[\Phi\left(V_{t}\right)\right]-\Phi\left(V_{0}\right) & =E\left[\int_{0}^{t}\left[\mathcal{L} \Phi\left(V_{s}\right)\right] d s\right. \tag{6}\\
& \left.+\frac{1}{2} \int_{0}^{t} E\left[\partial_{1} \Phi\left(M_{s}, M_{s}\right)\right) A^{2}\left(M_{s}\right) \frac{p_{V}\left(M_{s}, M_{s} ; s\right)}{p_{M}\left(M_{s} ; s\right)}\right] d s
\end{align*}
$$

Remark 1.4 This result is to be compared to Theorem 2.1 and Proposition 4.4 in [8].

1.1 Proof of Theorem 1.1

Let $\Phi \in C_{b}^{2}\left(\mathbb{R}^{d+1}\right)$. Before applying Itô formula to $t \rightarrow \Phi\left(V_{t}\right)$, one remarks that the component M_{t} is a non decreasing continuous process, so it is a finite variation process thus the brackets $d\langle X, M\rangle_{t}=0$, and $d\langle M\rangle_{t}=0$. Itô's formula yields

$$
\Phi\left(V_{t}\right)-\Phi\left(V_{0}\right)=\int_{0}^{t} \frac{\partial \Phi}{\partial x}\left(M_{s}, X_{s}\right) A\left(X_{s}\right) d W_{s}+\int_{0}^{t} \frac{\partial \Phi}{\partial m}\left(V_{s}\right) d M_{s}+\int_{0}^{t} \mathcal{L} \Phi\left(V_{s}\right) d s
$$

where \mathcal{L} is the infinitesimal generator of diffusion process X. The first term on the right hand side above is a martingale so its expectation is equal to 0 . So

$$
\begin{equation*}
E\left[\Phi\left(V_{t}\right)-\Phi\left(V_{0}\right)\right]=E\left[\int_{0}^{t} \mathcal{L} \Phi\left(V_{s}\right) d s\right]+E\left[\int_{0}^{t} \frac{\partial \Phi}{\partial m}\left(V_{s}\right) d M_{s}\right] \tag{7}
\end{equation*}
$$

Now the deal is to look at

$$
E\left[\int_{0}^{t} \frac{\partial \Phi}{\partial m}\left(V_{s}\right) d M_{s}\right]
$$

Namely, without lost of generality, we look at $E\left[\int_{0}^{t} \Psi\left(V_{s}\right) d M_{s}\right]$ where $\Psi \in C_{b}^{1}\left(\mathbb{R}^{d+1}\right)$.
The key result is the following proposition, proved below, Section 2:

Proposition 1.5 Let B and A satisfy Assumptions (2) and (3). Let $\Psi \in C_{b}^{1}\left(\mathbb{R}^{d+1}, \mathbb{R}\right)$. Denote $\left\|A^{1}(x)\right\|^{2}=\sum_{j=1}^{d} A_{j}^{1}(x)^{2}$ and $X_{t}^{M}:=\left(M_{t}, X_{t}^{2}, \ldots, X_{t}^{d}\right)$ then:
(i) for all $T>0$ there exists a constant $C>0$, (depending on $\|A\|_{\infty},\|B\|_{\infty},\|\nabla A\|_{\infty},\|\Psi\|_{\infty}$, $\|\nabla \Psi\|_{\infty}$ and $\left.T\right)$ such that $\forall t \in[0, T], h \in[0,1]$,

$$
\begin{equation*}
\left|E\left[\int_{t}^{t+h} \Psi\left(V_{s}\right) d M_{s}\right]-2 \sqrt{h} E\left[\Psi\left(M_{t}, X_{t}^{M}\right)\left\|A^{1 .}\left(X_{t}\right)\right\| H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1 .}\left(X_{t}\right)\right\|}\right)\right]\right| \leq C\|\Psi\|_{C_{b}^{1}} h, \tag{8}
\end{equation*}
$$

(ii) for all $t>0, h \in[0,1]$,

$$
\left|E\left[\int_{t}^{t+h} \Psi\left(V_{s}\right) d M_{s}\right]-2 \sqrt{h} E\left[\Psi\left(M_{t}, X_{t}^{M}\right)\left\|A^{1}\left(X_{t}\right)\right\| H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1}\left(X_{t}\right)\right\|}\right)\right]\right|=o(h),
$$

where using the standard Gaussian distribution function Φ_{G} :

$$
\begin{equation*}
H(B):=\int_{B}^{\infty} \frac{1}{\sqrt{2 \pi}}(y-B) e^{-\frac{y^{2}}{2}} d y=\frac{e^{-\frac{B^{2}}{2}}}{\sqrt{2 \pi}}-B \Phi_{G}(-B) \tag{9}
\end{equation*}
$$

To conclude Theorem 1.1 proof, let Φ be a function with support included in the interior of Δ, then using Proposition 1.5 with $\Psi=\partial_{1} \Phi$, the second term of (8) left hand including $\Psi\left(M_{t}, M_{t}, X_{t}^{2}, \cdots, X_{t}^{d}\right)$ is nul, so this left hand satisfies

$$
\left|E\left[\int_{t}^{t+h} \partial_{1} \Phi\left(V_{s}\right) d M_{s}\right]\right| \leq C\left\|\partial_{1} \Phi\right\|_{\infty} h
$$

Then the application $t \rightarrow E\left[\int_{0}^{t} \partial_{1} \Phi\left(V_{s}\right) d M_{s}\right]$ is Lipschitz and, using Proposition 1.5 (ii), its derivative is null almost everywhere. So, since $\Psi=\partial_{1} \Phi$ is nul on the diagonal of Δ, this ends the proof of Theorem 1.1.

2 Proof of Proposition 1.5, dimension d

Recall the notations $X_{t}^{M}=\left(M_{t}, X_{t}^{2}, \cdots, X_{t}^{d}\right)$, and $M_{t}=\sup _{0 \leq s \leq t} X_{s}^{1}$. The proof of Proposition 1.5 is developped along this section.

2.1 Control in first step Euler scheme approximation

Here are provided some estimations of processes X and M increments expectation. Abusing of notations, when there is no ambiguity, X denotes X^{1}.
Depending on the assumptions, let K denote either $\max \left(\|A\|_{\infty},\|B\|_{\infty}\right)$ or $\max \left(\|A\|_{\infty},\|B\|_{\infty},\|\nabla A\|_{\infty}\right)$, let C_{p} be the Burkholder Davis Gundy inequality constant.

Lemma 2.1 Let A and B be bounded; $\forall h>0, \forall t, \forall s, \quad \forall p \geq 1$

$$
\mathbb{E}\left(\sup _{s \leq h}\left\|X_{t+s}-X_{t}\right\|^{p}\right) \leq 2^{p}\left(1+C_{p}\right)\left[h^{p}+h^{p / 2}\right] K^{p}
$$

Proof: Using $(a+b)^{p} \leq 2^{p-1}\left[a^{p}+b^{p}\right], a, b \geq 0$:

$$
\sup _{s \leq h}\left\|X_{t+s}-X_{t}\right\|^{p} \leq 2^{p-1}\left[\sup _{u \leq h}\left(\left\|\int_{t}^{t+u} B\left(X_{s}\right) d s\right\|\right)^{p}+\sup _{u \leq h}\left(\left\|\int_{t}^{t+u} \sum_{\alpha} A_{\alpha}\left(X_{s}\right) d W_{s}^{\alpha}\right\|\right)^{p}\right]
$$

The expectation then Burkholder Davis Gundy inequality imply

$$
\mathbb{E}\left(\sup _{s \leq h}\left\|X_{t+s}-X_{t}\right\|^{p}\right) \leq 2^{p-1}\left(1+C_{p}\right) \mathbb{E}\left[\left(\int_{t}^{t+h}\left\|B\left(X_{s}\right)\right\| d s\right)^{p}+\left(\int_{t}^{t+h}\left\|A\left(X_{s}\right)\right\|^{2} d s\right)^{p / 2}\right]
$$

Boundness of B and A yields $\mathbb{E}\left(\sup _{s \leq t}\left|X_{t+s}-X_{t}\right|^{p}\right) \leq 2^{p-1}\left(1+C_{p}\right)\left[h^{p} K^{p}+h^{p / 2} K^{p}\right]$.
Lemma 2.2 Let B and A satisfy Assumptions (2) and (3); the following bound is satisfied, $\forall t \leq T$, $\forall p \geq 1$:

$$
\begin{equation*}
\mathbb{E}\left(\left|M_{t+h}-M_{t}\right|^{p}\right) \leq 2^{p} \sqrt{1+C_{2 p}}\left(h^{p}+h^{p / 2}\right) K^{p} ; \mathbb{E}\left(\left|M_{t+h}-M_{t}\right|^{p}\right)=o\left(h^{p / 2}\right) . \tag{10}
\end{equation*}
$$

Proof: One remarks that $M_{t+h}-M_{t}=\left(X_{t}^{1}-M_{t}+\sup _{0 \leq u \leq h}\left(X_{t+u}^{1}-X_{t}^{1}\right)\right)_{+}$where $(x)_{+}=$ $\max (x, 0)$. For any $a \geq 0,(x-a)_{+} \leq|x| \mathbf{1}_{x>a}$ thus

$$
0 \leq M_{t+h}-M_{t} \leq\left|\sup _{0 \leq u \leq h}\left(X_{t+u}^{1}-X_{t}^{1}\right)\right| \mathbf{1}_{\left\{\sup _{0 \leq u \leq h}\left(X_{t+u}^{1}-X_{t}^{1}\right)>M_{t}-X_{t}^{1}\right\}}
$$

Cauchy-Schwartz inequality yields:

$$
0 \leq \mathbb{E}\left(\left[M_{t+h}-M_{t}\right]^{p}\right) \leq \sqrt{\mathbb{E}\left(\left|\sup _{0 \leq u \leq h}\left(X_{t+u}^{1}-X_{t}^{1}\right)\right|^{2 p}\right) \mathbb{P}\left(\left\{\sup _{0 \leq u \leq h}\left(X_{t+u}^{1}-X_{t}^{1}\right)>M_{t}-X_{t}^{1}\right\}\right)} .
$$

Lemma 2.1 in case $2 p$ proves the bound (10) and that the almost sure limit $\lim _{h \rightarrow 0} \sup _{0 \leq u \leq h}\left(X_{u}^{1}-X_{t}^{1}\right)=0$. According to Theorem 1.1 [9] the pair $\left(M_{t}, X_{t}\right)$ law admits a density, thus $\mathbb{P}\left(\left\{M_{t}-X_{t}^{1}=0\right\}\right)=0$. So actually $\mathbb{E}\left(\left[M_{t+h}-M_{t}\right]^{p}\right)$ is bounded by the product of $h^{p / 2}$ and a factor going to zero and it is an $o\left(h^{p / 2}\right)$.

For any t let the process $\left(X_{t, h}, \quad h \in[t, T]\right)$ and the running maximum of its first component be defined as:

$$
\begin{equation*}
X_{t, h}:=\sum_{\alpha} A_{\alpha}\left(X_{t}\right)\left[W_{t+h}^{\alpha}-W_{t}^{\alpha}\right], M_{t, h}:=\sup _{0 \leq u \leq h} X_{t, u}^{1} \tag{11}
\end{equation*}
$$

Lemma 2.3 Under Assumptions (2) and (3), the following bound is satisfied: there exists a constant D_{p} such that $\forall t \leq T, \forall h \in(0,1]$:

$$
\mathbb{E}\left(\sup _{s \leq h}\left\|X_{s+t}-X_{t}-X_{t, s}\right\|^{p}\right) \leq 2^{2 p-1}\left(1+C_{p}\right)^{2} D_{p} h^{p} .
$$

Proof: By definition, with $\tilde{W}_{u}:=W_{t+u}-W_{t}, \quad u \geq 0$

$$
X_{s+t}-X_{t}-X_{t, s}=\int_{0}^{s} B^{1}\left(X_{u+t}\right) d u+\int_{0}^{s}\left[A^{1}\left(X_{u+t}\right)-A^{1}\left(X_{t}\right)\right] d \tilde{W}_{u}
$$

Using once again $(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right), a, b \geq 0$,

$$
\sup _{s \leq h}\left\|X_{s+t}-X_{t}-X_{t, s}\right\| \leq 2^{p-1}\left[\left(\int_{0}^{h}\left\|B^{1}\left(X_{u+t}\right)\right\| d u\right)^{p}+\sup _{s \leq h}\left\|\int_{0}^{h}\left[A^{1}\left(X_{u+t}\right)-A^{1}\left(X_{t}\right)\right] d \tilde{W}_{u}\right\|^{p}\right] .
$$

Expectation and Burkholder Davis Gundy inequality prove:

$$
\mathbb{E}\left(\sup _{s \leq h}\left\|X_{s+t}-X_{t}-X_{t, s}\right\|^{p}\right) \leq 2^{p-1}\left(1+C_{p}\right)\left[\mathbb{E}\left(\int_{0}^{h}\left\|B^{1}\left(X_{u+t}\right)\right\| d u\right)^{p}+\mathbb{E}\left|\int_{0}^{h}\left\|A^{1}\left(X_{u+t}\right)-A^{1}\left(X_{t}\right)\right\|^{2} d u\right|^{p / 2}\right]
$$

The first term above is bounded by $K^{p} h^{p}$ since B is bounded. Assumption $A \in C_{b}^{1}$ and Jensen's inequality imply the second term is bounded by $K^{p} h^{p / 2-1} \int_{0}^{h} E\left\|X_{u+t}-X_{t}\right\|^{p} d u$ thus

$$
\mathbb{E}\left(\sup _{s \leq h}\left\|X_{s+t}-X_{t}-X_{t, s}\right\|^{p}\right) \leq 2^{p-1}\left(1+C_{p}\right) K^{p} h^{p / 2-1}\left[h^{p / 2+1}+\int_{0}^{h} \mathbb{E}\left\|X_{u+t}-X_{t}\right\|^{p} d u\right]
$$

Lemma 2.1 allows to uniformly bound $\mathbb{E}\left\|X_{u+t}-X_{t}\right\|^{p} \leq 2^{p}\left(1+C_{p}\right)\left[h^{p}+h^{p / 2}\right] K^{p}$ so

$$
\mathbb{E}\left(\sup _{s \leq h}\left\|X_{s+t}-X_{t}-X_{t, s}\right\|^{p}\right) \leq 2^{p-1}\left(1+C_{p}\right) K^{p} h^{p}\left[1+2^{p} K^{p}\left(1+C_{p}\right)\left[1+h^{p / 2}\right]\right] .
$$

Lemma 2.4 Under Assumptions (2) and (3)

$$
\begin{aligned}
& \text { (i) } \sup _{0 \leq t \leq T ;} h_{0 \leq h \leq 1}^{-1} \mathbb{E}\left(\left|M_{t+h}-M_{t}-\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}\right|\right)<\infty \\
& \text { (ii) } \lim _{h \rightarrow 0} h^{-1} \mathbb{E}\left(\left|M_{t+h}-M_{t}-\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}\right|\right)=0
\end{aligned}
$$

Proof: Considering that $M_{t+h}-M_{t}=\left(\sup _{0 \leq u \leq h}\left(X_{u+t}^{1}-X_{t}^{1}\right)-M_{t}+X_{t}^{1}\right)_{+}$and that for all $a \in \mathbb{R}$

$$
\begin{equation*}
\left|(x-a)_{+}-(y-a)_{+}\right| \leq|x-y|\left[\mathbf{1}_{\{x>a\}}+\mathbf{1}_{\{y>a\}}\right], \tag{12}
\end{equation*}
$$

yields

$$
\begin{gathered}
\left|M_{t+h}-M_{t}-\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}\right| \leq \\
\left|\sup _{0 \leq u \leq h}\left(X_{u+t}^{1}-X_{t}^{1}\right)-M_{t, h}\right|\left[\mathbf{1}_{\left\{\sup _{0 \leq u \leq h}\left(X_{u+t}^{1}-X_{t}^{1}\right)>M_{t}-X_{t}^{1}\right\}}+\mathbf{1}_{\left\{M_{t, h}>M_{t}-X_{t}^{1}\right\}}\right] .
\end{gathered}
$$

Let f and g be functions on $[0, T], \forall s \in[0, T]$,
so

$$
\begin{array}{r}
f(s)-\sup _{u \leq T} g(u) \leq f(s)-g(s) \leq|f(s)-g(s)| \leq \sup _{v \leq T}|f(v)-g(v)|, \\
\sup _{s \leq T} f(s)-\sup _{u \leq T} g(u) \leq \sup _{v \leq T}|f(v)-g(v)| .
\end{array}
$$

Here the role of f and g are symmetrical so $\sup _{s \leq T} g(s)-\sup _{u \leq T} f(u)$ $\leq \sup _{v \leq T}|f(v)-g(v)|$, and $\left|\sup _{s \leq T} g(s)-\sup _{u \leq T} f(u)\right| \leq \sup _{v \leq T}|f(v)-g(v)|$.
This is applied to the functions $u \rightarrow X_{u+t}^{1}-X_{t}{ }^{1}$ and $u \rightarrow X_{t, u}^{1}$:

$$
\begin{aligned}
& \left|M_{t+h}-M_{t}-\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}\right| \leq \\
& \sup _{u \leq h}\left|X_{u+t}^{1}-X_{t}^{1}-X_{t, u}^{1}\right|\left[\mathbf{1}_{\left\{\sup _{0 \leq u \leq h}\left(X_{u+t}^{1}-X_{t}^{1}\right)>M_{t}-X_{t}^{1}\right\}}+\mathbf{1}_{\left\{M_{t, h}>M_{t}-X_{t}^{1}\right\}}\right] .
\end{aligned}
$$

Cauchy Schwartz inequality and $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$ get

$$
\begin{aligned}
& \mathbb{E}\left(\left|M_{t+h}-M_{t}-\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}\right|\right) \\
\leq & \sqrt{2 \mathbb{E}\left(\sup _{u \leq h}\left|X_{u+t}^{1}-X_{t}^{1}-X_{t, u}^{1}\right|^{2}\right)\left(\mathbb{P}\left\{\sup _{0 \leq u \leq h}\left(X_{u+t}^{1}-X_{t}^{1}\right)>M_{t}-X_{t}^{1}\right\}+\mathbb{P}\left\{M_{t, h}>M_{t}-X_{t}^{1}\right\}\right)} .
\end{aligned}
$$

Lemma 2.3 with $p=2$ insures that $h \mapsto h^{-1} \sqrt{2 \mathbb{E}\left(\sup _{u \leq h}\left|X_{u+t}^{1}-X_{t}^{1}-X_{t, u}^{1}\right|^{2}\right)}$ is uniformly bounded in t. Concerning the second factor,

- firstly the almost sure continuity with respect to h insures that the limits $\lim _{h \rightarrow 0} \sup _{0 \leq u \leq h}\left(X_{u+t}^{1}-X_{t}^{1}\right)$ and $\lim _{h \rightarrow 0} M_{t, h}$ are equal to 0 ;
- secondly the pair $\left(M_{t}, X_{t}\right)$ law admits a density according to Theorem 1.1 $[9] \mathbb{P}\left\{0=M_{t}-X_{t}^{1}\right\}=0$.

Thus the limit of the second factor is equal to 0 .
This concludes the proof of the lemma.

2.2 Conditional expectation and approximation

Here too X actually denotes the first component X^{1}. Here, from ($\left.\mathcal{F}_{t}:=\sigma\left\{X_{0}, W_{s}, s \leq t\right\}, t \geq 0\right)$, we deduce the completed càd filtration \mathbb{F}.

Proposition 2.5 Under Assumptions (2) and (3), with H defined in (9):

$$
\mathbb{E}\left[\left(M_{s, h}-M_{s}+X_{s}^{1}\right)_{+} \mid \mathcal{F}_{s}\right]=2\left\|A^{1}\left(X_{s}\right)\right\| \sqrt{h} H\left(\frac{M_{s}-X_{s}^{1}}{\left\|A^{1}\left(X_{s}\right)\right\| \sqrt{h}}\right) .
$$

Proof: Recall Definition (11),

$$
X_{t, h}=\sum_{j=1}^{d} A_{j}\left(X_{t}\right)\left[W_{t+h}^{j}-W_{t}^{j}\right], M_{t, h}=\sup _{0 \leq u \leq t} X_{t, h}^{1}, h \in[0,1] .
$$

Conditionally to \mathcal{F}_{t}, the process $\left(X_{t, h}^{1}, h \in[0,1]\right)$ has the same law as $\left(\sqrt{h}\left\|A^{1}\left(X_{t}\right)\right\| \tilde{W}_{u}, u \in[0,1]\right)$ where \tilde{W} is a Brownian motion independent of \mathcal{F}_{t}. Conditionally to \mathcal{F}_{t}, the random variable $M_{t, h}$ has the same law as $\sqrt{h}\left\|A^{1}\left(X_{t}\right)\right\| \sup _{u \leq 1} \tilde{W}_{u}$.

Following [17] Section 3.1.3, $\sup _{u \leq 1} \tilde{W}_{u}$ has the same law as $|G|$ where G is a standard Gaussian variable (independent of \mathcal{F}_{t}), with law density $\Phi_{G}^{\prime}(z)=\frac{2}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathbf{1}_{[0,+\infty[}(z)$. Then,

$$
\begin{aligned}
\mathbb{E}\left[\left(M_{t, h}-\left(M_{t}-X_{t}^{1}\right)\right)_{+} \mid \mathcal{F}_{t}\right] & =\int_{0}^{\infty}\left(\left\|A^{1 .}\left(X_{t}\right)\right\| \sqrt{h} z-\left(M_{t}-X_{t}^{1}\right)\right)+\frac{2}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
& =2\left\|A^{1}\left(X_{t}\right)\right\| \sqrt{h} H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1}\left(X_{t}\right)\right\|}\right) .
\end{aligned}
$$

Proposition 2.6 Under Assumptions (2) and (3), let $\Psi \in C_{b}^{1}\left(\mathbb{R}^{d+1}\right), X_{t}^{M}:=\left(M_{t}, X_{t}^{2}, \ldots, X_{t}^{d}\right)$. (i) For all $T>0$ there exists a constant C such that for all $t \in[0, T], h \in[0,1]$.

$$
\left|\mathbb{E}\left(\left[\Psi\left(V_{t}\right)-\Psi\left(M_{t}, X_{t}^{M}\right)\right]\left\|A^{1}\left(X_{t}\right)\right\| \sqrt{h} H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1}\left(X_{t}\right)\right\|}\right)\right)\right| \leq C\|\nabla \Psi\|_{\infty} h .
$$

(ii) For all $t>0$,

$$
\left.\left\lvert\, \mathbb{E}\left(\left[\Psi\left(V_{t}\right)-\Psi\left(M_{t}, X_{t}^{M}\right)\right]\left\|A^{1}\left(X_{t}\right)\right\| \sqrt{h} H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1}\left(X_{t}\right)\right\|}\right)\right)\right.\right]=o(h) .
$$

Proof: Using the fact $\Psi \in C_{b}^{1}$
$\left|\mathbb{E}\left(\left[\Psi\left(V_{t}\right)-\Psi\left(M_{t}, X_{t}^{M}\right)\right]\left\|A^{1}\left(X_{t}\right)\right\| \sqrt{h} H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1 \cdot} \cdot\left(X_{t}\right)\right\|}\right)\right)\right| \leq\|\nabla \Psi\|_{\infty} h \mathbb{E}\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1 \cdot}\left(X_{t}\right)\right\|}\left\|A^{1 \cdot}\left(X_{t}\right)\right\|^{2} H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1 \cdot}\left(X_{t}\right)\right\|}\right)\right)$.
Point i) follows from the facts that A is bounded and the map $u \mapsto u H(u)$ is bounded by c on [$0,+\infty$ [according to Remark 3.1 :

$$
\left|\mathbb{E}\left(\left[\Psi\left(V_{t}\right)-\Psi\left(M_{t}, X_{t}^{M}\right)\right]\left\|A^{1 \cdot}\left(X_{t}\right)\right\| \sqrt{h} H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1 \cdot}\left(X_{t}\right)\right\|}\right)\right)\right| \leq\|\nabla \Psi\|_{\infty}\left\|A^{1 \cdot}\right\|_{\infty}^{2} c h .
$$

Point ii) is a consequence of Lebesgue dominated Theorem. Indeed, $\lim _{u \rightarrow \infty} u H(u)=0$. Moreover when $h \rightarrow 0 \frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1} \cdot\left(X_{t}\right)\right\|} \rightarrow \infty$ on $\left\{M_{t}-X_{t}^{1} \neq 0\right\}$ and $\mathbb{P}\left\{M_{t}-X_{t}^{1} \neq 0\right\}=1$ since $M_{t}-X_{t}^{1}$ law is absolutely continuous (see Theorem $1.1[9])$. Then $\frac{M_{t}-X_{t}^{1}}{\sqrt{\hbar}\left\|A^{1} \cdot\left(X_{t}\right)\right\|}\left\|A^{1}\left(X_{t}\right)\right\|^{2} H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1} \cdot\left(X_{t}\right)\right\|}\right)$ is uniformly bounded (as A and $u H(u)$ are) and almost surely goes to 0 when $h \rightarrow 0$. So dominated Lebesgue theorem concludes the proof of (ii).

2.3 Conclusion of Proposition 1.5 proof

The key of this proof is to write

$$
E\left[\int_{t}^{t+h} \Psi\left(V_{s}\right) d M_{s}\right]-2 \sqrt{h} E\left[\Psi\left(M_{t}, X_{t}^{M}\right)\left\|A^{1}\left(X_{t}\right)\right\| H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1}\left(X_{t}\right)\right\|}\right)\right]
$$

as the sum of three terms

$$
\begin{aligned}
& E\left[\int_{t}^{t+h}\left(\Psi\left(V_{s}\right)-\Psi\left(V_{t}\right)\right) d M_{s}\right]+ \\
& E\left[\Psi\left(V_{t}\right)\left(M_{t+h}-M_{t}-\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}\right)\right]+ \\
& E\left[\left(\Psi\left(V_{t}\right)\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}-2 \sqrt{h} \Psi\left(M_{t}, X_{t}^{M}\right)\left\|A^{1}\left(X_{t}\right)\right\| H\left(\frac{M_{t}-X_{t}^{1}}{\sqrt{h}\left\|A^{1}\left(X_{t}\right)\right\|}\right)\right]\right.
\end{aligned}
$$

(a) Since $\nabla \Psi$ is bounded, and process M is increasing, the first term is bounded

$$
E\left[\int_{t}^{t+h}\left(\Psi\left(V_{s}\right)-\Psi\left(V_{t}\right)\right) d M_{s}\right] \leq\|\nabla \Psi\|_{\infty} E\left[\sup _{t \leq s \leq t+h} \mid\left\|V_{s}-V_{t}\right\|\left(M_{t+h}-M_{t}\right)\right]
$$

Using Cauchy-Schwarz inequality

$$
E\left[\sup _{t \leq s \leq t+h}\left\|V_{s}-V_{t}\right\|\left(M_{t+h}-M_{t}\right)\right] \leq\left(E\left[\sup _{t \leq s \leq t+h}\left\|V_{s}-V_{t}\right\|\right]^{2}\right)^{1 / 2}\left(E\left[\left(M_{t+h}-M_{t}\right)^{2}\right]\right)^{1 / 2}
$$

Remark that $\left\|V_{s}-V_{t}\right\|^{2}=\left(M_{s}-M_{t}\right)^{2}+\left\|X_{s}-X_{t}\right\|^{2}$ and using $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$

$$
\sqrt{\frac{1}{2}} E\left[\sup _{t \leq s \leq t+h}\left\|V_{s}-V_{t}\right\|\left(M_{t+h}-M_{t}\right)\right] \leq \sqrt{\left.E\left[\left(M_{t+h}-M_{t}\right)^{2}\right]+E\left[\sup _{t \leq s \leq t+h}\left\|X_{s}-X_{t}\right\|\right]^{2}\right]} \sqrt{E\left[\left(M_{t+h}-M_{t}\right)^{2}\right]}
$$

Lemmas 2.1 and 2.2 yield this term is an $O(h)$ uniformly with respect to t and an $o(h)$ for all t. (b) Using boundedness of Ψ and Lemma 2.4 there exists a constant C

$$
E\left[\Psi\left(V_{t}\right)\left[M_{t+h}-M_{t}-\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}\right]\right] \leq C h
$$

and

$$
\lim h^{-1} E\left[\Psi\left(V_{t}\right)\left[M_{t+h}-M_{t}-\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}\right]\right]=0
$$

(c) Here we use Proposition 2.5 to replace the factor $\left(M_{t, h}-M_{t}+X_{t}^{1}\right)_{+}$by its \mathcal{F}_{t}-conditional expectation, so in the third term we have to deal with

$$
E\left[\left(\Psi\left(V_{t}\right)-\Psi\left(M_{t}, X_{t}^{M}\right)\right) 2\left\|A^{1}\left(X_{s}\right)\right\| \sqrt{h} H\left(\frac{M_{s}-X_{s}^{1}}{\left\|A^{1}\left(X_{s}\right)\right\| \sqrt{h}}\right)\right]
$$

Proposition 2.6 (i) and the boundness of $\nabla \Psi$ yield there exists a constant C :

$$
E\left[\left(\Psi\left(V_{t}\right)-\Psi\left(M_{t}, X_{t}^{M}\right)\right) 2\left\|A^{1}\left(X_{s}\right)\right\| \sqrt{h} H\left(\frac{M_{s}-X_{s}^{1}}{\left\|A^{1}\left(X_{s}\right)\right\| \sqrt{h}}\right)\right] \leq C h
$$

Proposition 2.6 (ii) proves that for $t>0$ this is an $o(h)$.

3 Proofs of one-dimensional results

Here we first operate a Lamperti transformation to reduce our case to the one with $A=1$. In this case, we show that, for $\Psi \in C_{b}^{1}$ the map $t \mapsto \mathbb{E}\left(\int_{0}^{t} \Psi\left(M_{s}, X_{s}\right) d M_{s}\right)$ is absolutely continuous with respect to the Lebesgue measure on $\mid 0, T]$ with density denoted as f_{Ψ}. From Proposition 1.5,

$$
f_{\Psi}(t)=\lim _{h \rightarrow 0} 2 \mathbb{E}\left(\Psi\left(M_{t}, M_{t}\right) \frac{1}{\sqrt{h}} H\left(\frac{M_{t}-X_{t}}{\sqrt{h}}\right)\right) .
$$

Using the continuity of p_{V} close to the diagonal $\left\{(m, m), m>x_{0}\right\}$ (Proposition 3.8), Theorem 3.7 proves that

$$
f_{\Psi}(t)=\frac{1}{2} \int_{x_{0}}^{+\infty} \Psi(m, m) p_{V}(m, m ; t) d m
$$

Finally, we will conclude with the proof of Proposition 3.9 which is the key for the proof of Theorem 1.3.

The following remark is often used:
Remark 3.1 Let us remark that the definition (9) proves the bound $0 \leq H(B) \leq \frac{e^{-\frac{B^{2}}{2}}}{\sqrt{2 \pi}}, \int_{0}^{\infty} H(u) d u=$ $1 / 4$ and $B H(B)=\frac{1}{\sqrt{2 \pi}} B e^{-\frac{B^{2}}{2}}-B^{2} \Phi_{G}(-B)$. Thus there exists $c>0$ such that $B H(B) \leq c$ for any $B \in \mathbb{R}^{+}$since $B H(B) \rightarrow 0$ when $B \rightarrow \infty$.

Along this section Assumptions (2) and (3) are in force and the initial law μ_{0} is the Dirac one at x_{0}.

3.1 Reduction to a Brownian plus drift

A Lamperti transformation allows us to reduce the problem to the case of a diffusion process with additive noise. A priori $d X_{t}=B\left(X_{t}\right) d t+A\left(X_{t}\right) d W_{t}$. We look for an increasing function $\varphi \in C_{b}^{2}$ such that the coefficient of $d W$ would be 1. Itô formula yields

$$
d \varphi\left(X_{t}\right)=\varphi^{\prime}\left(X_{t}\right) B\left(X_{t}\right) d t+\frac{1}{2} \varphi^{\prime \prime}\left(X_{t}\right) A^{2}\left(X_{t}\right) d t+\varphi^{\prime}\left(X_{t}\right) A\left(X_{t}\right) d W_{t}, \varphi\left(X_{0}\right)=\varphi\left(x_{0}\right)
$$

A sufficient condition is to choose φ such that $\varphi^{\prime}=\frac{1}{A}$. As is A, φ^{\prime} is bounded above and below uniformly. Then $Y=\varphi(X)$ satisfies

$$
\begin{equation*}
d Y_{t}=\left[\frac{B}{A} \circ \varphi^{-1}\left(Y_{t}\right)-\frac{1}{2} A^{\prime} \circ \varphi^{-1}\left(Y_{t}\right)\right] d t+d W_{t} . \tag{13}
\end{equation*}
$$

Remark that $\tilde{B}=\frac{B}{A} \circ \varphi^{-1}-\frac{1}{2} A^{\prime} \circ \varphi^{-1} \in C_{b}^{1}$ as a consequence of $B \in C_{b}^{1}, A \in C_{b}^{2}$. Moreover φ^{\prime} being positive, φ is increasing and $Y_{t}^{*}=\sup _{0 \leq s \leq t} Y_{s}=\varphi\left(M_{t}\right)$. From Theorem 1.1 in [9], the law of the pair $\left(Y_{t}^{*}, Y_{t}\right)$ admits a density with respect to the Lebesgue measure.

Lemma 3.2 The density law of $\left(M_{t}, X_{t}\right) p_{V}(., . ; t)$ satisfies

$$
p_{V}(b, a ; t)=\frac{p_{Y^{*}, Y}(\varphi(b), \varphi(a) ; t)}{A(b) A(a)}
$$

where φ is defined by $\varphi^{\prime}(x)=\frac{1}{A(x)}$ and $p_{Y^{*}, Y}(., ., t)$ is the pair $\left(Y_{t}^{*}, Y_{t}\right)$ law density.
Proof: It is enough to identify the density law of the pair $V_{t}=\left(M_{t}, X_{t}\right)$ using, for any bounded measurable F, the following

$$
E\left[F\left(M_{t}, X_{t}\right)\right]=E\left[F\left(\varphi^{-1}\left(Y_{t}^{*}\right), \varphi^{-1}\left(Y_{t}\right)\right)\right]=\int F\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right) p_{Y^{*}, Y}(\beta, \alpha ; t) d \beta d \alpha
$$

We operate the change of variables $b=\varphi^{-1}(\beta), a=\varphi^{-1}(\alpha)$, so $d \beta=\varphi^{\prime}(b) d b=\frac{1}{A(b)} d b$ and $d \alpha=$ $\varphi^{\prime}(a) d a=\frac{1}{A(a)} d a$ get the result.

Proposition 3.3 Assume that Theorem 1.3 is proved in case $A=1, \tilde{B}=\frac{B}{A} \circ \varphi^{-1}-\frac{1}{2} A^{\prime} \circ \varphi^{-1}$. Then Theorem 1.3 is proved: for any $\Phi \in C_{b}^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$:

$$
\begin{aligned}
E\left[\Phi\left(V_{t}\right)\right] & =\Phi\left(V_{0}\right)+E\left[\int_{0}^{t}\left[B\left(X_{s}\right) \partial_{2} \Phi\left(V_{s}\right)+\frac{1}{2} A^{2}\left(X_{s}\right) \partial_{22}^{2} \Phi\left(V_{s}\right)\right] d s\right. \\
& \left.+\frac{1}{2} \int_{0}^{t} E\left[\partial_{1} \Phi\left(M_{s}, M_{s}\right)\right) A^{2}\left(M_{s}\right) \frac{p_{V}\left(M_{s}, M_{s} ; s\right)}{p_{M}\left(M_{s}, s\right)}\right] d s
\end{aligned}
$$

where $p_{V}(m, x ; t)$ is the pair $V_{t}=\left(M_{t}, X_{t}\right)$ law density and $p_{M}(., t)$ is the one of M_{t}.
Proof: We apply Theorem 1.3 to $\left(Y_{t}^{*}, Y_{t}\right)$ and $F(\beta, \alpha)=\Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right)$; since $\varphi^{\prime}>0$, then φ is increasing, $\varphi\left(X_{t}^{*}\right)=Y_{t}^{*}$ and $\Phi\left(V_{t}\right)=F\left(Y_{t}^{*}, Y_{t}\right)$. Note $\varphi^{\prime}=A^{-1}$ so

$$
\begin{aligned}
\partial_{2} F(\beta, \alpha) & =\partial_{2} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right) \frac{1}{\varphi^{\prime}\left(\varphi^{-1}(\alpha)\right)}=\partial_{2} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right) A\left(\varphi^{-1}(\alpha)\right) \\
\partial_{22}^{2} F(\beta, \alpha) & =\partial_{22}^{2} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right) A^{2}\left(\varphi^{-1}(\alpha)\right)+\partial_{2} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right)\left(A A^{\prime}\right)\left(\varphi^{-1}(\alpha)\right)
\end{aligned}
$$

so using $\tilde{B}=\frac{B}{A} \varphi^{-1}-\frac{1}{2} A^{\prime} \circ \varphi^{-1}$

$$
\tilde{B}(\alpha) \partial_{2} F(\beta, \alpha)+\frac{1}{2} \partial_{22}^{2} F(\beta, \alpha)=B\left(\varphi^{-1}(\alpha)\right) \partial_{2} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right)+\frac{1}{2} A^{2}\left(\varphi^{-1}(\alpha)\right) \partial_{22}^{2} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right) .
$$

Then,

$$
\int_{0}^{t} \mathbb{E}\left[\tilde{B}\left(Y_{s}\right) \partial_{2} F\left(Y_{s}^{*}, Y_{s}\right)+\frac{1}{2} \partial_{22}^{2} F\left(Y_{s}^{*}, Y_{s}\right)\right] d s=E\left[\int_{0}^{t}\left[B\left(X_{s}\right) \partial_{2} \Phi\left(V_{s}\right)+\frac{1}{2} A^{2}\left(X_{s}\right) \partial_{22}^{2} \Phi\left(V_{s}\right)\right] d s\right.
$$

Note that

$$
\partial_{1} F(\beta, \alpha)=\partial_{1} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right) \frac{1}{\varphi^{\prime}\left(\varphi^{-1}(\beta)\right)}=\partial_{1} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\alpha)\right) A\left(\varphi^{-1}(\beta)\right)
$$

thus

$$
\int_{0}^{t} E\left[\partial_{1} F\left(Y_{s}^{*}, Y_{s}^{*}\right) \frac{p_{Y^{*}, Y}\left(Y_{s}^{*}, Y_{s}^{*}, s\right)}{p_{Y^{*}}\left(Y_{s}^{*}, s\right)}\right] d s=\int_{0}^{t} \int_{\mathbb{R}} \partial_{1} \Phi\left(\varphi^{-1}(\beta), \varphi^{-1}(\beta)\right) A\left(\varphi^{-1}(\beta)\right) p_{Y^{*}, Y}(\beta, \beta, s) d \beta d s
$$

We perform the change of variable $b=\varphi^{-1}(\beta)$

$$
\int_{0}^{t} E\left[\partial_{1} F\left(Y_{s}^{*}, Y_{s}^{*}\right) \frac{p_{Y^{*}, Y}\left(Y_{s}^{*}, Y_{s}^{*}, s\right)}{p_{Y^{*}}\left(Y_{s}^{*}, s\right)}\right] d s=\int_{0}^{t} \int_{\mathbb{R}} \partial_{1} \Phi(b, b) p_{Y^{*}, Y}(\varphi(b), \varphi(b), s) d b d s
$$

We use Lemma 3.2 which tells us $p_{Y^{*}, Y}(\varphi(b), \varphi(b), s)=p_{V}(b, b ; s) A^{2}(b)$:

$$
\left.\int_{0}^{t} E\left[\partial_{1} F\left(Y_{s}^{*}, Y_{s}^{*}\right)\right) A\left(Y_{s}^{*}\right) \frac{p_{Y^{*}, Y}\left(Y_{s}^{*}, Y_{s}^{*}, s\right)}{p_{Y^{*}}\left(Y_{s}^{*}, s\right)}\right] d s=\int_{0}^{t} \int_{\mathbb{R}} \partial_{1} \Phi(b, b) A^{2}(b) p_{V}(b, b, s) d b d s
$$

and finally

$$
\left.\left.\int_{0}^{t} E\left[\partial_{1} F\left(Y_{s}^{*}, Y_{s}^{*}\right)\right) A\left(Y_{s}^{*}\right) \frac{p_{Y^{*}, Y}\left(Y_{s}^{*}, Y_{s}^{*}, s\right)}{p_{Y^{*}}\left(Y_{s}^{*}, s\right)}\right] d s=\int_{0}^{t} E\left[\partial_{1} \Phi\left(M_{s}, M_{s}\right)\right) A^{2}\left(M_{s}\right) \frac{p_{V}\left(M_{s}, M_{s} ; s\right)}{p_{M}\left(M_{s}, s\right)}\right] d s
$$

3.2 Study of $F_{\Psi}: t \rightarrow E\left[\int_{0}^{t} \Psi\left(V_{s}\right) d M_{s}\right]$, case $A=1$

From now on, without lost of generality, we look at $E\left[\int_{0}^{t} \Psi\left(V_{s}\right) d M_{s}\right]$ where $\Psi \in C_{b}^{1}$. In several places we operate an equivalent change of probability measure, $Q=L_{T} \mathbb{P}$ with

$$
\begin{equation*}
d L_{t}=-L_{t} B\left(X_{t}\right) d W_{t}, L_{t}=\exp \left[\int_{0}^{t}-B\left(X_{s}\right) d W_{s}-\frac{1}{2} \int_{0}^{t} B^{2}\left(X_{s}\right) d s\right] \tag{14}
\end{equation*}
$$

so using $d W_{s}=d X_{s}-B\left(X_{s}\right) d s$,

$$
L_{t}=\exp \left[\int_{0}^{t}-B\left(X_{s}\right)\left(d X_{s}-B\left(X_{s}\right) d s\right)-\frac{1}{2} \int_{0}^{t} B^{2}\left(X_{s}\right) d s\right]=\exp \left[\int_{0}^{t}-B\left(X_{s}\right) d X_{s}+\frac{1}{2} \int_{0}^{t} B^{2}\left(X_{s}\right) d s\right]
$$

and

$$
Z_{t}=L_{t}^{-1}=\exp \left[\int_{0}^{t} B\left(X_{s}\right) d X_{s}-\frac{1}{2} \int_{0}^{t} B^{2}\left(X_{s}\right) d s\right]
$$

Let the function $\mathcal{B}: x \rightarrow \int_{0}^{x} B(u) d u$. Ito formula applied to the process $\mathcal{B}\left(X\right.$.) yields $\mathcal{B}\left(X_{t}\right)=$ $\mathcal{B}\left(x_{0}\right)+\int_{0}^{t} B\left(X_{s}\right) d X_{s}+\frac{1}{2} \int_{0}^{t} B^{\prime}\left(X_{s}\right) d s$ so $\int_{0}^{t} B\left(X_{s}\right) d X_{s}=\mathcal{B}\left(X_{t}\right)-\mathcal{B}\left(x_{0}\right)-\frac{1}{2} \int_{0}^{t} B^{\prime}\left(X_{s}\right) d s$ and

$$
\begin{equation*}
Z_{t}=\exp \left[\mathcal{B}\left(X_{t}\right)-\mathcal{B}\left(x_{0}\right)-\frac{1}{2} \int_{0}^{t}\left[B^{\prime}\left(X_{s}\right)+B^{2}\left(X_{s}\right]\right) d s\right], \tag{15}
\end{equation*}
$$

which could be written as

$$
\begin{equation*}
Z_{t}=\exp \left[\mathcal{B}\left(X_{t}\right)-\mathcal{B}\left(x_{0}\right)\right]\left(1-\frac{1}{2} \int_{0}^{t}\left[B^{\prime}\left(X_{s}\right)+B^{2}\left(X_{s}\right]\right) \exp -\frac{1}{2} \int_{0}^{s}\left(B^{\prime}\left(X_{u}\right)+B^{2}\left(X_{u}\right) d u \mid d s\right)\right. \tag{16}
\end{equation*}
$$

Proposition 3.4 Let $B \in C_{b}^{1}(\mathbb{R})$ and $A=1$, let Ψ be a Borel bounded function, then the application $t \rightarrow E\left[\int_{0}^{t} \Psi\left(V_{s}\right) d M_{s}\right]$ is absolutely continuous on all finite interval in \mathbb{R}^{+}.
Proof:
(i) Using Criterion 11.7 p. $364[27]$ since $\left|E\left[\int_{a}^{b} \Psi\left(V_{s}\right) d M_{s}\right]\right| \leq\|\Psi\|_{\infty} E\left[M_{b}-M_{a}\right]$, it is enough to prove the result in case of $\Psi=1$, meaning the study of $t \rightarrow E\left[M_{t}\right]$.

We operate the equivalent change of probability measure, $Q=L_{T} \mathbb{P}$, defined in (14) so that under Q the process $X-x_{0}$ is a Brownian motion and (with an abuse of notation in the last term)

$$
\begin{equation*}
\mathbb{E}_{\mathbb{P}}\left[M_{t}\right]=E_{Q}\left[L_{t}^{-1} M_{t}\right]=\mathbb{E}_{\mathbb{P}}\left(Z_{t}\left(x_{0}+W_{t}^{*}\right)\right)=x_{0}+\mathbb{E}_{\mathbb{P}}\left(Z_{t} W_{t}^{*}\right) \tag{17}
\end{equation*}
$$

Recall the density of the pair $\left(W_{t}^{*}, W_{t}\right)$ in case of Brownian motion [17] Section 3.2:

$$
\begin{equation*}
p_{W}(b, a ; t)=2 \frac{2 b-a}{\sqrt{2 \pi t^{3}}} \exp -\frac{(2 b-a)^{2}}{2 t} \mathbf{1}_{b>\sup (a, 0)} . \tag{18}
\end{equation*}
$$

Lemma 3.5 Let $B \in C_{b}^{1}(\mathbb{R})$ and $A=1$. For all $T>0$ there exists a constant C_{T} such that for all $a, b, 0<a<b \leq T, c>0$,

$$
\begin{equation*}
E_{\mathbb{P}}\left[M_{b}-M_{a}\right] \leq C_{T}\left[\int_{a}^{b} \mathbb{E}_{\mathbb{P}}\left[c^{2} \cosh \left(c W_{s}\right) W_{s}^{*}\right] d s+\int_{a}^{b} \mathbb{E}_{\mathbb{P}}\left[\cosh \left(c W_{s}\right) \frac{p_{W}\left(W_{s}, W_{s} ; s\right)}{g_{W}\left(W_{s} ; s\right)}\right] d s\right] \tag{19}
\end{equation*}
$$

where p_{W} is introduced in (18) and $g_{W}(., s)$ is the density of the law of W_{s}.

As a corollary, for any $t \in[0, T], M_{t} \in L^{1}$.
Proof: We bound $L_{t}^{-1}=Z_{t}$ defined in (15): Firstly, B and B^{\prime} are bounded, and by definition $\left|\mathcal{B}\left(x+x_{0}\right)-\mathcal{B}\left(x_{0}\right)\right|=\left|\int_{x_{0}}^{x+x_{0}} B(u) d u\right| \leq\|B\||x|$, so for any T,

$$
\begin{equation*}
Z_{t} \leq \exp \left[\|B\|\left|X_{t}-x_{0}\right|+\frac{1}{2}\left\|B^{\prime}\right\| T\right] \tag{20}
\end{equation*}
$$

thus $Z_{t} \leq e^{\frac{1}{2}\left\|B^{\prime}\right\| T}\left[\exp \left(\|B\|\left(X_{t}-x_{0}\right)\right)+\exp \left(-\|B\|\left(X_{t}-x_{0}\right)\right)\right]=2 e^{\frac{1}{2}\left\|B^{\prime}\right\| T} \cosh \left(\|B\|\left(X_{t}-x_{0}\right)\right)$. So

$$
\begin{align*}
& E_{\mathbb{P}}\left[M_{b}-M_{a}\right]=E_{Q}\left[Z_{b}\left(M_{b}^{*}-M_{a}^{*}\right)\right] \leq 2 e^{\frac{1}{2}\left\|B^{\prime}\right\| T} E_{\mathbb{P}}\left[\cosh \left(\|B\| W_{b}\right)\left(W_{b}^{*}-W_{a}^{*}\right)\right] \tag{21}\\
& \leq 2 e^{\frac{1}{2}\left\|B^{\prime}\right\| T}\left\{E_{\mathbb{P}}\left[\cosh \left(\|B\| W_{b}\right) W_{b}^{*}-\operatorname{cosch}\left(\|B\| W_{a}\right) W_{a}^{*}\right]+\left|E_{\mathbb{P}}\left[\left(\cosh \left(\|B\| W_{a}\right)-\operatorname{cosch}\left(\|B\| W_{b}\right)\right) W_{a}^{*}\right]\right|\right\} .
\end{align*}
$$

(i) We introduce two sequences of C_{b}^{2} positive functions, f_{N} and g_{N} such that $f_{N}(x) \uparrow \cosh (\|B\| x)$, $g_{N}(x) \uparrow x, f_{N}^{\prime \prime}(x) \uparrow\|B\|^{2} \cosh (\|B\| x), g_{N}^{\prime}(x) \uparrow 1$, when N goes to infinity. According to Theorem 2.1 [8] in case of a null drift,
$(22) \mathbb{E}_{\mathbb{P}}\left[g_{N}\left(W_{t}^{*}\right) f_{N}\left(W_{t}\right)\right]=g_{N}(0) f_{N}(0)+\frac{1}{2} \int_{0}^{t} \mathbb{E}\left[f_{N} "\left(W_{s}\right) g_{N}\left(W_{s}^{*}\right)\right] d s+\frac{1}{2} \int_{0}^{t} \mathbb{E}\left[g_{N}^{\prime}\left(W_{s}^{*}\right) f_{N}\left(W_{s}\right) \frac{p_{W}\left(W_{s}, W_{s} ; s\right.}{g_{W}\left(W_{s} ; s\right)}\right] d s$.
Both hands are monotonous with respect to N, so using Lebesgue's monotonous convergence Theorem, we get

$$
\begin{equation*}
\mathbb{E}_{\mathbb{P}}\left(\cosh \left(\|B\| W_{t}\right) W_{t}^{*}\right)=\frac{1}{2} \int_{0}^{t} \mathbb{E}_{\mathbb{P}}\left[\|B\|^{2} \cosh \left(\|B\| W_{s}\right) W_{s}^{*}\right] d s+\frac{1}{2} \int_{0}^{t} \mathbb{E}_{\mathbb{P}}\left[\cosh \left(\|B\| W_{s}\right) \frac{p_{W}\left(W_{s}, W_{s} ; s\right.}{g_{W}\left(W_{s}, s\right)}\right] d s \tag{23}
\end{equation*}
$$

(ii) Using Itô formula and the fact that W^{*} is an increasing process

$$
\begin{align*}
& \left.\left|E_{\mathbb{P}}\left[\left(\cosh \left(\|B\| W_{b}\right)-\operatorname{cosch}\left(\|B\| W_{a}\right)\right) W_{a}^{*}\right]\right|=E_{\mathbb{P}} \frac{\|B\|^{2}}{2} \int_{a}^{b} \cosh \left(\|B\| W_{s}\right) d s W_{a}^{*}\right] \\
& \leq \frac{\|B\|^{2}}{2} \int_{a}^{b} E_{\mathbb{P}}\left[\cosh \left(\|B\| W_{s}\right) W_{s}^{*}\right] d s \tag{24}
\end{align*}
$$

Adding bounds (23) and (24) yields (19).
To conclude Proposition 3.4 proof, we introduce the absolutely continuous function

$$
f: x \rightarrow \int_{a}^{x} \mathbb{E}\left[c^{2} \cosh \left(c W_{s}\right) W_{s}^{*}+\cosh \left(c W_{s}\right) \frac{p_{W}\left(W_{s}, W_{s} ; s\right)}{g_{W}\left(W_{s}, s\right)}\right] d s
$$

Using the boundedness of the above integrand on interval $[a, b],|f(x+h)-f(x)| \leq \int_{x}^{x+h}\left|f^{\prime}(u)\right| d u$. Lemma 3.5 yielding $E_{\mathbb{P}}\left[M_{x+h}-M_{x}\right] \leq C_{T} \int_{x}^{x+h}\left|f^{\prime}(u)\right| d u$, Criterion 11.7 p. 364 [27] concludes the proof.

Corollary 3.6 Since the application $F_{\Psi}: t \rightarrow E\left[\int_{0}^{t} \Psi\left(V_{s}\right) d M_{s}\right]$ is absolutely continuous, there exists a function f_{Ψ} such that $E\left[\int_{0}^{t} \Psi\left(V_{s}\right) d M_{s}\right]=\int_{0}^{t} f_{\Psi}(s) d s$.

3.3 Computation of F_{Ψ} derivative, case additive noise

Let now a drifted Brownian motion be defined as: $d X_{t}=B\left(X_{t}\right) d t+d W_{t}, t \in[0, T], X_{0}=x_{0}$, where $B \in C_{b}^{1}(\mathbb{R})$. Let $\Psi \in C_{b}^{1}\left(\mathbb{R}^{2}\right)$ and recall the function $F_{\Psi}: t \mapsto \mathbb{E}\left(\int_{0}^{t} \Psi\left(V_{s}\right) d M_{s}\right)$. Using Corollary 3.6, this function F_{Ψ} is absolutely continuous with respect to Lebesgue measure, so it is almost surely differentiable with derivative denoted as f_{Ψ}. Actually $f_{\Psi}=\lim _{h \rightarrow 0} T_{\Psi}(h,$.$) where$

$$
\begin{equation*}
T_{\Psi}(h, t):=\frac{1}{h} \mathbb{E}\left(\int_{t}^{t+h} \Psi\left(V_{s}\right) d M_{s}\right) . \tag{25}
\end{equation*}
$$

Theorem 3.7 Let the process X be defined as $d X_{t}=B\left(X_{t}\right) d t+d W_{t}, X_{0}=x_{0}$, with $B \in C_{b}^{1}(\mathbb{R})$, $M_{t}=\sup _{0 \leq s \leq t} X_{s}$ and $\Psi \in C_{b}^{1}(\mathbb{R})$. Then $E\left[\int_{0}^{t} \Psi\left(V_{s}\right) d M_{s}\right]=\int_{0}^{t} f_{\Psi}(s) d s$ where

$$
f_{\Psi}(t)=\frac{1}{2} E_{\mathbb{P}}\left[\Psi\left(M_{t}, M_{t}\right) \frac{p_{V}\left(M_{t}, M_{t} ; t\right)}{p_{M}\left(M_{t}, t\right)}\right] .
$$

The proof is a consequence of the two following propositions. In case of dimension 1 and $A=1$, the first one is a direct consequence of Proposition 1.5 (ii).

Proposition 3.8 Let $A=1, B \in C_{b}^{1}(\mathbb{R}), \Psi \in C_{b}^{1}(\mathbb{R})$, then for any t such that $\left(T_{\Psi}(h, t)\right)_{h}$ converges when $h \rightarrow 0$,

$$
f_{\Psi}(t)=\lim _{h \rightarrow 0} T_{\Psi}^{1}(h, t) \text { where } T_{\Psi}^{1}(h, t)=2 \mathbb{E}\left(\Psi\left(M_{t}, M_{t}\right) \frac{1}{\sqrt{h}} H\left(\frac{M_{t}-X_{t}}{\sqrt{h}}\right)\right)
$$

where $H(B):=\frac{1}{\sqrt{2 \pi}} e^{-\frac{B^{2}}{2}}-B \Phi_{G}(-B)$ and Φ_{G} is the standard Gaussian distribution function. And the following is proved in Section 3.4:

Proposition 3.9 We assume $A=1, B \in C_{b}^{1}(\mathbb{R})$ then $\forall t>0$
(i) for all $\left.\left.b>x_{0}, \quad a \mapsto p(b, a ; t) \in C^{0}(]-\infty, b\right]\right)$.
(ii) $M>x_{1}>x_{0},(b, s) \mapsto p_{V}(b, b ; s) \in L^{1}\left(\left[x_{1}, M\right] \times[0, t], d b d s\right)$.
(iii) $(u, b) \mapsto H(u) \sup _{a \in[b-u, b]} p_{V}(b, a ; t) \in L^{1}\left(\mathbb{R}^{+} \times \mathbb{R}, d u d b\right), H(u)=\frac{e^{-\frac{u^{2}}{2}}}{\sqrt{2 \pi}}-u \Phi(u)$.

We now can prove Theorem 3.7.

Proof of Theorem 3.7:

According to Proposition 3.8, for any t such that $\left(T_{\psi}(h, t)\right)_{h \rightarrow 0}$ converges,

$$
f_{\Psi}(t)=\lim _{h \rightarrow 0} T_{\Psi}^{1}(h, t) \text { where } T_{\Psi}^{1}(h, t)=2 \mathbb{E}\left(\Psi\left(M_{t}, M_{t}\right) \frac{1}{\sqrt{h}} H\left(\frac{M_{t}-X_{t}}{\sqrt{h}}\right)\right) .
$$

Using the density of the law of the pair $\left(M_{t}, X_{t}\right)$

$$
T_{\Psi}^{1}(h, t)=2 \int_{\mathbb{R}^{2}} \Psi(b, b) \frac{1}{\sqrt{h}} H\left(\frac{b-a}{\sqrt{h}}\right) p_{V}(b, a ; t) d b d a .
$$

We perform the change of variable $u=\frac{b-a}{\sqrt{h}}$, then

$$
\begin{equation*}
T_{\Psi}^{1}(h, t)=2 \int_{\mathbb{R}^{2}} \Psi(b, b) H(u) p_{V}(b, b-u \sqrt{h} ; t) d u d b \tag{26}
\end{equation*}
$$

Proposition 3.9 (i) (iii) allows to use Lebesgue dominated Theorem, let h go to 0 :

$$
f_{\Psi}(t)=2 \int_{\mathbb{R}^{+} \times \mathbb{R}} \Psi(b, b) H(u) p_{V}(b, b ; t) d u d b .
$$

From the definition of H (9)

$$
\int_{0}^{\infty} 2 H(u) d u=2 \int_{0}^{\infty} d u \int_{u}^{\infty}(y-u) \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}} d y=\frac{1}{2}
$$

and

$$
f_{\Psi}(t)=\frac{1}{2} \int_{\mathbb{R}^{+}} \Psi(b, b) p_{V}(b, b ; t) d b=\frac{1}{2} \mathbb{E}_{\mathbb{P}}\left[\Psi\left(M_{t}, M_{t}\right) \frac{p_{V}\left(M_{t}, M_{t} ; t\right)}{p_{M}\left(M_{t}, t\right)}\right]
$$

As a conclusion, Theorem 1.3 proof is achieved with this proposition.

3.4 Proposition 3.9 proof

According to Theorem 1.1 of [9], if $A=1$ and B is C_{b}^{1} for all $t>0$, the joint law of the pair $V_{t}=\left(M_{t}, X_{t}\right)$ has a density p_{V}. The aim of this section is to specify the regularity of p_{V} closed to the set $\left\{(m, m), \quad m>x_{0}\right\}$ and to prove Proposition 3.9. For sake of simplicity, we work in the case $A=1$. We start with a global estimation on p_{V}.

Lemma 3.10 Let $A=1$ and $B \in C_{b}^{1} \quad$ and p_{W} the density of $\left(W_{t}^{*}, W_{t}\right)$. For all $t>0$ and all $(m, x) \in \mathbb{R}^{2}, m \neq x$

$$
\begin{equation*}
p_{V}(m, x ; t) \leq e^{\left[\mathcal{B}(x)-\mathcal{B}\left(x_{0}\right)+C T\right]} p_{W}\left(m-x_{0}, x-x_{0} ; t\right) \leq e^{\left[\|B\|\left\|x-x_{0}\right\|+C T\right]} p_{W}\left(m-x_{0}, x-x_{0} ; t\right) \tag{27}
\end{equation*}
$$

where $C=\frac{1}{2} \sup _{u \in \mathbb{R}}\left|B^{\prime}(u)+B^{2}(u)\right|$ and $\mathcal{B}(x)=\int_{0}^{x} B(u) d u$.
Proof: Let Q be the probability measure defined in (14) by $\left.\frac{d Q}{d \mathbb{P}} \right\rvert\, \mathcal{F}_{T}=L_{T}$. Then, under Q the law of $\left(X_{t}-x_{0}\right)_{t \geq 0}$ is the one of W_{t} under \mathbb{P} and using (15)

$$
Z_{t} \leq e^{\mathcal{B}\left(X_{t}\right)-\mathcal{B}\left(x_{0}\right)+C T}
$$

Let F be a test function, namely non negative Borelian bounded. Then

$$
\begin{aligned}
& \int F(m, x) p_{V}(m, x ; t) d m d x=\mathbb{E}_{\mathbb{P}}\left(F\left(M_{t}, X_{t}\right)\right)=\mathbb{E}_{Q}\left(Z_{t} F\left(M_{t}, X_{t}\right)\right) \\
& \left.\left.\leq E_{\mathbb{P}}\left[e^{\left[\mathcal{B}\left(x_{0}+W_{t}\right)-\mathcal{B}\left(x_{0}\right)+C T\right]} F\left(x_{0}+W_{t}^{*}, x_{0}+W_{t}\right)\right)\right]=\int F\left(x_{0}+m, x_{0}+x\right) e^{\left[\mathcal{B}\left(x_{0}+x\right)-\mathcal{B}\left(x_{0}\right)+C T\right.}\right] p_{W}(m, x ; t) d n
\end{aligned}
$$

Then for all $t>0$, for almost all (m, x),

$$
p_{V}(m, x ; t) \leq e^{\left[\mathcal{B}(x)-\mathcal{B}\left(x_{0}\right)+C T\right]} p_{W}\left(m-x_{0}, x-x_{0} ; t\right)
$$

Since p_{W} and p_{V} are continuous on the open set $\{(m, x), m \neq x\}$, the estimation (27) is true for all $t>0, m \neq x$.

The following proposition presents a decomposition of p_{V} more tractable for our goal : the regularity of p_{V} close to the diagonal $\left\{(m, m), \quad m>x_{0}\right\}$.

Proposition 3.11 We assume $A=1, B \in C_{b}^{1}(\mathbb{R})$, recall $\mathcal{B}(x)=\int_{0}^{x} B(u) d u, \mathcal{C}:=-\frac{1}{2} B^{\prime}-\frac{1}{2} B^{2} ; p_{W}$ (18) denotes the density of the law of the pair Brownian motion-its running maximum. For all $t>0$, the density of the pair $\left(M_{t}, X_{t}\right)$ satisfies

$$
p_{V}(b, a ; t)=\sum_{i=1}^{3} p_{V}^{i}(b, a, t)
$$

where

$$
\begin{aligned}
& p_{V}^{1}(b, a, t):=e^{\mathcal{B}(a)-\mathcal{B}\left(x_{0}\right)} p_{W}\left(b-x_{0}, a-x_{0} ; t\right) \\
& p_{V}^{2}(b, a, t):=\int_{0}^{t} E_{\mathbb{P}}\left[\mathcal{C}\left(X_{s}\right) e^{\mathcal{B}(a)-\mathcal{B}\left(X_{s}\right)} 1_{\left\{M_{s} \leq b\right\}} p_{W}\left(b-X_{s}, a-X_{s} ; t-s\right)\right] d s \\
& p_{V}^{3}(b, a, t):=1_{\{b>a\}} \int_{0}^{t} \int_{-\infty}^{b} \mathcal{C}(x) e^{\mathcal{B}(a)-\mathcal{B}(x)} p_{V}(b, x ; s) \int_{(a-x)^{+}}^{b-x} 2 \frac{2 \beta-a+x}{\sqrt{2 \pi(t-s)^{3}}} e^{-\frac{(2 \beta-a+x)^{2}}{2(t-s)}} d \beta d x d s, \\
& \text { or } \\
& 1_{\{b>a\}} \int_{0}^{t} \int_{-\infty}^{b} \mathcal{C}(x) e^{\mathcal{B}(a)-\mathcal{B}(x)} p_{V}(b, x ; s) \frac{e^{-\frac{(a-x)^{2}}{2(t-s)}}-e^{-\frac{(2 b-a-x)^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}} d x d s
\end{aligned}
$$

Proof :
(i) Let F be a positive function, remark that

$$
E_{\mathbb{P}}\left[F\left(M_{t}, X_{t}\right)\right]=E_{Q}\left[Z_{t} F\left(M_{t}, X_{t}\right)\right]
$$

and that under $Q, X-x_{0}$ is a Brownian motion. Recall that Z (16) could be expressed as

$$
\begin{equation*}
Z_{t}=\exp \left(\mathcal{B}\left(X_{t}\right)-\mathcal{B}\left(x_{0}\right)\right)+\int_{0}^{t} \mathcal{C}\left(X_{s}\right) e^{\mathcal{B}\left(X_{t}\right)-\mathcal{B}\left(X_{s}\right)} Z_{s} d s \tag{28}
\end{equation*}
$$

Then

$$
\left.E_{\mathbb{P}}\left[F\left(M_{t}, X_{t}\right)\right]=E_{Q}\left[\left(\exp \left(\mathcal{B}\left(X_{t}\right)-\mathcal{B}\left(x_{0}\right)\right)+\int_{0}^{t} \mathcal{C}\left(X_{s}\right) Z_{s} e^{\mathcal{B}\left(X_{t}\right)-\mathcal{B}\left(X_{s}\right)} d s\right) F\left(M_{t}, X_{t}\right)\right)\right] .
$$

(ii) Using for $s \leq t X_{t}=X_{s}+X_{t}-X_{s}$ and $M_{t}=\sup \left(M_{s}, X_{s}+\sup _{0 \leq u \leq t-s} X_{u+s}-X_{s}\right)$ and the independence under Q of $X_{.+s}-X_{s}$ and \mathcal{F}_{s},

$$
\left.\int_{0}^{t} \int_{\mathbb{R}^{2}} E_{Q}\left[\exp \left(\mathcal{B}\left(X_{s}+\alpha\right)\right) \mathcal{C}\left(X_{s}\right)\right) Z_{s} e^{-\mathcal{B}\left(X_{s}\right)} F\left(\sup \left(M_{s}, X_{s}+\beta\right), X_{s}+\alpha\right)\right] p_{W}(\beta, \alpha ; t-s) d \beta d \alpha d s
$$

Under probability measure $\mathbb{P}=Z_{s} . Q$ this last term is the integral on $[0, t] \times \mathbb{R}^{2}$ of

$$
E_{\mathbb{P}}\left[\exp \left(\mathcal{B}\left(X_{s}+\alpha\right)-\mathcal{B}\left(X_{s}\right)\right) \mathcal{C}\left(X_{s}\right) F\left(\sup \left(M_{s}, X_{s}+\beta\right), X_{s}+\alpha\right)\right] p_{W}(\beta, \alpha ; t-s)
$$

Thus the expectation $E_{\mathbb{P}}\left[F\left(M_{t}, X_{t}\right)\right]$ satisfies

$$
\begin{gathered}
E_{\mathbb{P}}\left[F\left(M_{t}, X_{t}\right)\right]=\int_{\mathbb{R}^{2}} F(b, a) \exp \left(\mathcal{B}(a)-\mathcal{B}\left(x_{0}\right)\right) p_{W}\left(b-x_{0}, a-x_{0} ; t\right) d b d a+ \\
\int_{0}^{t} \int_{\mathbb{R}^{2}} E_{\mathbb{P}}\left[e^{\mathcal{B}\left(X_{s}+\alpha\right)-\mathcal{B}\left(X_{s}\right)} \mathcal{C}\left(X_{s}\right) F\left(\sup \left(M_{s}, X_{s}+\beta\right), X_{s}+\alpha\right)\right] p_{W}(\beta, \alpha ; t-s) d \beta d \alpha d s
\end{gathered}
$$

(iii) We split the second term according to the subset $\left\{M_{s} \leq X_{s}+\beta\right\}$ and its complement:

$$
\begin{gathered}
I_{1}=\int_{0}^{t} \int_{\mathbb{R}^{2}} E_{\mathbb{P}}\left[e^{\mathcal{B}\left(X_{s}+\alpha\right)-\mathcal{B}\left(X_{s}\right)} \mathcal{C}\left(X_{s}\right) F\left(X_{s}+\beta, X_{s}+\alpha\right) 1_{\left\{M_{s} \leq X_{s}+\beta\right\}}\right] p_{W}(\beta, \alpha ; t-s) d \beta d \alpha d s \\
I_{2}=\int_{0}^{t} \int_{\mathbb{R}^{2}} E_{\mathbb{P}}\left[e^{\mathcal{B}\left(X_{s}+\alpha\right)-\mathcal{B}\left(X_{s}\right)} \mathcal{C}\left(X_{s}\right) F\left(M_{s}, X_{s}+\alpha\right) 1_{\left\{M_{s}>X_{s}+\beta\right\}}\right] p_{W}(\beta, \alpha ; t-s) d \beta d \alpha d s
\end{gathered}
$$

In the first term I_{1}, we perform the change of variable $b=X_{s}+\beta, a=X_{s}+\alpha$, so

$$
\begin{equation*}
I_{1}=\int_{0}^{t} \int_{\mathbb{R}^{2}} E_{\mathbb{P}}\left[e^{\mathcal{B}(a)-\mathcal{B}\left(X_{s}\right)} \mathcal{C}\left(X_{s}\right) F(b, a) 1_{\left\{M_{s} \leq b\right\}} p_{W}\left(b-X_{s}, a-X_{s} ; t-s\right)\right] d b d a d s \tag{30}
\end{equation*}
$$

Concerning I_{2}, using $p_{V}(., . ; t)$ the density of the law under \mathbb{P} of the pair $\left(M_{s}, X_{s}\right)$,

$$
I_{2}=\int_{0}^{t} \int_{\mathbb{R}^{4}} e^{\mathcal{B}(x+\alpha)-\mathcal{B}(x)} \mathcal{C}(x) F(m, x+\alpha) 1_{\{m>x+\beta\}} p_{V}(m, x ; s) p_{W}(\beta, \alpha ; t-s) d \beta d \alpha d m d x d s
$$

We operate the change of variable $b=m, a=x+\alpha$, so

$$
I_{2}=\int_{0}^{t} \int_{\mathbb{R}^{4}} e^{\mathcal{B}(a)-\mathcal{B}(x)} \mathcal{C}(x) F(b, a) 1_{\{b>x+\beta\}} p_{V}(b, x ; s) p_{W}(\beta, a-x ; t-s) d \beta d b d a d x d s
$$

Using the expression of p_{W} (18), and the constraints $\beta>0, \beta>a-x, \beta<b-x$,

$$
\begin{gather*}
p_{W}(\beta, a-x ; t-s)=2 \frac{2 \beta-a+x}{\sqrt{2 \pi(t-s)^{3}}} e^{-\frac{(2 \beta-a+x)^{2}}{2(t-s)}} 1_{\{\beta>0, \beta>a\}}, \\
I_{2}=\int_{0}^{t} \int_{\mathbb{R}^{3}} e^{\mathcal{B}(a)-\mathcal{B}(x)} \mathcal{C}(x) F(b, a) \int_{(a-x)^{+}}^{b-x} 2 \frac{2 \beta-a+x}{\sqrt{2 \pi(t-s)^{3}}} e^{-\frac{(2 \beta-a+x)^{2}}{2(t-s)}} d \beta p_{V}(b, x ; s) d b d a d x d s . \tag{31}
\end{gather*}
$$

Gathering (29), (30), (31) and using Tonelli Theorem, we get the result.
To prove Proposition 3.9, we firstly prove some useful results for the Brownian motion.
Lemma 3.12 Let $C_{\theta}:=\sup _{x>0}\left(\frac{x}{\sqrt{t}}\right)^{\theta} e^{-\frac{x^{2}}{4 t}}$. For all $b>0, \quad t>0, \varepsilon \geq 0, \alpha>0$

$$
\begin{equation*}
\sup _{a \in]-\infty, b]} p_{W}(b, a ; t) \leq \frac{C_{1+\varepsilon}}{\sqrt{2 \pi} t^{1-\varepsilon} b^{\varepsilon}} e^{-\frac{b^{2}}{4 t}} \tag{i}
\end{equation*}
$$

(ii) $(b, t) \mapsto \sup _{a<b} e^{\alpha|a|} p_{W}(b, a ; t) \in L^{1}\left(\mathbb{R}^{+} \times[0, T], d b d t\right)$.
(iii) For all $t \in[0, T](u, b) \mapsto H(u) \sup _{a \in[b-u, b]} e^{\alpha|a|} p_{W}(b, a ; t) \in L^{1}\left(\mathbb{R}^{+} \times \mathbb{R}^{+}\right.$, dudb).

Proof: Recall $p_{W}(b, a ; t)=2 \frac{(2 b-a)}{\sqrt{2 \pi t^{3}}} e^{-\frac{(2 b-a)^{2}}{2 t}} \boldsymbol{1}_{\{b>\max (a, 0)\}}$.
(i) For any (b, a) such that $b>\max (a, 0), \forall \varepsilon \geq 0$,

$$
p_{W}(b, a ; t) \leq \frac{C_{1}}{\sqrt{2 \pi} t} e^{\frac{-(2 b-a)^{2}}{4 t}} 1_{\{b>\max (a, 0)\}}, \quad \text { and } \quad p_{W}(b, a ; t) \leq \frac{C_{1+\varepsilon}}{\sqrt{2 \pi} t^{1-\varepsilon}}(2 b-a)^{-\varepsilon} e^{\frac{-(2 b-a)^{2}}{4 t}}
$$

For $a \in]-\infty, b], 2 b-a=b+b-a \geq b>0$ and

$$
\sup _{a \in]-\infty, b]} p_{W}(b, a ; t) \leq \frac{C_{1}}{\sqrt{2 \pi} t} e^{-\frac{b^{2}}{4 t}}, \quad \sup _{a \in]-\infty, b]} p_{W}(b, a ; t) \leq \frac{C_{1+\varepsilon}}{\sqrt{2 \pi} t^{1-\varepsilon} b^{\varepsilon}} e^{-\frac{b^{2}}{4 t}}
$$

which is exactly (i).
(ii) Note that

$$
\begin{equation*}
\int_{0}^{T} \int_{0}^{\infty} e^{\alpha b} \frac{1}{\sqrt{2 \pi} t} e^{-\frac{b^{2}}{4 t}} d b d t \leq \int_{0}^{T} \int_{-\infty}^{\infty} e^{\alpha b} \frac{1}{\sqrt{2 \pi} t} e^{-\frac{b^{2}}{4 t}} d b d t=\int_{0}^{T} \frac{e^{4 t \alpha^{2}}}{\sqrt{t}} d t<\infty \tag{33}
\end{equation*}
$$

Then, (33) and (32) with $\varepsilon=0$, yield (ii).
(iii) Since for all $u>0,0 \leq H(u) \leq \frac{e^{-\frac{u^{2}}{2}}}{\sqrt{2 \pi}}$ (Remark 3.1) (iii) is a consequence of (32) and (33).

Proof of Proposition 3.9: Recall Lemma 3.10 with $c=\|B\|$:

$$
p_{V}(b, a ; t) \leq e^{\left[c\left|a-x_{0}\right|+C T\right]} p_{W}\left(b-x_{0}, a-x_{0} ; t\right)
$$

(ii) and (iii): Using Lemma 3.12 (ii) and (iii) with $\alpha=\|B\|$, p_{V} satisfies points (ii) and (iii). Moreover remark that, by definition, $p_{V}^{3}(b, b ; t)=0$.
(i) According to Proposition 3.11, we recall the decomposition of p_{V} in the sum of three terms $p_{V}^{i}(b, a ; t), \quad i=1,2,3$:

$$
\begin{aligned}
& p_{V}^{1}(b, a, t)=e^{\mathcal{B}(a)-\mathcal{B}\left(x_{0}\right)} p_{W}\left(b-x_{0}, a-x_{0} ; t\right) \\
& p_{V}^{2}(b, a, t)=\int_{0}^{t} E_{\mathbb{P}}\left[\mathcal{C}\left(X_{s}\right) e^{\mathcal{B}(a)-\mathcal{B}\left(X_{s}\right)} 1_{\left\{M_{s} \leq b\right\}} p_{W}\left(b-X_{s}, a-X_{s} ; t-s\right)\right] d s \\
& p_{V}^{3}(b, a, t)=1_{\{b>a\}} \int_{0}^{t} \int_{-\infty}^{b} \mathcal{C}(x) e^{\mathcal{B}(a)-\mathcal{B}(x)} p_{V}(b, x ; s)\left[\frac{e^{-\frac{(a-x)^{2}}{2(t-s)}}-e^{-\frac{(2 b-a-x)^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}}\right] d x d s .
\end{aligned}
$$

The deal is now to prove Item (i) of Proposition 3.9 respectively for $p_{V}^{i} i=1,2,3$ instead of p_{V}.
(1) Case of p_{V}^{1} : Let b and t be fixed. Since \mathcal{B} is $\|B\|_{\infty}$ Lipschitz continuous and $a \mapsto p_{W}(b, a ; t)$ defined in (18) is continuous on] $-\infty, b]$ then $\forall t>0, b>x_{0}, a \rightarrow p_{V}^{1}(b, a, t)$ is continuous and

$$
\lim _{a \rightarrow b, a<b} p_{V}^{1}(b, a, t)=p_{V}^{1}(b, b, t)
$$

(2) Case of p_{V}^{2}, using the change of probability it could be written as

$$
p_{V}^{2}(b, a, t)=\int_{0}^{t} E_{Q}\left[Z_{s} \mathcal{C}\left(X_{s}\right) e^{\mathcal{B}(a)-\mathcal{B}\left(X_{s}\right)} 1_{\left\{M_{s} \leq b\right\}} p_{W}\left(b-X_{s}, a-X_{s} ; t-s\right)\right] d s
$$

where $X-x_{0}$ is now a Brownian motion. Since $a \mapsto p_{W}(, a ; t)$ is continuous, then the integrand is also continuous with respect to a. It remains to bound this integrand.
Remark that using (15) and $\mathcal{C}(x) \leq \frac{1}{2}\left\|B^{\prime}\right\|$,

$$
Z_{s} e^{\mathcal{B}(a)-\mathcal{B}\left(X_{s}\right)}=\exp \left(\int_{0}^{s} \mathcal{C}\left(X_{u}\right) d u+\mathcal{B}(a)-\mathcal{B}\left(x_{0}\right)\right) \leq e^{\left.\|B\| a-x_{0} \left\lvert\,+\frac{1}{2} s\left\|B^{\prime}\right\|\right.\right)}
$$

So the integrand above is bounded on $[0, t] \times \mathbb{R}$ (with respect to a multiplicative constant) as following

$$
\exp \left[C T+\|B\|\left|a-x_{0}\right|\right] p_{W}(b-x, a-x ; t-s) \frac{1}{\sqrt{2 \pi s}} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 s}}
$$

Using (32) Lemma 3.12 when $b-u \leq a<b$, this integrand is uniformly bounded by

$$
\exp \left[C T+\|B\|\left(b+u+\left|x_{0}\right|\right)\right] \frac{C_{1+\varepsilon}}{\sqrt{2 \pi}(t-s)^{1-\varepsilon}(b-x)^{\varepsilon}} e^{-\frac{(b-x)^{2}}{4(t-s)}} \frac{1}{\sqrt{2 \pi s}} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 s}} .
$$

With the Lebesgue dominated theorem $\lim _{a \rightarrow b, \quad a<b} p_{V}^{2}(b, a, t)=p_{V}^{2}(b, b, t)$.
(3) Case of p_{V}^{3} : since $a \rightarrow e^{\mathcal{B}(a)-\mathcal{B}\left(x_{0}\right)}$ is in $C^{1}(\mathbb{R})$, to prove item (i) we only need to study its factor in p_{V}^{3}, which could be written as

$$
1_{\{b>a\}}\left[\int_{0}^{t} \int_{-\infty}^{b} \mathcal{C}(x) e^{\mathcal{B}\left(x_{0}\right)-\mathcal{B}(x)} p_{V}(b, x ; s)\left[\frac{e^{-\frac{(a-x)^{2}}{2(t-s)}}-e^{-\frac{(2 b-a-x)^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}}\right] d x d s\right] .
$$

Note that \mathcal{C} is bounded. We remark that

$$
\begin{gathered}
\frac{e^{-\frac{(a-x)^{2}}{2(t-s)}}-e^{-\frac{(2 b-a-x)^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}}=\int_{a-b}^{b-a} \frac{(b-x+u) e^{-\frac{(b-x+u)^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)^{3}}} d u \\
\text { so } p_{V}^{3}(b, a ; t)=e^{\mathcal{B}(a)-\mathcal{B}\left(x_{0}\right)} \int_{0}^{t} d s \int_{-\infty}^{b} d x \int_{-(b-a)}^{b-a} P^{3}(b, u, x, s, t) d u
\end{gathered}
$$

where

$$
P^{3}(b, u, x, s, t):=\mathcal{C}(x) e^{\mathcal{B}\left(x_{0}\right)-\mathcal{B}(x)} p_{V}(b, x ; s) \frac{(b-x+u) e^{-\frac{(b-x+u)^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)^{3}}}
$$

We now prove that for any $b>x_{0}$

$$
\begin{equation*}
\int_{0}^{t} \int_{-\infty}^{b} \int_{-(b-a)}^{b-a}\left|P^{3}(b, u, x, s, t)\right| d x d s d u<\infty \tag{34}
\end{equation*}
$$

indeed, $\forall b>x$, using (27) and (32)

$$
\begin{equation*}
p_{V}(b, x ; s) e^{\mathcal{B}\left(x_{0}\right)-\mathcal{B}(x)} \leq e^{C t} C_{1} \frac{e^{-\frac{\left(b-x_{0}\right)^{2}}{4 s}}}{\sqrt{2 \pi s^{2}}} \leq e^{C t} C_{1}^{2} \frac{1}{\sqrt{s 2 \pi\left(b-x_{0}\right)^{2}}} \tag{35}
\end{equation*}
$$

and

$$
\frac{(b-x+u) e^{-\frac{(b-x+u)^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)^{3}}} \leq C_{1} \frac{e^{-\frac{(b-x+u)^{2}}{4(t-s)}}}{\sqrt{2 \pi(t-s)^{2}}}
$$

so the bound

$$
\left|P^{3}(b, u, x, s, t)\right| \leq \mathrm{const} \frac{1}{\sqrt{2 \pi s\left(b-x_{0}\right)^{2}}} \frac{e^{-\frac{(b-x+u)^{2}}{4(t-s)}}}{\sqrt{2 \pi(t-s)^{2}}}
$$

We operate the change of variable $y=b-x+u$ and integrate with respect to $y \in \mathbb{R}$

$$
\begin{equation*}
\int_{0}^{t} \int_{-\infty}^{b}\left|P^{3}(b, u, x, s, t)\right| d x d s \leq \mathrm{const} \int_{0}^{t} \frac{1}{\sqrt{2 \pi s(t-s)\left(b-x_{0}\right)^{2}}} d s=\text { const } \frac{1}{b-x_{0}}<\infty \tag{36}
\end{equation*}
$$

The right hand does not depend on u which belongs to any compact [$-M, M,] M>0$, thus yields (34). So Fubini theorem yields

$$
\begin{equation*}
p_{V}^{3}(b, a ; t)=e^{\mathcal{B}(a)-\mathcal{B}\left(x_{0}\right)} \int_{-(b-a)}^{b-a} d u \int_{0}^{t} d s \int_{-\infty}^{b} P^{3}(b, u, x, s, t) d x \tag{37}
\end{equation*}
$$

This proves the continuity of $a \rightarrow p_{V}^{3}(b, a ; t)$.

4 Uniqueness Theorem

Theorem 4.1 There exists a unique pair of functions (p, \tilde{p}) on $\mathbb{R}^{2} \times \mathbb{R}^{+}$, respectively on $\mathbb{R} \times \mathbb{R}^{+}$, such that for all $T>0$

- (a) $\left.\left.p \in L^{\infty}(] 0, T\right] ; L^{1}\left(\mathbb{R}^{2}\right)\right)$,
- (b) $\left.\left.\tilde{p} \in L^{1}(] 0, T\right] ; L^{1}(\mathbb{R})\right)$ and $\int_{0}^{T}\left(\int_{\mathbb{R}} \tilde{p}^{2}(m, s) d m\right)^{\frac{1}{2}} d s<\infty$.
- (c) there exists $\alpha>0$, such that $\int_{0}^{\infty} \int_{\mathbb{R}} e^{-\alpha s}|\tilde{p}(m, s)| d m d s<\infty$,
- (d) there exists $f_{0} \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ such that for all $F \in C_{b}^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$,

$$
\begin{align*}
& \int_{\mathbb{R}^{2}} F(m, x) p(m, x ; t) d m d x=\int_{\mathbb{R}} F(m, m) f_{0}(m) d m+ \tag{38}\\
& \int_{0}^{t} \int_{\mathbb{R}^{2}}\left[B(x) \partial_{2} F(m, x)+\frac{1}{2} \partial_{22}^{2} F(m, x)\right] p(m, x ; u) d m d x d u+\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}} \partial_{1} F(m, m) \tilde{p}(m ; u) d m d u
\end{align*}
$$

where $B: \mathbb{R} \rightarrow \mathbb{R}$ is $C_{b}^{1} \quad$ function.
As a corollary we prove in Section 4.4:
Corollary 4.2 Let $V_{0}=\left(X_{0}, X_{0}\right)$ and $f_{0} \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ be the law density of X_{0}. The pair $\left(p_{V}, \tilde{p_{V}}\right)$, $\tilde{p_{V}}(m ; t)=p_{V}(m, m ; t)$ is the unique weak solution of the PDE (6) from Theorem 1.3 above.

Proof of Theorem 4.1: Let two pairs $\left(p_{j}, \tilde{p}_{j}\right), \quad j=1,2$, satisfy $\tilde{p}_{i}(. ; 0)=f_{0}$ and the four properties of Theorem 4.1. The key of the proof is to show that these two pairs coincide, introducing ($p_{1}-$ $\left.p_{2}, \tilde{p}_{1}-\tilde{p}_{2}\right)$. So denote $q=p_{1}-p_{2}, \tilde{q}=\tilde{p}_{1}-\tilde{p}_{2}$. For any bounded function $H \in C^{1}(\mathbb{R})$ with compact support H^{\prime} one study the function

$$
\begin{equation*}
q_{H}:(t, x) \rightarrow \int_{x}^{\infty} H(m) q(m, x ; t) d m \tag{39}
\end{equation*}
$$

The proof is an application of Ball's Theorem [3] with $X=L^{2}(\mathbb{R}), A=\mathcal{L}^{*}, f(t)=(x \rightarrow$ $G(t, x))$, where $G(t, x)=\frac{1}{2} H^{\prime}(x) \tilde{p}(x ; t)$ and the non bounded operator \mathcal{L}^{*} is defined on $H^{2,2}(\mathbb{R})$

$$
\mathcal{L}^{*}(f)=-B f^{\prime}-B^{\prime} f+\frac{1}{2} f^{\prime \prime},
$$

q_{H} will be the unique weak solution of the PDE:

$$
\begin{equation*}
q_{H}(x ; t)=\int_{0}^{t}\left[\frac{1}{2} H^{\prime}(x) q(x, x ; s)+\mathcal{L}^{*}\left(q_{H}(. ; s)\right)(x)\right] d s, \quad q_{H}(x ; 0)=0 \tag{40}
\end{equation*}
$$

Below, Lemma 4.3 proves that \mathcal{L}^{*} is to be the associated to semi-group Q operator:

$$
\begin{equation*}
Q_{t}(f)(x):=\mathbb{E}\left(f\left(Y_{t}^{x}\right) \exp -\int_{0}^{t} B^{\prime}\left(Y_{u}^{x}\right) d u\right), \quad t \geq 0, \quad x \in \mathbb{R}, f \quad \text { bounded } \tag{41}
\end{equation*}
$$

with density $d(., x ; t)$, where the diffusion Y^{x} is solution of

$$
\begin{equation*}
d Y_{t}^{x}=-B\left(Y_{t}^{x}\right) d t+d W_{t}, \quad Y_{0}^{x}=x \tag{42}
\end{equation*}
$$

Ball's Theorem needs to check the following:

- Operator \mathcal{L}^{*} is closed and the associated semi group Q is strongly continuous,
- $G \in L^{1}\left((0, T) ; L^{2}(\mathbb{R})\right)$,
- $q_{H} \in C\left((0, T) ; L^{2}(\mathbb{R})\right)$,
- $\forall v \in D(\mathcal{L}), t \rightarrow\left\langle q_{H}(t,), v.\right\rangle$ absolutely continuous,
- $\frac{d}{d t}\left\langle q_{H}(t,), v.\right\rangle=\left\langle q_{H}(t,),. \mathcal{L} v\right\rangle+\langle G(t,), v\rangle.$.

The last three items set that q_{H} is a "weak solution", cf. Ball's definition pages 1-2. So using Ball's Theorem, we could conclude that the unique weak solution of $\operatorname{PDE}(40)$ is $\int_{0}^{t} Q_{t-s}(G(., s))(x) d s$ meaning

$$
q_{H}(x, t)=\frac{1}{2} \int_{0}^{t} \mathbb{E}\left(H^{\prime}\left(Y_{t-s}^{x}\right) \tilde{p}\left(Y_{t-s}^{x}, s\right) \exp -\int_{0}^{t-s} B^{\prime}\left(Y_{u}^{x}\right) d u\right) d s, \quad t \geq 0, \quad x \in \mathbb{R}
$$

4.1 Definition and properties of the semi-group Q_{t}

Lemma 4.3 Let $B \in C_{b}^{1}(\mathbb{R})$ and Y^{x} be solution of

$$
d Y_{t}^{x}=-B\left(Y_{t}^{x}\right) d t+d W_{t}, \quad Y_{0}^{x}=x
$$

The operator $\mathcal{L}^{*}(f)=-B f^{\prime}-B^{\prime} f+\frac{1}{2} f^{\prime \prime}$ is closed and it is the generator of the semi-group Q :

$$
Q_{t}(f)(x):=\mathbb{E}\left(f\left(Y_{t}^{x}\right) \exp -\int_{0}^{t} B^{\prime}\left(Y_{u}^{x}\right) d u\right), \quad t \geq 0, \quad x \in \mathbb{R}, f \quad \text { bounded. }
$$

Moreover Q is strongly continuous, and $Q_{t}(x ;$.$) is bounded and admits a density d$: for any $f \in C_{b}(\mathbb{R})$,

$$
Q_{t} f(x)=\int_{\mathbb{R}} f(y) d(x, y ; t) d y
$$

where d satisfies $\forall t>0, \quad x, y \in \mathbb{R}$

$$
e^{-\frac{3}{2} t\left\|B^{\prime}\right\|-\frac{1}{2}\|B\|^{2} t} e^{-\|B\|| | y-x \mid} \frac{e^{-(x-y)^{2} / 2 t}}{\sqrt{2 \pi t}} \leq d(x, y ; t) \leq e^{\frac{1}{2} \| B^{\prime}| | t} e^{\|B\||y-x|} \frac{e^{-(x-y)^{2} / 2 t}}{\sqrt{2 \pi t}}
$$

Proof: According to Revuz-Yor (Proposition 3.10 du chapitre VIII page 343) [22], \mathcal{L}^{*} is the generator of the semi-groupe Q defined in the lemma.
Using Lunardi [19] the operator \mathcal{L}^{*} is "sectorial" (cf. page 34, definition page 71 and 73-74, and Theorem 3.1.3) thus the semi-group Q associated to operator \mathcal{L}^{*} on $L^{2}(\mathbb{R})$ is a strongly continuous semi-group of bounded linear operators.
Remark that the domain of the operator \mathcal{L}^{*} is $H^{2,2}(\mathbb{R})$, so it is dense in $L^{2}(\mathbb{R}), \mathcal{L}^{*}$ is closed: $\left(\left\{\left(h, \mathcal{L}^{*}(h)\right), h \in H^{2,2}(\mathbb{R})\right\}\right.$ is closed in $\left.H^{2,2}(\mathbb{R}) \times L^{2}(\mathbb{R})\right)$.
The existence of its density d is a standard consequence of the fact that Y^{x} is a Brownian diffusion with a compact support drift. We get these two bounds as above Lemma 3.10 using a change of probability measure such that under the new probability Y^{x} would be a Brownian motion starting from x, so Z satisfies (15) but with $-B$ instead of B, so Y^{x} instead of X :

$$
\begin{equation*}
Z_{t}=\exp \left[-\mathcal{B}\left(Y_{t}^{x}\right)+\mathcal{B}(x)+\frac{1}{2} \int_{0}^{t} B^{\prime}\left(Y_{s}^{x}\right) d s-\frac{1}{2} \int_{0}^{t} B^{2}\left(Y_{s}^{x}\right) d s\right] \tag{43}
\end{equation*}
$$

Let f be positive; $Q_{t}(f)(x)=\int_{\mathbb{R}} f(y) d(x, y ; t) d y=\mathbb{E}\left(f\left(Y_{t}^{x}\right) \exp -\int_{0}^{t} B^{\prime}\left(Y_{u}^{x}\right) d u\right)$ admits the bounds

$$
e^{-\left\|B^{\prime}\right\| t} E\left[f\left(Y_{t}^{x}\right)\right] \leq \int_{\mathbb{R}} f(y) d(x, t ; t) d y \leq e^{\left\|B^{\prime}\right\| t} E\left[f\left(Y_{t}^{x}\right)\right]
$$

On another hand, $E_{\mathbb{P}}\left[f\left(Y_{t}^{x}\right)\right]=E_{Q}\left[Z_{t} f\left(Y_{t}^{x}\right)\right]$ and one use the bounds for Z_{t} :

$$
\exp \left[-\|B\|\left\|Y_{t}^{x}-x \left\lvert\,-\frac{1}{2} t\right.\right\| B^{\prime}\left\|-\frac{1}{2}\right\| B \|^{2} t\right] \leq Z_{t} \leq \exp \left[\|B\|\left|Y_{t}^{x}-x\right|+\frac{1}{2} t\left\|B^{\prime}\right\|\right]
$$

So, for any positive f with a compact support, we get the following bounds for $\int_{\mathbb{R}} f(y) d(x, y ; t) d y$, that ends the proof of the lemma:

$$
\left.\left[\int_{\mathbb{R}} \exp \left[-\|B\|| | u \left\lvert\,-\frac{3}{2} t\left\|B^{\prime}\right\|-\frac{1}{2}\|B\|^{2} t\right.\right] \frac{f(x+u)}{\sqrt{2 \pi t}} e^{-\frac{u^{2}}{2 t}} d u, \int_{\mathbb{R}} \exp \left[\|B\|| | u \left\lvert\,+\frac{1}{2} t\left\|B^{\prime}\right\|\right.\right]\right) \frac{f(x+u)}{\sqrt{2 \pi t}} e^{-\frac{u^{2}}{2 t}} d u\right] .
$$

4.2 Assumptions Ball's theorem verification, Items 2,3,4

Along this section q could be not the difference between p_{1} and p_{2}, but any p satisfying properties in Theorem 4.1.

4.2.1 Item 2

Lemma 4.4 The application $(m, s) \rightarrow G(m ; s)=\frac{1}{2} H^{\prime}(m) \tilde{q}(m ; s)$ belongs to $L^{1}\left((0, T) ; L^{2}(\mathbb{R})\right)$.
Proof: Let us recall $G:(t, x) \rightarrow \frac{1}{2} H^{\prime}(x) \tilde{q}(x ; t)$.
(i) Since the support of H^{\prime} is compact, for any t, the support of $G(t,$.$) is too compact. Using$ Property (b) of Theorem 4.1, $G(t,$.$) belongs to L^{2}(\mathbb{R})$ almost surely on $(0, T]$.
(ii) Then one looks for the convergence of the following integral:

$$
\int_{0}^{T}\left(\int\left(H^{\prime}(x) \tilde{q}(x ; t)\right)^{2} d x\right)^{\frac{1}{2}} d t
$$

Since H^{\prime} support is compact, H^{\prime} is bounded so the bound of the integrand with respect to time

$$
t \rightarrow\left\|H^{\prime}\right\|_{\infty}\left(\int \tilde{q}^{2}(x ; t) d x\right)^{\frac{1}{2}}
$$

Using Assumption (b) in Theorem $4.1 \int_{0}^{T}\left(\int_{\mathbb{R}} \tilde{q}^{2}(x, s) d x\right)^{\frac{1}{2}} d s<\infty$ meaning that the norm $\|G(., t)\|_{2}$ is integrable on $(0, T]$.

4.2.2 $\quad q_{H}$ defined in (39) belongs to $C\left([0, T], L^{2}(\mathbb{R})\right)$

Property (a) of Theorem 4.1 for any $t \geq 0$ proves that $p_{H}(. ; t) \in L^{1}(\mathbb{R})$, so one can consider its Fourier transform.

Lemma 4.5 For any $t \in(0, T]$, the Fourier transform of p_{H}, $\hat{p}_{H}(x, t)=\int_{\mathbb{R}} e^{i x \xi} p_{H}(\xi, t) d \xi$ satisfies

$$
\begin{aligned}
& \hat{p}_{H}(x, t)=e^{-\frac{1}{2} x^{2} t} \hat{p}_{H}(x, 0) \\
& \left.+\int_{0}^{t} e^{-\frac{1}{2} x^{2}(t-u)}\left[\int_{\mathbb{R}^{2}} i \xi B(x) e^{i \xi x} H(m) p(m, x ; u) d m d x+\frac{1}{2} \int_{\mathbb{R}} H^{\prime}(m)\right) e^{i \xi x} H(m) \tilde{p}(m ; u) d m\right] d u .
\end{aligned}
$$

Proof: One applies the relation (38) to the real and imaginary parts of the function $F(m, \xi)=$ $H(m) e^{i x \xi}$ what one integrates between 0 et t :
$\hat{p}_{H}(x, t)-\hat{p}_{H}(x, 0)=\int_{0}^{t} \int_{\mathbb{R}^{2}}\left[i x B(\xi)-\frac{1}{2} x^{2}\right] e^{i \xi x} H(m) p(m, \xi ; u) d m d \xi d u+\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}} H^{\prime}(m) e^{i m x} \tilde{p}(m ; u) d m d u$.
So for any real number x the application $t \rightarrow \hat{p}_{H}(x, t)$ is solution of the differential equation

$$
y^{\prime}(t)=-\frac{1}{2} x^{2} y(t)+\int_{\mathbb{R}^{2}} i x B(\xi) e^{i \xi x} H(m) p(m, \xi ; t) d m d \xi+\frac{1}{2} \int_{\mathbb{R}} H^{\prime}(m) e^{i m x} \tilde{p}(m ; t) d m
$$

and using Duhamel's principle

$$
\begin{equation*}
\hat{p}_{H}(x, t)=e^{-\frac{1}{2} x^{2} t} \hat{p}_{H}(x, 0)+ \tag{44}
\end{equation*}
$$

$$
\int_{0}^{t} e^{-\frac{1}{2} x^{2}(t-u)} \quad \int_{\mathbb{R}^{2}} \quad i x B(\xi) e^{i \xi x} H(m) p(m, \xi ; u) d m d \xi d u+\frac{1}{2} \int_{0}^{t} e^{-\frac{1}{2} x^{2}(t-u)} \int_{\mathbb{R}} H^{\prime}(m) e^{i m x} \tilde{p}(m ; u) d m d u
$$

Lemma 4.6 The application on $[0, T] \phi_{1}(,$.$) :$

$$
t \rightarrow\left(x \rightarrow \int_{0}^{t} e^{-\frac{1}{2} x^{2}(t-u)} \int_{\mathbb{R}^{2}} i x B(\xi) e^{i \xi x} H(m) p(m, \xi ; t) d m d \xi d u\right)
$$

is continuous in $L^{2}(\mathbb{R})$.
Proof: Using H and B bounded and Property (a) of Theorem 4.1, there exists a constant C_{p} such that for any $u, \int_{\mathbb{R}^{2}}|p(m, x ; u)| d m d x \leq C_{p}$ so the bound, x being fixed:

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}} i x B(\xi) e^{i \xi x} H(m) p(m, \xi ; t) d m d \xi\right| \leq C_{p}|x| \tag{45}
\end{equation*}
$$

The increment $\phi_{1}(x, t)-\phi_{1}(x, s)$ is the sum of two terms:

$$
\begin{gathered}
\int_{0}^{s}\left[e^{-\frac{1}{2} x^{2}(t-u)}-e^{-\frac{1}{2} x^{2}(s-u)}\right] \int_{\mathbb{R}^{2}} i x B(\xi) e^{i \xi x} H(m) p(m, \xi ; t) d m d \xi d u \\
\quad+\int_{s}^{t} e^{-\frac{1}{2} x^{2}(t-u)} \int_{\mathbb{R}^{2}} i x B(\xi) e^{i \xi x} H(m) p(m, \xi ; t) d m d \xi d u
\end{gathered}
$$

In both terms appears the factor (45) so:

$$
\left|\phi_{1}(x, t)-\phi_{1}(x, s)\right| \leq C_{p}|x|\left(\int_{0}^{s}\left[e^{-\frac{1}{2} x^{2}(s-u)}-e^{-\frac{1}{2} x^{2}(t-u)}\right] d u+\int_{s}^{t} e^{-\frac{1}{2} x^{2}(t-u)} d u\right) .
$$

On the set $\{|x| \leq 1\}$, the bound is $C_{p}\left[T\left(1-e^{-\frac{1}{2} x^{2}(t-s)}\right)+(t-s)\right] \leq C_{p}(t-s)(T / 2+1)$. On the set $\{|x| \geq 1\}$, we operate the two integrals with respect to $d u$, so the bound:

$$
\begin{gathered}
C_{p}|x| \frac{2}{x^{2}}\left[\left(1-e^{-\frac{1}{2} x^{2}(t-s)}\right)\left(1-e^{-\frac{1}{2} x^{2} s}\right)+\left(1-e^{-\frac{1}{2} x^{2}(t-s)}\right)\right] \\
\quad \leq \frac{4 C_{p}}{|x|}\left(1-e^{-\frac{1}{2} x^{2}(t-s)}\right) \leq \frac{4 C_{p}}{|x|}\left(x^{2}(t-s)\right)^{\eta}
\end{gathered}
$$

$\forall \eta>0$ on $\{|x| \geq 1\}$, which belongs to $L^{2}(\mathbb{R})$ as soon as $4 \eta-2<-1$, meaning $0<\eta<1 / 4$.
Lemma 4.7 The application on $[0, T] \phi_{2}(x,):. t \rightarrow \int_{0}^{t} e^{-\frac{1}{2} x^{2}(t-u)} \int_{\mathbb{R}} H^{\prime}(m) e^{i m x} \tilde{p}(m ; u) d m d u$ is continuous in $L^{2}(\mathbb{R})$.

Proof: The function H^{\prime} is bounded and Assumption (b) for $j=1,2$, $\int_{0}^{T}\left[\int_{\mathbb{R}}|\tilde{p}(m ; u)|^{j} d m\right]^{1 / j} d u<\infty$, so almost surely for $u \in[0, T]$ the function $\psi(., u): m \rightarrow H^{\prime}(m) \tilde{p}(m ; u)$ belongs to $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Its Fourier transform, $\hat{\psi}(., u): x \rightarrow \int_{K} e^{i x m} H^{\prime}(m) \tilde{p}(m ; u) d m$ belongs to $L^{\infty}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ and its $L^{j^{*}}(\mathbb{R})$-norm $\left(j^{*}=\infty, 2\right.$ is the conjugate exponent of $\left.j\right)$ is bounded by

$$
\begin{equation*}
\|\hat{\psi}(. ; u)\|_{L^{j^{*}}(\mathbb{R})} \leq\left\|H^{\prime}\right\|_{\infty}\|\tilde{p}(. ; u)\|_{L^{j}(\mathbb{R})}, \quad j=1,2 \tag{46}
\end{equation*}
$$

One operates an integration by parts $(x \neq 0)$ on the function $\hat{\psi}$ thus

$$
\phi_{2}(x, t)=\left[e^{-\frac{1}{2} x(t-u)} \int_{0}^{u} \hat{\psi}(x ; r) d r\right]_{0}^{t}+\frac{1}{2} x^{2} \int_{0}^{t} e^{-\frac{1}{2} x^{2}(t-u)} \int_{0}^{u} \hat{\psi}(x ; r) d r d u
$$

Using Fubini Theorem, almost surely on $\mathbb{R} \times[0, T]$ one gets

$$
\begin{align*}
& \phi_{2}(x, t)=\int_{0}^{t} \hat{\psi}(x ; r) d r+\frac{1}{2} x^{2} \int_{0}^{t} \hat{\psi}(x ; r) \int_{r}^{t} e^{-\frac{1}{2} x^{2}(t-u)} d u d r \\
&=\int_{0}^{t} \hat{\psi}(x ; r) d r+\int_{0}^{t} \hat{\psi}(x ; r)\left(1-e^{-\frac{1}{2} x^{2}(t-r)}\right) d r \tag{47}\\
& \text { or } \quad \phi_{2}(x, t)=2 \int_{0}^{t} \hat{\psi}(x ; r) d r-e^{\frac{1}{2} x^{2} t} \int_{0}^{t} \hat{\psi}(x ; r) e^{\frac{1}{2} x^{2} r} d r . \tag{48}
\end{align*}
$$

The relation (48) proves that $t \rightarrow \phi_{2}(x, t)$ is continuous, x being fixed Bounding $1-e^{-a}$ by 1 when $a \geq 0$), the relation (47) gets

$$
\left|\sup _{t \in[0, T]} \phi_{2}(x, t)\right| \leq 2 \int_{0}^{T}|\hat{\psi}(x ; r)| d r .
$$

The function $x \rightarrow \int_{0}^{T}|\hat{\psi}(x ; r)| d r \in L^{2}(\mathbb{R})$ since

$$
\int_{\mathbb{R}}\left[\int_{0}^{T}|\hat{\psi}(x ; r)| d r\right]^{2} d x=\int_{\mathbb{R}} \int_{[0, T]^{2}}|\hat{\psi}(x ; r)||\hat{\psi}(x ; u)| d r d u d x
$$

Using Fubini Theorem then Cauchy-Schwartz inequality, yields

$$
\begin{aligned}
& \int_{\mathbb{R}}\left[\int_{0}^{T}|\hat{\psi}(x ; r)| d r\right]^{2} d x \leq \int_{[0, T]^{2}} \int_{\mathbb{R}}|\hat{\psi}(x ; r)||\hat{\psi}(x ; u)| d x d r d u \\
& \leq \int_{[0, T]^{2}} \sqrt{\int_{\mathbb{R}}|\hat{\psi}(x ; r)|^{2} d x} \sqrt{\int|\hat{\psi}(x ; u)|^{2} d x d r d u} \\
& =\left(\int_{[0, T]}\|\hat{\psi}(. ; r)\|_{L^{2}(\mathbb{R})} d r\right)^{2} \leq\left(\left\|H^{\prime}\right\|_{\infty} \int_{0}^{T}\|\tilde{p}(. ; u)\|_{L^{2}(\mathbb{R})}\right)^{2}
\end{aligned}
$$

using (46) to insure the last bound; then the continuity is a consequence of Lebesgue dominated convergence Theorem.

Lemma 4.8 The application on $[0, T] t \rightarrow \hat{p}_{H}(x ; t)$ is continuous in $L^{2}(\mathbb{R})$.
Proof: Using the two lemmas above, one has to deal with the L^{2}-norm of the first term: $e^{-\frac{1}{2} x^{2} t} \hat{p}_{H}(x ; 0)$ in $\hat{p}_{H}(x ; t)$, inside the expression given in Lemma 4.5, since the other terms are continuous for the $L^{2}(\mathbb{R})$ topology.
Firstly $m \rightarrow p_{H}(m, 0)=H(m) f_{0}(m) \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ since $f_{0} \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ and H is bounded. Thus $\hat{p_{H}}(x, 0) \in L^{2}(\mathbb{R})$ and $\left|e^{-\frac{1}{2} x^{2} t} \hat{p_{H}}(x, 0)\right| \leq\left|\hat{p_{H}}(x, 0)\right| ; x$ being fixed, $t \rightarrow e^{-\frac{1}{2} x^{2} t} \hat{p_{H}}(x, 0)$ is continuous almost surely for $x \in \mathbb{R}$. The continuity in $L^{2}(\mathbb{R})$ is a consequence of Lebesgue dominated convergence Theorem.

4.2.3 Absolute continuity and PDE whose solution is q_{H}

Lemma 4.9 For any $v \in D(\mathcal{L}), t \rightarrow\left\langle q_{H}(t,), v.\right\rangle$ is absolutely continuous and its derivative is

$$
t \rightarrow\left\langle\mathcal{L}(v), q_{H}(. ; t)\right\rangle_{L^{2}(\mathbb{R})}+\left\langle v, \frac{1}{2} H^{\prime} \tilde{p}(; s)\right\rangle_{L^{2}(\mathbb{R})}
$$

Proof: Let $v \in C_{b}^{2}(\mathbb{R})$ which is a dense subset of $D(\mathcal{L})$. The scalar product $\left\langle q_{H}(t,), v.\right\rangle$ actually is the difference between two integrals

$$
\int_{\mathbb{R}} v(x) q_{H}(x ; t) d x=\int_{\mathbb{R}} v(x) \int_{K} H(m) q(m, x ; t) d m d x
$$

where $q=p_{1}-p_{2}$ satisfies Properties in Theorem 4.1 with $F(m, x)=H(m) v(x) ; i=1,2$:

$$
\begin{equation*}
+\int_{0}^{t} \int\left[B(x) v^{\prime}(x)+\frac{1}{2} v^{\prime \prime}(x)\right] H(m) p_{i}(m, x ; s) d m d x d s+\frac{1}{2} \int_{0}^{t} \int_{K} H^{\prime}(m) v(m) \tilde{p}_{i}(m ; s) d m d s \tag{49}
\end{equation*}
$$

Since $\Phi=H v$ with a bounded H such that support of H^{\prime} is compact and $v \in C_{b}^{2}$ Fubini Theorem is applied to left hand:

$$
\left\langle q_{H}(t, .), v\right\rangle=\int q(m, x ; t) H(m) v(x) d m d x
$$

Right hand is absolutely continuous:

- there exists a constant c such that the integrand on $\mathbb{R} \times \mathbb{R}$ satisfies:

$$
\left|\left[B(x) v^{\prime}(x)+\frac{1}{2} v^{\prime \prime}(x)\right] H(m)\right||q(m, x ; s)| \leq c|q(m, x ; s)|
$$

and this bound has the good integrability properties (a) in Theorem 4.1,

- the integrand on K, the compact support of H^{\prime}, is bounded by $\tilde{p}_{i}(m ; s)$ which satisfies Property (c).

Let now v be in $H^{2,2}$, domain of the operator \mathcal{L}^{*}; there exists a series $v_{n} \in C_{b}^{2}$ going to v in $H^{2,2}$; for any n, v_{n} satisfies the equality (49), so v satisfies the same, n going to infinity. Indeed, one observes that the following applications defined on $C^{2}(\mathbb{R})$ are continuous with respect to the norm $\|\cdot\|_{H^{2,2}}$, using that q_{H} belongs to $C\left([0, T], L^{2}(\mathbb{R})\right)$:

$$
v \rightarrow \int_{\mathbb{R}} v(x) q_{H}(t, x) d x ; v \rightarrow \int_{0}^{t} \int_{\mathbb{R}}\left[B(x) v^{\prime}(x)+\frac{1}{2} v v^{\prime \prime}(x)\right] q_{H}(x ; s) d x d s ; v \rightarrow \int_{0}^{t} \int_{\mathbb{R}} v(m) H^{\prime}(m) \tilde{q}(m, s) d m d s
$$

Then using $t \mapsto q_{H}(. ; t)$ is in $C\left([0, T], L^{2}(\mathbb{R})\right)$ so bounded in $L^{2}(\mathbb{R})$:

$$
\begin{gathered}
\sup _{t \in[0, T]}\left\langle\mathcal{L}(v) ; q_{H}(x, t)\right\rangle_{L^{2}(\mathbb{R})}<\infty \\
\text { thus } \quad t \rightarrow \int_{0}^{t} \int_{\mathbb{R}}\left[B(x) v^{\prime}(x)+\frac{1}{2} v^{\prime \prime}(x)\right] q_{H}(x ; s) d x d s
\end{gathered}
$$

is absolutely continuous with derivative given by $s \rightarrow \int_{\mathbb{R}}\left[B(x) v^{\prime}(x)+\frac{1}{2} v^{\prime \prime}(x)\right] q_{H}(x ; s) d x$. Moreover since $\forall s$

$$
\left|\int_{K} v(m) H^{\prime}(m) \tilde{q}(m, s) d m\right| \leq\left\|H^{\prime}\right\|_{\infty}\|v\|_{L 2(\mathbb{R})}\|\tilde{q}(. ; ; s)\|_{L^{2}(\mathbb{R})}
$$

(where K is H^{\prime} support) using Assumption (b) $\int_{0}^{T}\|\tilde{q}(. ; ; s)\|_{L^{2}(\mathbb{R})} d s<\infty$:

$$
t \rightarrow \int_{0}^{t} \int_{K} v(m) H^{\prime}(m) \tilde{q}(m, s) d m d s
$$

is absolutely continuous with derivative given by $s \rightarrow \int_{K} v(m) H^{\prime}(m) \tilde{q}(m, s) d m$.
Finally using Equation (49) applied to $q=p_{1}-p_{2}$, duality and Fubini theorem, one gets the PDE
(50) $q_{H}(x ; t)=\int_{0}^{t}\left[\frac{1}{2} H^{\prime}(x) q(x, x ; s)-B^{\prime}(x) q_{H}(x ; s)-B(x) \partial_{1} q_{H}(x ; s)+\frac{1}{2} \partial_{11}^{2} q_{H}(x ; s)\right] d s, q_{H}(x ; 0)=0$
which admits q_{H} as unique weak solution.
As a conclusion, the following is proved:
Proposition 4.10 Equation (40) admits a unique solution in $C\left([0, T], L^{2}(\mathbb{R})\right)$. Moreover this solution has the following mild representation

$$
q_{H}(x ; t)=\int_{0}^{t} \int_{\mathbb{R}} \frac{1}{2} H^{\prime}(y) \tilde{q}(y ; s) d(y, x ; t-s) d y d s
$$

where d is the density of semi group Q defined in Lemma 4.3.
Lemmas 4.4 to 4.9 prove that q_{H} and G fulfill all assumptions of Ball's Theorem [3].

4.3 Proof of Uniqueness Theorem 4.1

Proof: The proof has five steps.
Step 1. Let x be fixed and $H \in C_{b}^{1}$ with a compact support, included in $(-\infty, x)$.
$\overline{B y}$ definition, for any $t, q_{H}(x ; t)=\int_{x<m} H(m) q(m, x ; t) d m=0$.
Step 2. One uses Proposition 4.10 :

$$
q_{H}(x ; t)=\int_{0}^{t} \int_{\mathbb{R}} \frac{1}{2} H^{\prime}(y) \tilde{q}(y ; s) d(y, x ; t-s) d y d s
$$

where y belongs to compact support of H. Using Assumption (b) in Theorem 4.1 yields:

$$
\int_{0}^{T}\left(\int_{\mathbb{R}} \tilde{q}^{2}(y ; t) d y\right)^{\frac{1}{2}} d t<\infty
$$

The integral of the product $q_{H}(x ; t) . e^{-\beta t}$ with respect to $d t$, with $\beta>\beta_{0}:=\sup \left(\alpha, 2\|B\|^{2}+\frac{1}{2}\left\|B^{\prime}\right\|\right)$ satisfies:

$$
0=\int_{0}^{\infty} e^{-\beta t} q_{H}(x ; t) d t=\int_{0}^{\infty} e^{-\alpha t} \int_{0}^{t} \int_{\mathbb{R}} \frac{1}{2} H^{\prime}(y) \tilde{q}(y ; s) d(y, x ; t-s) d y d s d t
$$

Let $u=t-s$ and $e^{-\beta t}=e^{\beta s} e^{-\beta(t-s)}$, then one applies Fubini Theorem using the bound of density d (Lemma 4.3) $d(y, x ; u) \leq e^{\frac{1}{2}\left\|B^{\prime}\right\| u} e^{\|B\||y-x|} \frac{e^{-(x-y)^{2} / 2 u}}{\sqrt{2\{\pi u}}$. The integrand is bounded by

$$
1_{y \in K} e^{-\beta s} e^{-\beta u}\left\|H^{\prime}\right\|| | \tilde{q}(y ; s) \left\lvert\, e^{\frac{1}{2}\left\|B^{\prime}\right\| u} e^{\|B\|| | y-x \mid} \frac{e^{-(x-y)^{2} / 2 u}}{\sqrt{2 \pi u}}\right.
$$

On one hand by hypothesis $\int e^{-\alpha s} \int|\tilde{q}(y ; s)| d y d s<\infty$, so is $\int e^{-\beta s} \int|\tilde{q}(y ; s)| d y d s<\infty$. On the other hand one has to bound for any $y \in K$,

$$
1_{y \in K} e^{\|B\||y-x|}\left\|H^{\prime}\right\| e^{-\beta u} e^{\frac{1}{2}\left\|B^{\prime}\right\| u} \frac{e^{-(x-y)^{2} / 2 u}}{\sqrt{2 \pi u}} \leq C e^{-\beta u} e^{\|B\|| | x \mid} e^{\frac{1}{2}\left\|B^{\prime}\right\| u} \frac{1}{\sqrt{2 \pi u}}
$$

This bound is integrable on $[0, s]$ since $\beta>\frac{1}{2}\left\|B^{\prime}\right\|$. Using Fubini Theorem yields:

$$
0=\int_{K} H^{\prime}(y) \iint e^{-\beta s} e^{-\beta u} \tilde{q}(y ; s) d(x, y ; u) d s d u d y
$$

So for any $\left(\beta>\beta_{0}, x\right)$ there exists a constant $C_{\beta, x}$ such that almost surely in y

$$
\begin{equation*}
C_{\beta, x}=\iint e^{-\beta s} e^{-\beta u} \tilde{q}(y ; s) d(x, y ; u) d s d u . \tag{51}
\end{equation*}
$$

This equality could be integrated for $y \in[-N-1,-N]$:

$$
C_{\beta, x}=\int_{-N-1}^{-N} \iint e^{-\beta s} e^{-\beta u} \tilde{q}(y ; s) d(x, y ; u) d s d u d y
$$

When $N \rightarrow \infty, 1_{[-N-1,-N]} d(x, t ; u)$ goes almost surely to 0 , and since x is fixed, let $N \geq 2 x$. With $|y| \leq N+1, x-y \geq N / 2$, using the bound in Lemma 4.3 yields

$$
d(x, y ; u) \leq e^{\|B\||x|} e^{\frac{1}{2}\left\|B^{\prime}\right\| u+(N+1)\|B\|} \frac{e^{-N^{2} / 8 u}}{\sqrt{2 \pi u}}
$$

so

$$
d(x, y ; u) \leq e^{\|B\||x|} e^{\frac{1}{2}\left\|B^{\prime}\right\| u} \frac{e^{-\left(N-4 \frac{N+1}{N}\|B\| u\right)^{2} / 8 u}}{\sqrt{2 \pi u}} e^{2\left(\frac{N+1}{N}\right)^{2}\|B\|^{2} u} .
$$

Since $\beta>\sup \left(\alpha, 2\|B\|^{2}+\frac{1}{2}\left\|B^{\prime}\right\|\right)$, with the bound of $e^{-\beta u} d(x, y ; u)$ Dominated Convergence Theorem could be applied so for any $(\beta, x), C_{\beta, x}=0$.

$$
C_{\beta, x}=0=\int_{\mathbb{R}^{+}} e^{-\beta t} \int_{0}^{t} \tilde{q}(y ; s) d(y, x ; t-s) d s d t, \quad \text { almost surely for } y \in \mathbb{R}
$$

Recall that $\tilde{q}=\tilde{p}_{1}-\tilde{p}_{2}$ so almost surely for $y \in \mathbb{R}$

$$
\int_{\mathbb{R}^{+}} e^{-\beta t} \int_{0}^{t} \tilde{p}_{1}(y ; s) d(y, x ; t-s) d s d t=\int_{\mathbb{R}^{+}} e^{-\beta t} \int_{0}^{t} \tilde{p}_{2}(y, y ; s) d(y, x ; t-s) d s d t .
$$

Once again we use $e^{-\beta t}=e^{-\beta s} e^{-\beta(t-s)}$ and Tonelli Theorem on both hands:

$$
\int_{\mathbb{R}^{+}} \int_{0}^{t} e^{-\beta s} \tilde{p}_{1}(y ; s) e^{-\beta(t-s)} d(y, x ; t-s) d s d t=\int_{\mathbb{R}^{+}} \int_{0}^{t} e^{-\beta s} \tilde{p}_{2}(y ; s) e^{-\beta(t-s)} d(y, x ; t-s) d s d t
$$

The change of variable $u=t-s$ yields

$$
\begin{aligned}
& \int_{\mathbb{R}^{+}} e^{-\beta s} p_{1}(y, y ; s) d s \int_{0}^{t} e^{-\beta u} d(y, x ; u) d u=\int_{\mathbb{R}^{+}} e^{-\beta s} p_{2}(y, y ; s) d s \int_{0}^{t} e^{-\beta u} d(y, x ; u) d u \\
& \text { so } 0=\int_{\mathbb{R}^{+}} e^{-\beta s} \tilde{q}(y ; s) d s \int_{0}^{t} e^{-\beta u} d(y, x ; u) d u
\end{aligned}
$$

Using the low bound Lemma 4.3

$$
e^{-\frac{3}{2} t\left\|B^{\prime}\right\|-\frac{1}{2}\|B\|^{2} t} e^{-\|B\|| | y-x \mid} \frac{e^{-(x-y)^{2} / 2 t}}{\sqrt{2 \pi t}} \leq d(x, y ; t)
$$

where y belongs to the compact support of $H \subset(-\infty, x)$, so $x-y>0$. So this low bound is integrable on $[0, t]$ and $\int_{0}^{t} e^{-\beta u} d(y, x ; u) d u>0$ so for any $\beta>0$,

$$
\begin{equation*}
0=\int_{\mathbb{R}^{+}} e^{-\beta s} \tilde{q}(y ; s) d s, \quad \text { almost surely for } y \in \mathbb{R} \tag{52}
\end{equation*}
$$

Step 4. Let $\alpha>0$ from Property (c) and define the function g_{y} as

$$
g_{y}: z \rightarrow \int_{\mathbb{R}^{+}} e^{z s} \tilde{q}(y ; s) d s
$$

Almost surely for $y \in \mathbb{R}$, the function g_{y} is holomorphic on the complex domain $\Omega_{\alpha}:=\{z: \mathcal{R e}(z)<-\alpha\}$: to prove this, one uses exercise 16 page 229 in [24] on the domain Ω_{α} with $\varphi(z, s)=e^{z s}$ and the measure $\mu(d s)=\tilde{q}(y ; s) d s$.

Let $\left(\beta_{n}\right)$ be a series of separate real numbers going to β in Ω_{α} and the associated set $A_{n}:=\left\{y:\right.$ such that g_{y} is holomorphic and $\left.\int_{0}^{\infty} e^{-\beta_{n} s} \tilde{q}(y ; s) d s=0\right\}$. The complementary set $A_{n}^{c}=$ $\left\{y: g_{y}\right.$ is not holomorphic $\} \cup\left\{\int_{0}^{\infty} e^{-\beta_{n} s} \tilde{q}(y ; s) d s \neq 0\right\}$ is negligible using both $g_{y} \in H\left(\Omega_{\alpha}\right) d y$ almost surely and (52) Step3. So $\cup_{n} A_{n}^{c}$ is negligible. Let $y \in \cap_{n} A_{n}$, the set $\left\{-\beta_{n}, n \geq 0\right\}$ is included in the set of g_{y} zeros, $\beta_{n} \rightarrow \beta$ so, $-\beta$ is limit point of g_{y}. So g_{y} is identically null using the corollary of Theorem 10.18 in Rudin [24].

As a particular case for any $a<-\alpha$ and $b \in \mathbb{R}$:

$$
\int_{\mathbb{R}^{+}} e^{i b s} e^{-a s} \tilde{q}(y ; s) d s=0
$$

This means that the Fourier transform of $s \rightarrow e^{-a s} \tilde{q}(y ; s)$ is null, so $\tilde{q}(y ; s)=0 d y$ almost surely.
Step 5. Finally from $\tilde{q}(y ; s)=0$ and Duhamel principle stated in Proposition 4.10 one deduces for any t, any x and any compact support function $H: q_{H}(x ; t)=0$. By defintion of q_{H}

$$
0=q_{H}(x ; t)=\int H(m) q(m, x ; t) d m
$$

thus $q(m, x ; t)=0$, and $p_{1}(m, x ; t)=p_{2}(m, x ; t)$ and the uniqueness is proved.

4.4 Corollary 4.2 proof

We need to check that the pair $\left(p_{V}, \tilde{p}_{V}\right)\left(\right.$ where $\left.\tilde{p}_{V}(m ; t)=p_{V}(m, m ; t)\right)$ satisfies all Theorem 4.1 properties.

First of all let $(\mu(d m, d x ; t))_{t \geq 0}$ be the family of probability measures such that $\mu(., . ; 0)=\delta_{m=x} f_{0}(x) d x$ So for any $t>0, \mu(., . ; t)$ admits a density with respect to Lebesgue measure, denoted p_{V}, with support $\Delta=\left\{(m, x) \in \mathbb{R}^{2}: x<m\right\}$ and which satisfies

$$
p_{V}(m, x ; t)=\int_{\mathbb{R}} p\left(m, x ; t, x_{0}\right) \mu_{0}\left(d x_{0}\right) .
$$

Here $p\left(., . ; t, x_{0}\right)$ is the density law of the couple $\left(M_{t}, X_{t}\right)$ when $X_{0}=x_{0}$ and $\tilde{p}_{V}(m ; t)=p_{V}(m, m ; t)$. Below the majoration (27) Lemma 3.10 will be often useful:

$$
\begin{equation*}
p\left(m, x ; t, x_{0}\right) \leq C e^{\|B\|\left|x-x_{0}\right|} p_{W}\left(m-x_{0}, x-x_{0} ; t\right)=C e^{\|B\|| | x-x_{0} \mid} \frac{2 m-x-x_{0}}{\sqrt{2 \pi t^{3}}} e^{-\frac{\left(2 m-x-x_{0}\right)^{2}}{2 t}} . \tag{53}
\end{equation*}
$$

4.4.1 $\quad p_{V} \in L^{\infty}\left([0, T] ; L^{1}\left(\mathbb{R}^{2}\right)\right)$

This property is a direct consequence from $p_{V}(., .: t)$ being the law density of a probability measure, so it is positive, its integral on \mathbb{R}^{2} is 1 , bounded so integrable on $[0, T]$.
4.4.2 $\quad \tilde{p}_{V} \in L^{1}\left([0, T] ; L^{i}(\mathbb{R})\right), i=1,2$
(i) $i=1$: For any t the function $\tilde{p}_{V}(. ; t)$ is positive; using (53) it is bounded by the integral

$$
\int_{m \geq x_{0}} C e^{\|B\|\left|m-x_{0}\right|} \frac{m-x_{0}}{\sqrt{2 \pi t^{3}}} e^{-\frac{\left(m-x_{0}\right)^{2}}{2 t}} f_{0}\left(x_{0}\right) d x_{0}
$$

Any factor of the integrand is positive, one only needs to check the integrability on $[0, T] \times \mathbb{R}^{2}$, on \mathbb{R}^{2} one integrates on $\left\{m \geq x_{0}\right\}$:

$$
\begin{equation*}
\int_{0}^{T} \int_{\left\{m \geq x_{0}\right\}} e^{\|B\|| | m-x_{0} \mid} \frac{m-x_{0}}{\sqrt{2 \pi s^{3}}} e^{-\frac{\left(m-x_{0}\right)^{2}}{2 s}} f_{0}\left(x_{0}\right) d x_{0} d m d s \tag{54}
\end{equation*}
$$

One operates the change of variable $u=\frac{m-x_{0}}{\sqrt{s}}$

$$
\int_{0}^{T} \int_{\mathbb{R}} \int_{\mathbb{R}^{+}} e^{\|B\| u \sqrt{s}} \frac{u}{\sqrt{2 \pi s}} e^{-\frac{u^{2}}{2}} f_{0}\left(x_{0}\right) d x_{0} d u d s=\int_{\mathbb{R}} f_{0}\left(x_{0}\right) d x_{0} \int_{0}^{T} \frac{d s}{\sqrt{2 \pi s}} \int_{\mathbb{R}^{+}} e^{\|B\| u \sqrt{s}} u e^{-\frac{u^{2}}{2}} d u<\infty
$$

using $e^{\|B\| u \sqrt{s}} \leq e^{\|B\| u \sqrt{T}}$ and the three integrals are finite.
(ii) $i=2$: One has to look for the integrability on $[0, T]$ of

$$
s \rightarrow \sqrt{\int_{\mathbb{R}} \tilde{p}_{V}^{2}(m ; s) d m} \leq \sqrt{\int_{\mathbb{R}}\left(\int_{\left\{m \geq x_{0}\right\}} e^{\|B\| \| m-x_{0} \mid} \frac{m-x_{0}}{\sqrt{2 \pi s^{3}}} e^{-\frac{\left(m-x_{0}\right)^{2}}{2 s}} f_{0}\left(x_{0}\right) d x_{0}\right)^{2} d m} .
$$

Using f_{0} is a density measure probability and $\left\|f_{0}\right\|_{1}=1$ and Cauchy-Schwartz inequality yields

$$
\left(\int_{\left\{m \geq x_{0}\right\}} e^{\|B\|| | m-x_{0} \mid} \frac{\left(m-x_{0}\right)}{\sqrt{2 \pi s^{3}}} e^{-\frac{\left(m-x_{0}\right)^{2}}{2 s}} f_{0}\left(x_{0}\right) d x_{0}\right)^{2} \leq \int_{\left\{m \geq x_{0}\right\}} e^{2\|B\|\left|m-x_{0}\right|} \frac{\left(m-x_{0}\right)^{2}}{2 \pi s^{3}} e^{-\frac{\left(m-x_{0}\right)^{2}}{s}} f_{0}\left(x_{0}\right) d x_{0} .
$$

Now one operates the integral in $d m$ and the change of variable $\mu=\frac{m-x_{0}}{\sqrt{s}}$ so for any $s \in[0, T]$ one gets the bound

$$
\int_{\mathbb{R}^{+}} e^{2\|B\| \mu \sqrt{s}} \frac{\mu^{2} s \sqrt{s}}{2 \pi s^{3}} e^{-\mu^{2}} d \mu \int_{R} f_{0}\left(x_{0}\right) d x_{0} \leq \frac{s \sqrt{s}}{2 \pi s^{3}} \int_{\mathbb{R}^{+}} e^{2\|B\| \mu \sqrt{T}} \mu^{2} e^{-\mu^{2}} d \mu .
$$

With respect of a multiplicative coefficient, the square root of this bound is $s \rightarrow s^{-3 / 4}$, integrable on $[0, T]$.

4.4.3 Let $\alpha>\frac{1}{2}\|B\|$, so $\int_{0}^{\infty} \int_{\mathbb{R}} e^{-\alpha s} \tilde{p}(m, s) d m d s<\infty$.

One looks for this integral on $\mathbb{R}^{+} \times \mathbb{R}$ and one uses the bound (54). Remark that all the factors in the integrand are positive so applying Tonelli Theorem one gets:

$$
\int_{\mathbb{R}^{+}} e^{-\alpha s} \int_{\mathbb{R}^{2}} \tilde{p}_{V}(m ; s) d m d s \leq \int_{\mathbb{R}^{+}} \int_{\left\{m \geq x_{0}\right\}} e^{-\alpha s} e^{\|B\|| | m-x_{0} \mid} \frac{m-x_{0}}{\sqrt{2 \pi s^{3}}} e^{-\frac{\left(m-x_{0}\right)^{2}}{2 s}} f_{0}\left(x_{0}\right) d x_{0} d m d s .
$$

One operates the change of variable $\mu=\frac{m-x_{0}}{\sqrt{s}}$:

$$
\int_{\mathbb{R}^{+}} \int_{\mathbb{R}} e^{-\alpha s} \tilde{p}_{V}(m ; s) d m d s \leq \int_{\mathbb{R}^{+}} \int_{\mathbb{R}^{+}} e^{-\alpha s+\|B\| \mu \sqrt{s}} \frac{\mu}{\sqrt{2 \pi s}} e^{-\frac{\mu^{2}}{2}} d \mu d s \int_{\mathbb{R}} f_{0}\left(x_{0}\right) d x_{0}
$$

Remark that $\int_{\mathbb{R}} f_{0}\left(x_{0}\right) d x_{0}=1$ since f_{0} is a law density. Once again Tonelli Theorem is applied:

$$
\int_{\mathbb{R}^{+}} \int_{\mathbb{R}^{+}} e^{-\alpha s+\|B\| \mu \sqrt{s}} \frac{\mu}{\sqrt{2 \pi s}} e^{-\frac{\mu^{2}}{2}} d \mu d s=\int_{\mathbb{R}^{+}} \mu e^{-\frac{\mu^{2}}{2}}\left(\int_{\mathbb{R}^{+}} e^{-\alpha s+\|B\| \mu \sqrt{s}} \frac{1}{\sqrt{2 \pi s}} d s\right) d \mu .
$$

One splits the time integral at $s=1$:

$$
\begin{aligned}
\int_{\mathbb{R}^{+}} e^{-\alpha s+\|B\| \mu \sqrt{s}} \frac{1}{\sqrt{2 \pi s}} d s & =\int_{0}^{1} e^{-\alpha s+\|B\| \mu \sqrt{s}} \frac{1}{\sqrt{2 \pi s}} d s+\int_{1}^{\infty} e^{-\alpha s+\|B\| \mu \sqrt{s}} \frac{1}{\sqrt{2 \pi s}} d s \leq \\
& 2 \frac{e^{\|B\| \mu}}{\sqrt{2 \pi}}+\frac{1}{\sqrt{2 \pi}} \int_{1}^{\infty} e^{-\alpha s+\|B\| \mu \sqrt{s}} d s .
\end{aligned}
$$

One integrates this sum times the factor $\mu e^{-\frac{\mu^{2}}{2}}$ when $\mu \in \mathbb{R}^{+}$; the first integral is finite:

$$
\int_{\mathbb{R}^{+}} \mu e^{-\frac{\mu^{2}}{2}} 2 \frac{e^{\|B\| \mu}}{\sqrt{2 \pi}} d \mu<\infty
$$

One now deals with the second integral:

$$
\int_{\mathbb{R}^{+}} \mu e^{-\frac{\mu^{2}}{2}} \frac{1}{\sqrt{2 \pi}} \int_{1}^{\infty} e^{-\alpha s+\|B\| \mu \sqrt{s}} d s d \mu=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}^{+}} \int_{1}^{\infty} \mu e^{-\frac{\mu^{2}}{2}} e^{-\alpha s+\|B\| \mu \sqrt{s}} d s d \mu
$$

Remark that $e^{-\frac{\mu^{2}}{2}-\alpha s+\|B\| \mu \sqrt{s}}=e^{-\frac{1}{2}(\mu-\|B\| \sqrt{s})^{2}} e^{-s\left(\alpha-\frac{1}{2}\|B\|^{2}\right)}$ so:

$$
\begin{gathered}
\int_{1}^{\infty} \int_{\mathbb{R}^{+}} \mu e^{-\frac{\mu^{2}}{2}} e^{-\alpha s+\|B\| \mu \sqrt{s}} d \mu d s= \\
\int_{1}^{\infty} e^{\left.-s\left(\alpha-\frac{1}{2}\|B\|^{2}\right)\right)}\left(\int_{\mathbb{R}^{+}}(\mu-2\|B\| \sqrt{s}) e^{-\frac{1}{2}(\mu-2\|B\| \sqrt{s})^{2}} d \mu\right) d s+\int_{1}^{\infty} e^{\left.-s\left(\alpha-\frac{1}{2}\|B\|^{2}\right)\right)} 2\|B\| \sqrt{s} \int_{\mathbb{R}^{+}} e^{-\frac{1}{2}(\mu-2\|B\| \sqrt{s})^{2}} d \mu
\end{gathered}
$$

The second term is bounded by $\int_{1}^{\infty} e^{-s\left(\alpha-\frac{1}{2}\|B\|\right)} 2\|B\| \sqrt{s} \sqrt{2 \pi} d s$ wich is finite since $\alpha>\frac{1}{2}\|B\|$. Concerning the first term, $\int_{\mathbb{R}^{+}}(\mu-2\|B\| \sqrt{s}) e^{-\frac{1}{2}(\mu-2\|B\| \sqrt{s})^{2}} d \mu \leq \int_{\mathbb{R}}|u| e^{-\frac{1}{2} u^{2}} d u<\infty$, so Property (c) is proved.

4.4.4 PDE, (d) Property

Recall that f_{0} is the law density of X_{0}, supposed to belong to $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Using Theorem 1.3, one integrates the PDE which is satisfied by $p\left(, ., . ; x_{0}\right)$ with respect to $\mu^{0}: p_{V}$ is a weak solution of

$$
\begin{gather*}
\partial_{t} p(m, x ; t)=-B(x) \partial_{2} p(m, x ; t)-B^{\prime}(x) p(m, x ; t)+\frac{1}{2} \partial_{2,2}^{2} p(m, x ; t), \quad m>x \tag{55}\\
B(m) p(m, m ; t)=\frac{1}{2}\left(\partial_{1}+\partial_{2}\right) p(m, m ; t)+\frac{1}{2} \partial_{2} p(m, m ; t) \tag{56}
\end{gather*}
$$

One integrates the product of (55) with a compact support function $F \in C^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ on $[0, t] \times$ $\{(m, x), m \geq x\}$:

$$
\begin{gathered}
\int_{0}^{t} \int_{m \geq x} F(m, x) \partial_{t} p(m, x ; s) d m d x d s= \\
\int_{0}^{t} \int_{m \geq x} F(m, x)\left(-B(x) \partial_{2} p(m, x ; s)-B^{\prime}(x) p(m, x ; s)+\frac{1}{2} \partial_{2,2}^{2} p(m, x ; s)\right) d m d x d s
\end{gathered}
$$

Using that F support is compact and p positive integrable, Fubini Theorem proves that the left hand is $\int_{m>x} F(m, x) p(m, x ; s) d m d x$.
On the right hand, one operates some integrations by parts with respect to $d m d x$ and duality yields

$$
\begin{align*}
& \int_{\mathbb{R}^{2}} F(m, x) p(m, x ; t) d m d x=\int_{\mathbb{R}} f(x, x) f_{0}\left(x_{0}\right) d x_{0}+\int_{0}^{t} \int_{\mathbb{R}^{2}}\left(B(x) \partial_{2} F(m, x)\right. \tag{57}\\
& \left.+\frac{1}{2} \partial_{2,2}^{2} F(m, x)\right) d s p_{V}(m, x ; s) d m d x+\frac{1}{2} \int_{0}^{t} \int_{0}^{\infty} \partial_{1} F(m, m) \tilde{p}_{V}(m ; s) d m d s
\end{align*}
$$

Finally using that $C_{k}^{2}\left(\mathbb{R}^{2}\right)$ is dense in $C_{b}^{2}\left(\mathbb{R}^{2}\right)$ Property (d) is proved.

References

[1] L. Alili, P. Patie, J.L. Pedersen, Representations of the first hitting time density of an Ornstein-Uhlenbeck process. Stoch. Models 21-4 (2005), 967-980.
[2] J. M. Azaïs, M. Wschebor, On the regularity of the distribution of the maximum of oneparameter Gaussian processes. P.T.R.F. 119 (2001), no. 1, 70-98.
[3] J.M. Ball, Strongly continuous semigroups, weak solutions and the variation of constant formula, Proceedings of the A.M.S., Vol. 63, 2, April 1977, 370-373.
[4] C. Blanchet-Scalliet, D. Dorobantu, L. Gay Joint Law of an Ornstein-Uhlenbeck Process and its Supremum. 2018. hal-01935756
[5] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
[6] H. Brown, D. Hobson, L.C.G. Rogers, Robust hedging of barrier options. Math. Finance 11, 285-314 (2001)
[7] L. Coutin and D.Dorobantu, First passage time law for some Lévy processes with compound Poisson: existence of a density. Bernoulli 17-4 (2011), 1127-1135.
[8] L. Coutin, W. Ngom, M. Pontier, Joint distribution of a Lévy process and its running supremum, 2018, EPS 180062.
[9] L. Coutin, M. Pontier (2018), Existence and regularity of law density of a diffusion and the running maximum of the first component, Statistics and Probability Letters, 153, Oct 2019, 130-138
[10] A.M.G. Cox, J. Obloj, Robust pricing and hedging of double no-touch options. Finance Stochast. 15, 573-605 (2011).
[11] E. Csáki, A. Földes, P. Salminen, On the joint distribution of the maximum and its location for a linear diffusion, Annals IHP Proba. Stat. 23 (1987), no. 2, 179-194.
[12] R.A. Doney, A.E. Kyprianou, Overshoots and undershoots of Lévy processes. Ann. Appl. Probab. 16 (2006), no. 1, 91-106.
[13] M. Duembgen, L. C. G. Rogers, The Joint Law of the Extrema, Final Value and Signature of a Stopped Random Walk, Chapter in 'Memoriam Marc Yor', Séminaire de Probabilités XLVII, L. N. in Mathematics Vol. 2137 pp 321-338.
[14] L.C. Evans, Partial differential equations, Second edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
[15] S. Hermann and E. Tanré The first-passage time of the Brownian motion to a curved boundary: an algorithmic approach SIAM Journal on Scientific Computing, 38 (2016), no. 1, A196A215.
[16] M. Hayashi and A. Kohatsu-Higa, Smoothness of the distribution of the supremum of a multi-dimensional diffusion process, Potential Analysis, 2013, 38/1, pp. 57-77.
[17] M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial Markets, Springer, 2009.
[18] A. Lagnoux, S. Mercier, P. Vallois, Probability that the maximum of the reflected Brownian motion over a finite interval $[0, t]$ is achieved by its last zero before t. Electron. Commun. Probab. 20 (2015), no. 62, 9 pp.
[19] A. Lunardi, Analytic semi-groups and Optimal Regularity in Parabolic problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.
[20] W. Ngom, thesis: Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète, IMT, 2016.
[21] D. Nualart, The Malliavin calculus and related topics Second Edition, Springer-Verlag NewYor, 2006.
[22] A. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Third edition, Springer Verlag, 2004.
[23] L. C. G. Rogers, The Joint Law of the Maximum and Terminal Value of a Martingale, Proba. Theory and Relat. Fields 95(4):451-466 • December 1993.
[24] W. Rudin, Real and Complex Analysis, McGraw-Hill Book Company, New York, third ed. 1987.
[25] L. Sacerdote, O. Telve, C. Zucca Joint densities of first hitting times of a diffusion process through two time-dependent boundaries. Adv. in Appl. Probab. 46 (2014), no. 1, 186-202.
[26] B. Roynette, P. Vallois, A. Volpi, Asymptotic behavior of the passage time, overshoot and undershoot for some Lévy processes, ESAIM PS VOL. 12, 2008, pp. 58-93.
[27] E.C. Titchmarsh, The theory of functions, 2d ed. Oxford Univ. Press, 1939.

[^0]: *coutin@math.univ-toulouse.fr, IMT, UMR 5219
 ${ }^{\dagger}$ pontier@math.univ-toulouse.fr, IMT, Université Paul Sabatier, 31062 Toulouse, France.

