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a b s t r a c t 

This paper presents a new experimental and Large Eddy Simulation (LES) database to study upscaling

effects in vented gas explosions. The propagation of premixed flames in three setups of increasing size

is investigated experimentally and numerically. The baseline model is the well-known laboratory-scale

combustion chamber from Sydney (Kent et al., 2005; Masri et al., 2012); two exact replicas at scales 6

and 24.4 were set up by GexCon (Bergen, Norway). The volume ratio of the three setups varies from

1 to more than 10,0 0 0, a variation unseen in previous experiments, allowing the exploration of a large

range of Reynolds and Damköhler numbers. LES of gaseous fully premixed flames have been performed

on the three configurations, under different operating conditions, varying the number of obstacles in the

chamber, their position and the type of fuel (hydrogen, propane and methane). Particular attention is

paid to the influence of the turbulent combustion model on the results (overpressure, flame front speed)

comparing two different algebraic sub-grid scale models, the closures of Colin et al. (20 0 0) and Charlette

et al. (2002), used in conjunction with a thickened flame approach. Mesh dependency is checked by

performing a highly resolved LES on the small-scale case.

For a given scale and with a fixed model constant, LES results agree with experimental results, for all

geometric arrangement of the obstacles and all fuels. However, when switching from small-scale cases to

medium-scale or large-scale cases this conclusion does not hold, illustrating one of the main deficiencies

of these algebraic models, namely the need for an a priori fitting of the model parameters.

Although this database was initially designed for safety studies, it is also a difficult test for turbulent

combustion models.

1. Introduction

During the explosion of a premixed gas cloud, the first issue is 

the pressure increase (the so-called overpressure) which controls 

the severity of the explosion and its impact on surrounding struc- 

tures. This overpressure can be devastating, causing fatalities and 

the destruction of large parts of industrial facilities. These phenom- 

ena are difficult to predict since they result from a complex and 

fully unsteady interaction between flame propagation, turbulence 

and geometry. They occur over a large spectrum of spatio-temporal 

scales and turbulent combustion regimes. Research in this domain 

started in the 1970s with the primary objective to develop know- 

how and tools for predicting and minimizing the effect of acci- 
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dental explosions [1] . This goal was first reached thanks to experi- 

mental campaigns and only recently using computational sciences 

and resources. Safety Computational Fluid Dynamics (SCFD) is thus 

a relatively new field of research. As for many applications deal- 

ing with turbulence and combustion, e.g. gas turbine or piston en- 

gine applications, the standard numerical approach was and still 

is the (Unsteady) Reynolds Averaged Navier–Stokes (U)RANS ap- 

proach, at least within industry. This technique gradually replaces 

simple scaling laws, which were formerly used for interpolation 

and scaling of experimental data and were shown to be largely in- 

applicable especially for explosion venting, mainly because of the 

small scale of the experimental data on which they are based and 

because of their inadequate treatment of turbulence generated by 

leaks and obstacles [1,2] . Even if URANS codes are able to give cor- 

rect predictions of the observed experimental trends, they gener- 

ally contain empirical coefficients which have to be tuned in order 

to give reasonable results [3,4] . The need for better prediction ca- 

pabilities combined with the growing computational power have 



made Large Eddy Simulation (LES) an alternative and attractive so- 

lution. Indeed, LES has the intrinsic capability to give more reliable 

predictions than URANS methods, as shown by many authors in 

gas turbine [5–8] or piston engine applications [9–11] . 

The typical research configurations used to study gas explosions 

consist in vessels with obstacles filled with a premixed flammable 

mixture. The flame is ignited and first propagates in a laminar way 

in a flow initially at rest. This laminar phase is followed by a tur- 

bulent propagation phase due to the interaction of the front with 

the obstacles and the turbulence generated behind the obstacles by 

the expanding gases. This flame-induced turbulence increases com- 

bustion intensity, leading to flames which can propagate at sev- 

eral hundreds of m/s while they are of the order of 0.5 m/s in a 

“normal” laminar flame. In the worst scenario, the initial deflagra- 

tion flame can transition to detonation. This self-acceleration by 

obstacle-generated turbulence is responsible for many severe in- 

dustrial explosions, for example on offshore platforms [1,12–14] . 

Even if detonation is not triggered, a LES SCFD code must be 

able to handle different combustion regimes, from laminar to tur- 

bulent, and their transition. This situation is of course not re- 

stricted to explosion phenomena and is very common in many 

combustion systems using ignition devices such as internal com- 

bustion engines or aeronautic engines. Accurate predictions of 

flame propagation can be achieved only with reliable models for 

turbulent combustion which are the weakest element in simula- 

tion sub-models. The turbulent combustion models developed for 

LES of reacting flows [15–20] all rely on modeling assumptions 

based on upscaling laws developed under Kolmogorov-type as- 

sumptions for turbulence scales [21–23] . Experimental databases 

are required to assess their strengths and weaknesses but they re- 

main rare and delicate to build, even for the simplest flows. Most 

available experimental data for turbulent combustion correspond 

to flows taking place at atmospheric pressure in vessels of the 

order of a few liters: the volume of most car engines chambers 

vary from 0.1 to 2 l and gas turbines chambers are only slightly 

larger. When larger chambers are used (furnaces for example), 

measurements become difficult. In terms of models, this means 

that the range of Damköhler and Reynolds numbers explored with 

these systems remains narrow [22,24,25] . Consequently, all turbu- 

lent combustion models are tested over a limited range of scales so 

that even wrong models can work without revealing their limita- 

tions because no experimental data is available to challenge them. 

Even DNS cannot help because the range of spatio-temporal scales 

which are reached in DNS remains narrow and does not allow up- 

scaling tests [22,26] . Furthermore, many experimental configura- 

tions used for model validation, such as turbulent bombs or steady 

burners, suffer from the same limitations: results depend strongly 

on the turbulence, either present at ignition time (for turbulent 

bombs) or injected at the inlet (for steady burners). Finally, LES in 

large domains are quite difficult to perform without massive com- 

puting capacities. 

In order to help developing and validating turbulent combus- 

tion models, a new experimental database (called SydGex in the 

following) is presented in this paper. Although originally designed 

for safety studies, its usefulness may go well beyond this initial ap- 

plication. The database consists in a set of three experiments of ex- 

actly similar shapes and increasing size scaled by 1, 6 and 24.4. The 

smallest experiment is the vented explosion chamber from Syd- 

ney University [27,28] . This is a square cross section chamber filled 

with various obstacles (1–3 baffle plates plus a central square cross 

section obstacle). Compared to other laboratory-scale experiments 

[29–37] , this configuration is characterized by a small volume of 

0.625 l (while the volume in the above references typically ranges 

from 2.98 l [29] to 56.3 l [31] ), a relatively low length to diameter 

(or height) ratio of 5 (ratios from 2 [31] to 32 [36] in the above 

references) and an intermediate blockage ratio of 0.24 for the baf- 

fle plates and 0.5 for the central obstacle (ratios from 0.2 [32] to 

0.8 [32] in the above references). This is also one of the few exper- 

iments (with [32] ) which provides data for various fuels, namely 

propane, methane and hydrogen. This configuration is particularly 

well suited for LES and model validation: 

• As mentioned before, the dimensions of the combustion cham- 

ber are small and perfectly compatible with LES and the current

computational resources.

• Initial conditions are perfectly defined: the flow is at rest. For

decades, the question of initial conditions has been a major

limitation of our capacity to evaluate models for turbulent pre- 

mixed flames. If the turbulence in which the flame develops is

not known with precision, it is impossible to validate a model

because a simple tuning of the initial turbulent flow is suf- 

ficient to match the experimental flame speed. For example,

most turbulent flames propagating in fan-stirred bombs have

suffered from this limited precision in terms of initial turbulent

state [38–40] .

• Boundary conditions are also well defined. The thermal condi- 

tions on the walls are clear since walls do not have enough

time to heat up and their temperature remains equal to the ini- 

tial temperature.

This configuration has already been extensively studied with 

LES. Gubba and co-workers obtained very convincing results for a 

propane–air mixture [41–44] . A wide range of configurations were 

computed to explore various aspects such as the effects of location 

and number of the solid obstacles as well as area blockage ratio. 

In these studies an algebraic flame surface density model was con- 

sidered in order to account for the unresolved part of the sub-grid 

scale reaction rate, either with a constant-based formulation or a 

dynamic one. It was found that the LES predictions are slightly im- 

proved by the use of the dynamic procedure [42,44] . In [45] , this 

work was extended to a lean hydrogen–air mixture. Accurate pre- 

dictions of the flame shape and peak overpressure were again ob- 

tained for different numbers and locations of obstacles. 

The two other experiments (performed by GexCon in Norway) 

are scaled-up versions of the Sydney test rig at scale 6 and 24.4. 

With a volume of 135 and 9 079 l respectively, these two new 

configurations largely exceed the size of classical laboratory-scale 

experiments discussed above. The corresponding volume ratio of 

the combustion chamber then varies from 1 (for the Sydney case) 

to 216 for the medium-scale case and to 14,526 for the large-scale 

case, a range which has never been reached before in any turbu- 

lent combustion experiment. Since the geometry and the operating 

conditions of the three setups are the same, the only parameters 

changing from one case to another are the values of the Damköh- 

ler and Reynolds numbers. This database thus constitutes a unique 

set of results to address the overarching problem of turbulent com- 

bustion: how to write a good turbulent combustion model and val- 

idate it over a wide range of scales? Here, the conditions reached 

in the SydGex database in a classical turbulent combustion dia- 

gram ( Fig. 1 ) cover a much wider range than what is observed 

in all canonical bombs or engines: u ′ /S 0 
l 
can reach 20, l t /δ0 l is of 

the order of 1500 and, even if detonation is never triggered, flame 

fronts can propagate at velocities close to 400 m/s (these figures 

are extracted from the simulations described thereafter). 

The method used here to analyze the performance of the LES 

turbulent combustion models differs from what is done usually for 

steady burners for example, where one or two regimes are tested 

extensively using full fields of velocity, species and temperature 

[7,15,46] . For venting chambers, the main qualitative indicator of 

the model quality is the flame position visualization (which pro- 

vides a flame speed) and the quantitative data to capture is the 

pressure curve versus time which is controlled by two phenomena: 

the overall combustion rate and the mass flow rate at the venting 



Fig. 1. Classical turbulent combustion diagram for premixed turbulent flames

[22,23] as a function of the length ratio (turbulence integral scale l t /flame thickness

δ0 
l ) and velocity ratio (rms (root mean square) velocity u 

′ /flame speed S 0 
l ). The ap- 

proximate locations of the SydGex database are indicated by the three oval curves:

Sydney’s small-scale experiment (SS), GexCon’s medium-scale experiment (MS) and

GexCon’s large-scale experiment (LS).

chamber exit. The pressure curve is very sensitive to the reaction 

rate which is the quantity we want to investigate. No comparison 

with velocity, temperature or species field will be performed here 

but this is compensated by the fact that the comparison is not per- 

formed for one or two regimes but for more than 10 cases where 

the overall size of the setup, the fuel type and the configuration 

(number and location of obstacles) will be changed systematically. 

The SydGex database is presented in Section 2 . The setup of 

the small-scale Sydney experiment is briefly recalled before pre- 

senting the two replicas at medium- (Sydney’s experiment × 6) 

and large-scale (Sydney’s experiment × 24.4). The LES code and 

sub-grid models are described in Section 3 . LES of different op- 

erating conditions were performed, varying the number of obsta- 

cles, their position and the type of fuel (hydrogen, propane and 

methane). Sections 4 (small-scale simulations) and 5 (medium- 

scale and large-scale simulations) focus on the influence of the tur- 

bulent combustion model comparing two different sub-grid scale 

models, namely the algebraic closures of Colin et al. [47] and 

Charlette et al. [48] , used in conjunction with the Thickened Flame 

(TF) approach [47] . This exercice is similar to that done by Di Sarli 

et al. [49] or Wen et al. [50] , except that their comparison of vari- 

ous sub-grid scale combustion models relied on only one configu- 

ration, whereas many different configurations of varying geometry 

and size are used here to provide a more challenging assessment 

of turbulent combustion models. 

2. Experimental setup

The SydGex database contains three experimental setups: the 

Sydney experiment called ‘original’ or ‘small-scale’ (SS) (0.25 m 

long) configuration and its two upscaled versions, the ‘medium- 

scale’ (MS) (1.5 m long) and ‘large-scale’ (LS) (6.1 m long) configu- 

rations of GexCon. 

2.1. Small-scale experiment 

The original Sydney experiment [27,28] is sketched in Fig. 2 . 

This semi-confined configuration consists in a square cross section 

(0.05 × 0.05 m 2 ), 0.25 m long chamber with solid obstacles. Its 

volume is 0.625 l. Three removable baffle plates can be placed at 

various distances from the ignition source (overall blockage ratio of 

0.4) while the central square obstacle (1.2 cm square, blockage ra- 

Fig. 2. Explosion chamber configuration of Sydney [27,28] . The vessel is orientated

vertically in the experiment: the bottom end of the vessel is on the left of the figure

and the top end on the right.

Table 1

Configurations studied for the small-scale (SS) experi- 

ment of Sydney [28] .

Fuel Configuration

BBBS OBBS OOBS BOOS

LPG X X X X

CNG X

H 2 X

tio of 0.24) is fixed [28] . The bottom end of the chamber is closed 

and the top end is opened out to the atmosphere. The vessel is ini- 

tially filled with a premixed mixture of fuel and air at atmospheric 

pressure and temperature. The mixture is then ignited by laser at 

the closed end. Experimental results include pressure signals and 

flame front visualizations for three different fuels, namely hydro- 

gen (equivalence ratio 8= 0.7), LPG (95% C 3 H 8 , 4% C 4 H 10 and 1% 

C 5+ hydrocarbons by volume) ( 8= 1.0), and CNG (88.8% CH 4 , 7.8% 

C 2 H 4 , 1.9% CO 2 and 1.2% N 2 with the remaining 0.3% being a mix- 

ture of propane, propene, butane and pentane) ( 8= 1.0) [28] . 

The arrangement of the baffle plates control the flame speed, 

the flame front shape and the generated overpressure. The nomen- 

clature of [28] is used here to name the different configurations: 

for example, a configuration named BBOS refers to baffle plates 

(B) at the first two locations (i.e., close to the ignition point) 

and a small central obstacle (S) while configuration OOBS refers 

to a unique baffle plate located close to the central obstacle. For 

each configuration, the experiment was repeated at least 30 times 

to obtain reliable results. The configurations computed by LES in 

Section 4 are summarized in Table 1 : they allow to study the in- 

fluence of the number of grids (OOBS versus OBBS and BBBS), the 

influence of the position of the grids (BOOS versus OOBS) and the 

influence of the fuel (LPG versus PNG and H 2 ). 

2.2. Medium- and large-scale experiment 

The medium- and large-scale experiments have been set up by 

GexCon in 2012. Almost all the available measurements and di- 

agnostics are shown in this paper, a few additional results being 

available in [51] . Raw data are available upon request. 

The medium-scale experiment is a replica of the small-scale ex- 

periment of Sydney at scale 6. The combustion chamber is a 1.5 

× 0.3 × 0.3 m 3 volume (135 l) with a vent opening. Contrary to 

the Sydney experiment where the vessel was oriented vertically, 

the vessel was positioned horizontally on a table due to the higher 

intensity of the explosion. The three aluminum grids were posi- 

tioned vertically inside the vessel. All dimensions of the MS rig 



Fig. 3. Top view of the medium-scale (MS) test vessel. Measurements are given in

mm. The dots indicate the positions of the four pressure transducers (P1–P4).

Fig. 4. Top view of the large-scale (LS) test vessel. Measurements are given in mm.

The dots indicate the positions of the four pressure transducers (P1–P4).

Table 2

Mixture composition and ignition system used in the MS and LS configurations.

MS LS

Composition - Class 2.5 propane - Industrial propane

(99.5% purity), 8= 1 (95% purity), 8= 1 

- Class 2.5 methane

(99.5% purity), 8= 1 

Ignition system Spark generator (car coil) Oscillating spark

Electrodes location 15 mm from the wall 50 mm from the wall

Interelectrode distance 4 mm 4 mm

( Fig. 3 ) correspond to the dimensions of the SS experiment at scale 

6 (within a margin of 4% due to the manufacturing process). 

The large-scale experiment at GexCon ( Fig. 4 ) is a replica of the 

Sydney small-scale experiment at scale 24.4, leading to a 6.1 × 1.22 

× 1.22 m 3 (9 079 l) vessel. The vessel is positioned horizontally, 

directly on the ground. The removable grids are made out of steel. 

The explosion experiments were performed with stoichiomet- 

ric mixtures of methane and propane in air. For the MS tests, class 

2.5 methane and propane were used whereas industrial propane 

was used for the LS tests. In order to contain the gas mixture 

within the vessel during mixing and filling, the open end was cov- 

ered with a thin plastic sheet. During the MS tests the plastic foil 

was clamped over the vent opening and was not removed prior 

to ignition. For the LS tests, the plastic foil was held in place by 

a pneumatic system and released just before ignition. Two differ- 

ent ignition sources were used. For the MS tests, a single spark 

generator based on a car coil was used. In this case, the spark ac- 

tivates immediately after it is triggered. For the LS tests, ignition 

is performed with an oscillating spark, which ignites the mixture 

5–25 ms after it is triggered. Additional details are given in Table 2 . 

The overpressure was measured using 4 piezo-electric pressure 

transducers from Kistler (type 7261 for the LS experiment and 

Fig. 5. Experimental overpressure–time traces for the three shots performed on the

MS test rig for the BBBS configuration (C 3 H 8 , 8= 1). 

701A for the MS experiment) connected to Kistler charge ampli- 

fiers (type 5073 for the LS experiment and 5011A for the MS exper- 

iment). The 7261 and 701A transducers have a frequency response 

of 13 kHz and 70 kHz, respectively. The position of the pressure 

transducers P1–P4 is given in Figs. 3 and 4 . In practice the four 

pressure signals are always very similar: since P1 is closest to the 

position of the pressure transducer used in the SS configuration, 

only the pressure signal extracted at this position will be shown in 

the following sections. 

The MS tests were recorded using a Phantom v210 high-speed 

camera at 20 0 0 fps with full resolution of 1280 × 800 in color. 

For the MS case, a fast LED light-box unit was lit in parallel with 

the ignition source to measure flame propagation speeds from the 

high-speed video recordings. For the LS experiment, video record- 

ing was impossible and the pressure-time traces are the only ex- 

perimental material available for LES validation. 

Due to their size, the MS and LS experiments are more delicate 

to setup and much more costly than the SS experiment. For this 

reason, the number of configurations studied was reduced com- 

pared to the original database of Masri et al. The number of shots 

for each configuration was also reduced: instead of 30 (or more) 

shots for each configuration of the SS experiment, only 2–6 shots 

were performed here: all shots showed a quite good repeatability 

with low cyclic variations (see [51] for more details). As an illus- 

tration, Fig. 5 shows the overpressure–time traces of three shots 

performed on the MS test rig for the BBBS configuration (C 3 H 8 , 

8= 1). The peak pressure (810, 824 and 873 mbar), its rate of 

change (maximum values of 240, 286 and 294 bar s −1 ), and the 

time taken to reach the peak (59.5, 60.1 and 59.3 ms) are very 

similar from one shot to another. Similar results were obtained for 

all configurations for the peak pressure and its rate of change but 

larger variations were observed for the time to reach peak pres- 

sure, probably due to variations in the ignition system. To remove 

any doubt about the results, this quantity was not used for LES val- 

idation. All pressure–time traces plotted in the following sections 

will thus be shifted in time by a quantity 1t peak = t LES 
peak

− t exp 
peak

in 

order to match the experimental peak pressure instant t exp 
peak

(in 

practice all LES peak pressure instants t LES 
peak 

are larger than the ex- 

perimental peak pressure instants t exp 
peak 
). Note that the uncertain- 

ties mentioned here are much smaller than the variations which 

are investigated: for example, the mean peak pressure for the SS 

BBBS configuration is about 110 mbar, it reaches 800 mbar for the 

MS BBBS and 1600 mbar for the LS BBBS configurations. 

The test matrices available for LES validation on the MS and LS 

experiments are shown in Tables 3 and 4 . 



Table 3

Configurations studied for the medium-scale (MS) ex- 

periment of Gexcon.

Fuel Configuration

BBBS OBBS OOBS BOOS

LPG X X X

CNG X

H 2

Table 4

Configurations studied for the large-scale (LS) experi- 

ment of Gexcon.

Fuel Configuration

BBBS OBBS OOBS BOOS

LPG X X

CNG X

H 2

3. Numerical setup

The solver used for all LES is AVBP [7,52–54] . All computations 

have been performed with the same numerical setup. The compu- 

tations only differ by the scale (SS, MS or LS) and the fuel (and its 

corresponding chemical scheme). AVBP solves the unsteady com- 

pressible and reactive multi-species Navier–Stokes equations on 

unstructured grids. It is a cell-vertex/finite element code, explicit 

in time. Simulations are performed with the TTGC finite element 

Taylor–Galerkin convective scheme [55] , which is 3rd order in 

space and time and has a low dissipative error. The diffusion op- 

erator (2 1 stencil) relies on a vertex centered formulation com- 

bined with a finite element discretization. This operator predicts 

correct dissipation levels at the smallest resolved scales and damp- 

ens high wavenumber oscillations [56] . An explicit time-integration 

is used for the species chemical source terms with a finite-element 

based spatial discretization [56] . Gravity is not accounted for in the 

LES since its contribution in the momentum and energy equations 

is much lower than the contributions of the different fluxes and 

source terms. 

The different models used in all computations are listed below: 

• Sub-grid scale turbulence is modeled by the WALE viscosity

based model [57] .

• Chemistry is modeled by reduced schemes [58] which match

the laminar flame speed, the flame thickness and the burnt

gases adiabatic temperature. CNG and LPG have been replaced

by their main respective component in the computations: CNG

was replaced by CH 4 (88.8% of CNG volume) and LPG by C 3 H 8
(95% of LPG volume). Given the experimental uncertainties rela- 

tive to the mixture (actual composition of LPG and CNG, equiv- 

alence ratio, supposedly perfectly premixed mixture) and, more

basically, given the classical uncertainties found in the litera- 

ture regarding laminar flame speeds (even for the simplest fu- 

els such as CH 4 or C 3 H 8 , discrepancies of 5% to 10% are of- 

ten observed), this simplification seems reasonable. Three dif- 

ferent reduced chemical schemes have thus been used: two

two-step reduced schemes for CH 4 –air and C 3 H 8 –air combus- 

tion (oxydation and CO–CO 2 equilibrium) and one one-step re- 

duced scheme (oxidation only) for H 2 –air combustion [51] .

• Ignition is a complex phenomenon (plasma formation, shock

waves, radiative effects, ...) and its modeling is a task that ex- 

tends far beyond the scope of this study. Here, calculations are

initialized by a small hemisphere of burnt gases (radius 1 cm)

at the ignition point. This model is acceptable here since it

mainly impacts the time to reach the peak pressure (a quantity

which we are not interested in, see Section 2 ) and not the mag- 

nitude of the peak pressure itself [45] . Furthermore it matches 

well the real conditions of ignition: since the flow is at rest ini- 

tially, assuming that the flame will still be laminar and hemi- 

spherical when it reaches a 1 cm radius is reasonable. 

• The combustion model associates the Thickened Flame for LES

(TFLES) approach [19,47,59,60] to resolve the flame front on the

computational mesh and an efficiency function to account for

the loss of wrinkling at the sub-grid scale due to flame thicken- 

ing. While various other models have been used for explosions

[43,49,50,61,62] , we focus on methods which explicitly resolve

the inner flamelet structure in order to capture curvature, strain

and non adiabaticity effects. The thickening factor F is com- 

puted in a dynamic way: it is maximum in flame zones and de- 

creases to unity in non-reactive zones, using a flame sensor de- 

pending on the local temperature and mass fractions [59] . Two

different efficiency functions have been tested, namely the for- 

mulation of Colin et al. [47] and that of Charlette et al. [48] .

The efficiency function is defined as the wrinkling 41 ratio

between the non-thickened reference flame and the thickened

flame:

E = 
41(δ0 

l 
) 

41(Fδ0 
l 
) 

(1) 

where δ0 
l 
is the laminar flame thickness (calculated from the 

temperature gradient) of the non-thickened flame and F is 

the thickening factor. δ0 
l 
is considered as constant during the 

whole computation, neglecting the effect of the overpressure. It 

is equal to 0.34 mm for C 3 H 8 –air cases, 0.41 mm for CH 4 –air 

cases and 0.12 mm for H 2 –air cases. 

In the formulation of Colin et al., the wrinkling factor 41 is 

defined as: 

41 = 1 + βColin 
2 ln (2) 

3 c ms 

[

Re 1 / 2 t − 1 
]ŴColin

(

1

δ0 
l 

,
u ′ 1
S 0 
l 

)

u ′ 1
S 0 
l 

(2) 

where ŴColin is a function describing the ability of vortices to 

effectively wrinkle the flame front. S 0 
l
is the laminar flame 

speed (equal to 38.4 cm s −1 for C 3 H 8 –air cases, 36.3 cm s −1 

for CH 4 –air cases and 128.0 cm s −1 for H 2 –air cases), 1 is the 

filter size, u ′ 
1
is the sub-grid scale turbulent velocity, Re t is a 

Reynolds number based on u ′ 
1
and on an estimation of the tur- 

bulent integral length scale l t , and c ms = 0 . 28 . For the present 

computations, l t is estimated to be equal to the spacing be- 

tween two bars of a baffle plate (i.e. 5 mm at SS, 30 mm at 

MS and 122 mm at LS). βColin is a model parameter usually set 

to 0.3 [46,63,64,65,66] . 

In the formulation of Charlette et al., the wrinkling factor has 

an exponent expression: 

41 = 

(

1 + min 

[

1

δ0 
l 

, ŴCharlette 

(

1

δ0 
l 

,
u ′ 1
S 0 
l 

, Re 1

)])βCharlette

(3) 

where ŴCharlette plays a role equivalent to ŴColin and Re 1 is 

the sub-grid scale turbulence Reynolds number. As for the 

Colin et al. expression, a model parameter βCharlette has to be 

specified. Following the original paper of Charlette et al. [48] , 

βCharlette is set to 0.5. 

These algebraic closures for the flame wrinkling potentially 

have two drawbacks for the simulations of explosions: 

− a conceptual drawback, since they assume an equilibrium 

between turbulence motions and flame wrinkling, an hy- 

pothesis which is not justified during the whole explosion 

scenario, as the flame is laminar at early stages, wrinkling 

up slowly before reaching a fully turbulent regime. 

− a practical drawback, linked to the previous point, since the 

outcome of these models highly depends on the value of the 

model parameters βColin or βCharlette . 



Fig. 6. Longitudinal cuts of the mesh passing through the middle of the combustion chamber for configuration BBBS SS. (a) Combustion chamber. (b) Zoom around the third

baffle plate and the central obstacle. (c) Global view of the computational domain including the plenum which mimics the atmosphere. All dimensions are in mm.

The computational domain includes the venting chamber and 

a plenum, located at its outlet, which mimics the atmosphere. For 

all configurations, meshes are made of tetrahedral elements. The 

number of elements is constant for all LES configurations at all 

scales, around 20 million. Figure 6 shows a typical mesh for con- 

figuration BBBS SS. In the first two thirds of the combustion cham- 

ber ( x < 160 mm), the mesh resolution 1x (calculated from the 

nodal volume) is about 0.5, 3 and 12.2 mm respectively for the 

SS, MS and LS experiments. This mesh density has been chosen 

in order to ensure that the flame, even thickened, remains thinner 

than the distance between the bars of a baffle plate. As an exam- 

ple, for C 3 H 8 –air LES, the resulting maximum thickening factors F

are of the order of 7.3 at SS, 44 at MS and 179 at LS (the flame 

is resolved on 5 grid points). The mesh is progressively coars- 

ened in the last third of the chamber, well after the central obsta- 

cle. The resolution at the exit of the combustion chamber reaches 

1.5, 9 and 37 mm respectively for the SS, MS and LS configura- 

tions. The whole domain is initialized at rest. The venting chamber 

is initialized with a perfectly premixed mixture ( 8= 1.0 for cases 

with CH 4 –air or C 3 H 8 –air mixtures, 8= 0.7 for H 2 –air mixtures) 

at atmospheric pressure and temperature. The plenum is filled 

with air only. The walls of the venting chamber and the obstacles 

are modeled as non-slip walls. Navier–Stokes Characteristic Bound- 

ary Conditions (NSCBC) [67,68] are used on the borders of the 

plenum. 

All LES were performed on 4096 processors of the BlueGene/Q 

machine Turing from GENCI-IDRIS. For SS configurations, about 

15 ms of physical time are simulated, 80 ms for MS configurations 

and 400 ms for LS configurations. If the physical time to simulate 

increases with the size of the configuration, this is also the case for 

the time step which is here controlled by convection (the acoustic 

CFL number is 0.7 at all scales): it increases from about 0.05 µs at 

SS to 0.3 µs at MS and 1.4 µs at LS. As a consequence, since the 

computational grids are comparable (20 million cells), the compu- 

tation cost for one LES is almost constant for all configurations, 

SS, MS or LS: about 10 0,0 0 0 core-hours for an elapsed time of 

24 h. 

To verify mesh independency for the SS case, an additional LES 

called VRLES (Very Refined LES) was performed on 131,072 proces- 

sors of the BlueGene/Q machine Mira from ALCF (INCITE award) 

using a finer mesh of 973 million cells ( Section 4.3 ). 

4. LES of the small-scale experiment

Note that some of the small-scale LES presented hereafter have 

been already mentioned in [69] . However, for the sake of clarity 

and exhaustiveness, the full set of small-scale results is presented 

here. 

4.1. Base case: BBBS configuration, C 3 H 8 

Figure 7 shows LES images of flame propagation compared with 

experiments in the SS case [28] . Only the LES performed with the 

efficiency function of Colin et al. is shown here but the results are 

qualitatively similar with the efficiency function of Charlette et al. 

In the early stage of propagation, the flame is laminar and hemi- 

spherical. At t − 1t peak = 6 ms, it hits the first baffle plate passing 

first through the two central passages and then through the lat- 

eral passages. The four finger-shaped flames merge together before 

reaching the second baffle plate ( t − 1t peak = 8 ms). At that point, 

the flame is still almost laminar since the turbulence generated in 

the wake of the first obstacle is very low. When touching the sec- 

ond baffle plate, the flame starts accelerating ( t − 1t peak = 9.6 ms). 

Four fingers are formed again but this time, they begin to be wrin- 

kled by the higher turbulence level encountered behind the ob- 

stacle ( t − 1t peak = 10 ms). Between the second and third obstacles, 

due to the higher flame front speed, there is not enough time for 

the different fingers to merge again. They finally hit the third baffle 

plate and the central obstacle ( t − 1t peak = 10.8 ms), while contin- 

uing to accelerate. All these phases are well reproduced by LES. 

The evolution of the speed of the leading point of the flame as 

a function of its position is shown in Fig. 8 (left). Indications of 

the corresponding physical time t − 1t peak are also provided to 

compare with overpressure–time traces shown afterwards ( Fig. 12 ). 

This speed is controlled by dilatation and by the turbulent com- 

bustion model. The LES performed with the model of Colin et al. 

reproduces perfectly the different phases of propagation and the 

successive flame accelerations (especially around the second baf- 

fle plate) and decelerations (mainly between the second and third 

baffle plates). Some discrepancies are observed downstream of the 

central obstacle but this may be partly due to the limited resolu- 

tion of high-speed images. In this area and considering the high 

flame speed, the position of the flame front can only be reported 

every 2 cm, which is not enough to obtain an accurate estimate 

of its speed. At the peak pressure instant t − 1t peak = 11.44 ms, the 

leading point of the flame front is already far downstream of the 

central obstacle but the main part of the reaction rate is still lo- 

cated around the obstacle. 

With the model of Charlette et al., the LES matches the exper- 

iments up to the second baffle plate. From the third baffle plate, 

it starts overestimating the flame front speed. This may be di- 

rectly attributed to the modeling of the sub-grid scale wrinkling, 

as confirmed by Fig. 8 (right) which compares the reaction rates 

(total ˙ ω tot , resolved ˙ ω res and consequently sub-grid scale ˙ ω sgs = 

˙ ω tot − ˙ ω res ) obtained with the Colin et al. and Charlette et al. mod- 

els. The total reaction rates of both models follow exactly the same 

trends as for the flame front speed: equal up to the second baffle 

plate and very different from the third baffle plate. For both LES, 



Fig. 7. Flame propagation in the configuration BBBS SS (C 3 H 8 , 8= 1). Left : time sequence of LIF-OH images [28] . Right : time sequence extracted from the LES (visualization 

of the reaction rate). The corresponding physical times t − 1t peak are given at the top of each image. 

Fig. 8. LES of the configuration BBBS SS (C 3 H 8 , 8= 1) with the models of Colin et al. and Charlette et al. Left : evolution of the flame front speed as a function of the flame 

front position. Black arrows shows the corresponding physical time t − 1t peak (note that 1t peak is different for each LES as explained in Section 2.2 ). Right : total ( ̇ ω tot ) and 

resolved ( ̇ ω res ) reaction rates.

Fig. 9. Field of efficiency function ( Eq. (1) ) with the Colin et al. (bottom) and Charlette et al. (top) models and isoline of temperature T = 1500 K (black line) when the flame 

interacts with the central obstacle (same location of the flame front). Configuration BBBS SS (C 3 H 8 , 8= 1). 

the resolved reaction rates are almost the same during the whole 

computation, revealing a low impact of the sub-grid scale model- 

ing on the resolved scales. However, the sub-grid scale modeling 

itself strongly affects the results, especially from the third baffle 

plate. When the flame interacts with the central obstacle, the sub- 

grid scale reaction rate contributes between 30% and 50% to the 

total reaction rate and up to 70% downstream of the central ob- 

stacle. This highlights the great importance of the sub-grid-scale 

combustion model for these simulations, as shown by Di Sarli et al. 

[70,71] . 

Figure 9 displays a field of efficiency function E ( Eq. (1) ) ob- 

tained with the two models for the same location of the flame 

front, when the flame interacts with the central obstacle. At these 

location and time, turbulence levels are high and the range of E

values observed are representative of the maximum values ob- 

tained in the LES. Whatever the model used, the efficiency function 

activates in the same locations, mainly around the central obsta- 

cle, around and in the wake of the second and third baffle plates. 

But the levels of efficiency factors may be locally very different: if 

they are relatively similar around the central obstacle, this is no 



Fig. 10. Scatter plot of the efficiency function E as a function of the sub-grid scale turbulent velocity u ′ 1 for the models of Colin et al. ( left ) and Charlette et al. ( right ). The 

analytical functions ( Eqs. (2) and (3) ) are also plotted using a constant 1 = 0 . 5 mm. Data are extracted from the snapshots displayed in Fig. 9 . Configuration BBBS SS (C 3 H 8 , 

8= 1). 

Fig. 11. Probability density function of the efficiency function E for the models of 

Colin et al. and Charlette et al. Data are extracted from the snapshots displayed in

Fig. 9 . Configuration BBBS SS (C 3 H 8 , 8= 1). 

longer the case upstream of it, where the model of Charlette et al. 

predicts much higher levels. This is confirmed by Figs. 10 and 11 , 

which show the scatter plot of the efficiency function as a function 

of the sub-grid scale turbulent velocity u ′ 
1
and the probability den- 

sity function of E , respectively. The analytical functions (using Eqs. 

(2) and (3) ) are also superimposed to the scatter plots. The model 

of Colin et al. exhibits a large range of efficiency, uniformly dis- 

tributed over the turbulence intensity while the model of Charlette 

et al. exhibits a strong peak around 3 due to the “bending effect”

incorporated in its formulation at high u ′ 
1

/S 0 
l
[48] . The scatter plot 

dispersion around the analytical expressions ( Eqs. (2) and (3) ) is 

due to the non-exactly uniform mesh size. Overall, the model of 

Charlette et al. generates higher values of the efficiency function 

except for very high turbulence levels ( u ′ 
1

> 12 . 5 m s −1 ). Conse- 

quently, it also predicts higher reaction rates and flame speeds 

than the model of Colin et al., from the beginning of the turbu- 

lent propagation phase (i.e. between the second and third baffle 

plates). 

The resulting overpressure–time traces (measured in the base 

plate) are plotted in Fig. 12 . For the experimental data, the trace 

represents the envelope of the different realizations. The model 

of Charlette et al. predicts higher levels of overpressure than the 

model of Colin et al. and overestimates the experimental peak 

value (173 mbar instead of 113 mbar). With the model of Colin 

et al., the rate of pressure rise, the peak pressure and the postpeak 

phase are correctly described. The pressure oscillations observed 

after 12 ms at a frequency of about 650 Hz correspond to the ex- 

citation of the first longitudinal acoustic mode of the duct (consid- 

ering a non zero impedance at its exit) and are perfectly captured 

by LES [51] . 

Fig. 12. Pressure–time traces for configuration BBBS SS (C 3 H 8 , 8= 1). Comparison 

between experiments (envelope) and LES performed with the models of Colin et al.

and Charlette et al.

This shows that the model of Colin et al. is well suited for de- 

scribing the whole explosion transient. Even the laminar to tur- 

bulent transition phase is correctly captured despite the underly- 

ing equilibrium assumption on which it is based. However, this 

result is highly dependent on the value of the model constant 

βColin . Figure 13 (left) shows the overpressure for three different 

values of βColin (0.1, 0.3 (standard value) and 1.0). Higher βColin 

values lead to faster flame propagation and higher overpressure. 

For βColin = 1 . 0 , the maximum overpressure is about 185 mbar 

while it is about 113 mbar for βColin = 0 . 3 and only 67 mbar for 

βColin = 0 . 1 . The same conclusion holds for the model of Charlette 

et al. ( Fig. 13 (right)): if a constant βC harlett e = 0 . 4 is used instead of 

the original value 0.5, the prediction of the overpressure is greatly 

improved and matches almost perfectly the result obtained with 

the model of Colin et al. with βColin = 0 . 3 . This shows that both 

models are able to reproduce the experimental behavior, although 

their formulations are sensibly different. But this also shows that 

the choice of the constant for this kind of algebraic closure re- 

mains a major challenge. The recent development of dynamic mod- 

els [20,72] , theoretically able to automatically adjust the model pa- 

rameters during the simulation, could be a promising way-out to 

solve this issue in the future. 

For the following parametric variations, only the results ob- 

tained with the model of Colin et al. will be shown and discussed. 

4.2. Parametric variations 

The effect of different parametric variations are now studied: 

• effect of the number of obstacles;



Fig. 13. Pressure–time traces for configuration BBBS SS (C 3 H 8 , 8= 1). Comparison between LES performed with the models of Colin et al. ( left ) and Charlette et al. ( right ) for 

different values of the model constant ( βColin = 0.1, 0.3 or 1.0; βC harlett e = 0.3, 0.4 or 0.5). To illustrate the differences in propagation speed, LES traces are not shifted in time 

individually but by a same quantity using the peak pressure instant t LES 
peak obtained with βColin = 0.3 and βC harlett e = 0.4 for the left and right figures, respectively. 

Fig. 14. Comparison of overpressure signals between LES (efficiency model of Colin et al.) and experiments (envelope) when changing the number of baffle plates (SS, C 3 H 8 ,

8= 1). 

• effect of the location of the obstacles;

• effect of the type of fuel.

The objective is to check if the numerical setup used in 

Section 4.1 to simulate the BBBS-C 3 H 8 case is able to handle the 

different configurations described in Table 1 without any adjust- 

ment. All numerical models and parameters are kept unchanged, 

except the laminar flame thickness and the laminar flame speed 

required to calculate the thickening factor and the efficiency func- 

tion, which are adapted to the considered mixture (C 3 H 8 , CH 4 or 

H 2 ) as mentioned in Section 3 . 

The effect of the number of baffle plates is shown in Fig. 14 . 

LES overpressure time traces are compared to the experimental 

results for three configurations with 1, 2 or 3 baffle plates re- 

spectively, the fuel being C 3 H 8 . LES reproduces the overpressure 

magnitude for any of the three configurations: the flame is ac- 

celerated when adding obstacles, and the resulting overpressure 

is higher. As already mentioned by Masri et al. [28] , this re- 

sult is mainly due to an increasing global level of turbulence in 

the chamber as the number of obstacles increases. Postpeak os- 

cillations are correctly captured as well. The effect of the posi- 

tion of the obstacles is also well captured by LES ( Fig. 15 ). For 

this comparison, only one baffle is used, in first (configuration 

BOOS) or third position (configuration OOBS). These two config- 

urations are very different since OOBS shows extensive wrinkling 

after the baffle plate and around the central obstacle while in 

BOOS, the flame front is quasi laminar all along the channel. In- 

deed for configuration BOOS, the slight turbulence introduced by 

the first baffle is totally dissipated before the flame reaches the 

central obstacle. Figure 15 thus confirms that, as expected, the 

model of Colin et al. is able to correctly degenerate towards a 

laminar behavior in the absence of turbulence. Figure 16 high- 

lights the fuel influence for different explosions performed in con- 

figuration BBBS. H 2 explosions generate the highest overpressures 

(and the highest flame front speeds, not shown here), followed 

by C 3 H 8 and CH 4 explosions, as expected from their respective 

flame speeds: S 0 
l ( H 2 , 8 = 0 . 7 ) = 128 cm s −1 > S 0 

l ( C 3 H 8 , 8 = 1 ) = 

38 . 4 cm s −1 > S 0 
l ( CH 4 , 8 = 1 ) = 36 . 3 cm s −1 . Even though LES cor- 

rectly reproduces this global trend, it significantly underestimates 

the overpressure for H 2 . In this case, the overpressure peak is 

significative (about 0.8 bar in the experiments) and the assump- 

tion that the laminar flame thickness remains constant during the 

whole computation (see Section 3 ) is incorrect. Indeed, if the pres- 

sure increases from 1 bar to 1.8 bar, it means that the flame thick- 

ness should in fact decrease to 40% when compared to atmospheric 

conditions, causing the flame to be locally under resolved. Even if 

this issue is limited to a relatively short duration compared to the 

total duration of the explosion, the underestimation of the thick- 

ening and efficiency factors ( Eqs. (2) and (3) ) may be a reason for 

the lower overpressure obtained in the LES. One possible approach 

to address this problem in the future is to introduce a pressure- 

dependent flame thickness in the expression of the efficiency func- 

tion in order to get a pressure-dependent thickening. 

To conclude with the SS results, LES performed with the model 

of Colin et al. is able to reproduce the whole transient of an 

explosion scenario for all configurations and fuels. This was in 

some ways unexpected since this kind of algebraic closure is a 

priori not tailored to handle out-of-equilibrium situations such as 

laminar–turbulent and turbulent–laminar transitions. However, as 

mentioned in the introduction, the range of variations in terms of 

Reynolds and Damköhler numbers is narrow in this case and larger 



Fig. 15. Comparison of overpressure signals between LES (efficiency model of Colin et al.) and experiments (envelope) when changing the position of the baffle plate (SS,

C 3 H 8 , 8= 1). 

Fig. 16. Comparison of overpressure signals between LES (efficiency model of Colin et al. and experiments (envelope) when changing the type of fuel (CH 4 : 8= 1; C 3 H 8 : 

8= 1; H 2 : 8= 0.7). Configuration BBBS SS. 

parametric variations are desirable to assess the behavior of the 

model. This will be the subject of Section 5 thanks to the MS and 

LS cases. 

4.3. Mesh dependency 

The previous section has shown the dependence of the results 

on the turbulent combustion model. At this point, an important 

question is mesh dependency [73,74] . This issue is all the more 

important for the following since the grid resolutions used in the 

SS configuration and in the MS and LS configurations differ sig- 

nificantly (0.5, 3 and 12.2 mm respectively in the refined region). 

In order to assess the quality of the LES and in particular its de- 

pendency to the grid resolution, a VRLES was performed and com- 

pared to the LES presented in the last section. Configuration OOBS 

is considered here. This configuration induces a weakly turbulent 

flow for which the requirements in terms of mesh resolution are 

expected to be much lower than for the base case BBBS for in- 

stance. The efficiency function of Colin et al. is used in both cases. 

The key features of this VRLES are summarized in Table 5 in terms 

of number of cells and characteristic length scales: on this very 

fine grid, the level of description of the simulation corresponds to 

a Quasi-Direct Numerical Simulation (QDNS) of the flame. The LES 

models described above are always activated during the simula- 

tion. They naturally degenerate towards DNS if the mesh resolu- 

tion is high enough. Verifying that their contribution in this QDNS 

case remains very low is a good way to estimate the quality of the 

simulation. The objectives of this comparison are thus manifold: 

• assess the LES dependency to the grid resolution;

• check that LES naturally tends towards DNS when the resolu- 

tion is high enough;

Table 5

Grid characteristics for the VRLES and the LES

of the OOBS SS configuration. 1x is the grid

size, δ0 
l is the laminar flame thickness, l t and 

ηk are estimates of the integral and Kolmogorov

length scale respectively. All simulations were

performed on BlueGene/Q machines.

LES VRLES

Number of cells 20 · 10 6 973 · 10 6 

1x [mm] 0.500 0.136

l t / 1x [ −] 11.6 42.6

ηk / 1x [ −] 0.07 0.26

δ0 L / 1x [ −] 0.68 2.5

CPU cost [core-hours] 1 · 10 5 25 · 10 6 

• thanks to this numerical experiment, provide a comprehensive

database which may be used thereafter to help developing and

validating models.

Figures 17 and 18 reveal very similar flame structures with LES 

and VRLES at five successive times. Of course VRLES exhibits many 

more turbulent structures, from the laminar propagation phase 

(top images) where vortex shedding behind the baffle plate is 

clearly evidenced to the fully turbulent propagation phase (bot- 

tom images) where the flame is much more wrinkled and dis- 

torted. But it confirms that the 20 million grid combined with the 

sub-grid models is able to capture the main features of the explo- 

sion. In particular the flame passage through the baffle plate and 

around the central obstacle in LES and VRLES is fully comparable. 

The bottom images show that a lot of turbulent structures are still 

present well after the central obstacles (the right border of the fig- 

ure corresponds to x ≈ 20 cm). This turbulence supports the flame 



Fig. 17. LES (20.10 6 cells, 1x = 0.5 mm) of flame propagation in configuration OOBS SS (C 3 H 8 , 8= 1). Time sequence at t − 1t peak = 9.3, 10.8, 11.9, 12.8 and 13.5 ms (from top 

to bottom). Vorticity field and isoline of heat release.

development even if there are no further obstacles downstream 

of the central obstacle. It explains why the flame still accelerates 

until the end of the explosion chamber, as shown in Fig. 19 (left) 

which compares the LES and VRLES flame front speeds. This figure 

shows that the LES and VRLES flames propagate in a very similar 

way. With VRLES the accelerations and decelerations around the 

obstacles are slightly more pronounced but this is mainly a post 

processing artefact due to small pockets of burnt gases detaching 

from the main flame front under the action of small vortices (the 

flame front position is here defined as the leading point where 

T > 1500 K). This is confirmed by Fig. 19 (right) which shows that 

overpressure signals obtained with LES and VRLES overlap almost 

perfectly. 

Finally, the evolution of the total and resolved reaction rates for 

the LES and VRLES ( Fig. 20 ) confirms that the designation VRLES or 

even QDNS (for the flame) is appropriate since the reaction rate is 

almost totally resolved in this simulation. The sub-grid scale reac- 

tion rate remains very low all along the computation, with a con- 

tribution which does not exceed 8% of the total reaction rate in 

the refined zone, i.e. for x < 16 cm. This also illustrates the correct 



Fig. 18. VRLES (973.10 6 cells, 1x = 0.136 mm) of flame propagation in configuration OOBS SS (C 3 H 8 , 8= 1). Time sequence at t − 1t peak = 9.3, 10.8, 11.9, 12.8 and 13.5 ms (from 

top to bottom). Vorticity field and isoline of heat release.

behavior of the LES combustion model which goes to DNS as ex- 

pected when the flame resolution is sufficient. For the LES, the 

sub-grid scale model contributes up to 35% of the total reaction 

rate at the end of the refined zone ( x = 16 cm) and around 23% at 

the central obstacle location ( x ≈ 10 cm). The two total reaction 

rate curves match almost perfectly, confirming the grid indepen- 

dency of the results. 

5. LES of the medium-scale and large-scale experiments

When going from the SS configuration to the MS and to the LS 

configurations, the geometry is scaled by a factor 6 and 24.4, re- 

spectively. It means that the integral length scale l t increases by 

roughly the same factor. Since we have chosen to work at con- 

stant numerical cost whatever the configuration (similar meshes 



Fig. 19. Comparison between VRLES and LES with the model of Colin et al. for configuration OOBS SS (C 3 H 8 , 8= 1). Left : evolution of the flame front speed as a function of 

the flame front position. Right : Pressure–time traces.

Fig. 20. Comparison between VRLES and LES with the models of Colin et al. for

configuration OOBS SS (C 3 H 8 , 8= 1): total ( ̇ ω tot ) and resolved ( ̇ ω res ) reaction rates. 

with about 20 million cells at SS, MS and LS), the grid size 1x also 

scales by the same factor. Considering an idealized turbulence (ho- 

mogeneous isotropic turbulence), the ratio of the integral length 

scale to the Kolmogorov length scale ηk , may be expressed as 
l t
ηk 

∼ Re 3 / 4 t . The velocity scale appearing in this turbulent Reynolds 

number is very difficult to estimate accurately. As a rough esti- 

mate, it may be considered as proportional to the laminar flame 

speed since it is the velocity field created by the laminar flame 

which induces turbulence. The Kolmogorov scale ηk may thus be 

written as ηk ∼
ν
S 0
l

3 / 4

l t 
1 / 4 . Finally, the characteristic length scale 

for combustion, i.e. the laminar flame thickness δ0 
l 
, may be con- 

sidered as constant as a first approximation, neglecting the influ- 

ence of the overpressure generated during the explosion. The evo- 

lution of these characteristic length scales is plotted in Fig. 21 . It 

shows that the smallest and largest turbulence length scales are 

not equally upscaled with the grid size. Since the smallest length 

scales increase more slowly than the largest scales and the grid 

size, the proportion of turbulent sub-grid scales is expected to in- 

crease from SS to LS. This is even more true for combustion since 

the laminar flame thickness does not increase with the size of the 

configuration. As a consequence, the contribution of the turbulent 

combustion model is expected to increase even more when going 

from SS to MS and to LS. It means that even if all numerical mod- 

els and parameters are kept constant at all scales, the behavior 

of the efficiency function will become crucial when the scale of 

the configuration increases. Note also that the non-dependence of 

the thickening to the pressure, as discussed in Section 4.2 , intro- 

duces an additional modeling uncertainty at medium and large- 

scales due to the larger levels of overpressure reached in these 

configurations. 

Fig. 21. Evolution of the characteristic length scales l t , ηk , δ
0 
l
and 1x when going

from SS to LS (for a given fuel and mixture composition).

5.1. Medium-scale experiment 

As for the SS experiment, the behavior of the models of Colin 

et al. and Charlette et al. is first assessed on the base case of the 

MS setup, i.e. configuration BBBS with C 3 H 8 . The propagation of 

the flame is illustrated in Fig. 22 . Experimental images are ex- 

tracted from a high-speed video and the LES ones are taken from 

the Charlette et al. computation (similar flame structures are ob- 

served with the model of Colin et al. but not shown here). Con- 

trary to the SS experiment, the MS images of Fig. 22 are side views 

that do not allow a clear visualization of the flame front shape. In 

particular the finger-shaped flames which emerge from the baffle 

plates are not visible in this case. Nonetheless, they allow a first 

qualitative comparison of the flame propagation. The LES flame 

and the experimental flame proceed globally at the same speed 

and in the same way. As for the SS case, the flame remains lam- 

inar after the first baffle plate and begins to wrinkle after having 

passed through the second baffle plate. The overall propagation is 

much longer in the MS case, with about 28 ms to go from the first 

to the third baffle compared to about 4 ms in the SS case. 

The evolution of the flame front speed ( Fig. 23 (left)) reveals 

an explosion scenario which is very similar to the SS case, with 

successive accelerations and decelerations as the flame progresses 

through the channel alongside the obstacles. Both models repro- 

duce this behavior but with varying degrees of success: the model 

of Charlette et al. matches very well the experimental results while 

the model of Colin et al. largely underestimates them from the 

second baffle plate. Downstream of the obstacles, the flame front 

speed exceeds 350 m s −1 in the experiments and with the model 

of Charlette et al. whereas it hardly reaches 275 m s −1 with the 

model of Colin et al. These predictions are the direct consequence 

of the sub-grid scale combustion modeling: Fig. 23 (right) shows 



Fig. 22. Flame propagation in configuration BBBS MS (C 3 H 8 , 8= 1). Left : time sequence of high-speed experimental images. Right : time sequence extracted from the LES 

(visualization of the reaction rate). The corresponding physical times t − 1t peak are given at the top of each image. 

Fig. 23. LES of the configuration BBBS MS (C 3 H 8 , 8= 1) with the models of Colin et al. and Charlette et al. Left : evolution of the flame front speed as a function of the flame 

front position. Right : total ( ̇ ω tot ) and resolved ( ̇ ω res ) reaction rates.

Fig. 24. Configuration BBBS MS (C 3 H 8 , 8= 1). Left : pressure–time traces, comparison between experiments (three realizations) and LES performed with the models of Colin 

et al. and Charlette et al. Right model of Charlette et al., overpressure distribution in the center of the combustion chamber ( Y = 0, Z = 0) and along the longitudinal direction 

X for the seven instants t − 1t peak displayed in Fig. 22 . 

that, when the flame reaches the central obstacle, the sub-grid 

scale contribution is approximately 80% of the total reaction rate 

with the model of Charlette et al. (50% in the SS case) and about 

60% with the model of Colin et al. (30% in the SS case). As previ- 

ously, the sub-grid scale modeling does not significantly impact the 

resolved reaction rate, which means that the global reaction rate 

and the resulting flame speed are directly proportional to the sub- 

grid scale contribution. As expected since the overpressure gener- 

ated in the chamber is strongly linked to the flame front speed, 

Fig. 24 (left) shows that the LES with the model of Colin et al. un- 

derestimates the peak pressure while the model of Charlette et al. 

predicts it remarkably well. Figure 24 (right) gives additional details 

for the model of Charlette et al., showing the spatial distribution of 

the overpressure for the seven instants displayed in Fig. 22 . Since 

the pressure is almost homogeneous in the Y and Z directions, only 

profiles along the longitudinal direction X are plotted. 

The conclusion reached here for the MS case is opposite com- 

pared to the SS configuration: the Charlette et al. model seems to 

perform better than the Colin et al. model. This highlights the lim- 

ited predictive capacities of this kind of constant-coefficients sub- 

grid scale modeling. Of course, this does not mean that the model 

of Charlette et al. is better suited for MS configurations or that 

the model of Colin et al. is unadapted for larger size cases. It sim- 

ply shows that the scales and flow conditions in the MS case di- 

verge too widely from the SS case to allow a unique fixed-constant 

model to behave well over such a range of variations and that the 



Fig. 25. Comparison of overpressure signals between LES (efficiency model of Charlette et al.) and experiments (three realizations) when changing the type of fuel (configu- 

ration BBBS MS).

Fig. 26. Comparison of overpressure signals between LES (efficiency model of Charlette et al.) and experiments (three realizations) when changing the number of baffle

plates (MS, C 3 H 8 , 8= 1). 

SS–MS cases constitute a challenging test case for turbulent com- 

bustion sub-grid scale models. For the following tests, the model 

of Charlette et al. with βC harlett e = 0 . 5 is retained since it provides 

the better predictions on the MS base case. 

The influence of fuel type on the overpressure is shown in 

Fig. 25 . As for the SS experiment, stronger overpressure magni- 

tudes are obtained with C 3 H 8 compared to CH 4 . LES performed 

with the model of Charlette et al. match experimental results with 

an approximate 35% reduction in peak pressure when going from 

C 3 H 8 to CH 4 . Figure 26 illustrates the effect of the number of grids 

comparing configurations BBBS and OOBS. Results are similar to 

the ones obtained in the SS experiments. The flame propagation 

(not shown) is similar in both configurations up to the second ob- 

stacle position since the turbulence induced by the first baffle in 

the BBBS case is very weak. From the second obstacle position, 

the flame strongly accelerates in configuration BBBS whereas it re- 

mains laminar in configuration OOBS. The final flame speed down- 

stream of the central obstacle hardly reaches 275 m s −1 in con- 

figuration OOBS in comparison with the 350 m s −1 attained in the 

BBBS configuration. The resulting overpressure traces show a larger 

peak pressure in the BBBS configuration (about 800 mbar) com- 

pared to the OOBS configuration (about 540 mbar). Once again, LES 

captures the peak magnitude and postpeak transient. 

5.2. Large-scale experiment 

As mentioned in Section 2.2 , no images of the flame propaga- 

tion are available for the large-scale experiment. The overpressure 

generated in the chamber is thus the only material available here 

for comparison. For the sake of concision and since the same kind 

of agreement between LES and experiments is obtained at LS com- 

pared to MS, only the maximum pressure peak is reported in the 

following figures. More precisely, since shot-to-shot variations are 

more important in this LS rig compared to the MS rig, both min- 

imum and maximum experimental values of the maximum pres- 

sure peak will be compared to LES. Note that the LES flame does 

not propagate much faster than in the corresponding MS configu- 

rations (about 400 m/s downstream of the central obstacle versus 

350 m/s for configuration BBBS for instance) and does not transi- 

tion to detonation. 

Focusing first on the base case BBBS, the predictions of the 

models of Colin et al. and Charlette et al. are compared in Fig. 27 . 

As for the MS case, the overpressure is strongly underestimated 

with the model of Colin et al. while it is fairly well predicted with 

the model of Charlette et al. For this BBBS LS case, the magnitude 

of the overpressure is about 1620 mbar (in the LES), compared to 

about 800 mbar for the MS configuration (ratio 2.0) and 110 mbar 

for the SS configuration (ratio 14.7) with the same arrangement 

of baffle plates. Once again, the pressure transient is also well de- 

scribed by LES (not shown). For the following configurations, only 

the model of Charlette et al. is considered. 

Parametric variations for the LS experiment focused on the fuel 

type (C 3 H 8 versus CH 4 ) and the number of grids (one for config- 

uration OOBS and three for configuration BBBS). Figure 27 (right) 

shows the influence of the number of baffle plates: as for the SS 

and MS cases, LES correctly predicts the increase of pressure when 

adding obstacles. The ratio between the peak pressures obtained 

in the three baffles configuration and in the single baffle configu- 



Fig. 27. Comparisonbetween LS experiments (minimum and maximum values over the different experimental realizations) and LES performed with the models of Colin et al.

and Charlette et al. Left : influence of the type of fuel. Right : influence of the number of baffle plates.

ration is approximately 1.2, which is much lower than in the MS 

case (ratio 1.5) and SS case (1.55). The comparison between LES 

and experiments when changing the type of fuel is displayed in 

Fig. 27 (left). The larger flame speed obtained using C 3 H 8 compared 

to CH 4 leads to a stronger peak pressure with C 3 H 8 , as at smaller 

scales. The ratio between the peak pressures obtained using C 3 H 8 
and CH 4 is about 1.2 for the LS case, 1.5 for the MS case and 1.8 

for the SS case. These observations show that globally the SS con- 

figurations are the most sensitive to parametric variations (geo- 

metric or physical). This also illustrates that upscaling effects are 

highly non-linear and trying to extrapolate the characteristic pa- 

rameters of an explosion, typically the overpressure, using simple 

scaling laws is far from obvious. 

6. Conclusions

A new experimental database has been presented to study up- 

scaling effects in a vented explosion configuration and more gen- 

erally the performances of premixed turbulent combustion mod- 

els. This database which uses three venting chambers, the origi- 

nal Sydney setup [28] and two Gexcon replicas scaled by 6 and 

24.4, allows to test and validate different numerical approaches 

and models over a wide range of turbulent combustion regimes, 

with unambiguous initial and boundary conditions. Mesh depen- 

dency was tested using a highly resolved quasi-DNS simulation (1 

billion points). It is also a difficult test where flames can alternate 

between laminar and turbulent regimes. 

Two LES sub-grid scale combustion models (the algebraic 

models of Colin et al. and Charlette et al.) were compared in terms 

of flame propagation, flame topology and generated overpressure. 

For a given scale and with a single fixed and “well chosen” model 

constant, LES results match experimental findings, for all geo- 

metric arrangements of the obstacles and for methane, propane 

and hydrogen. However, when switching from small-scale cases to 

medium-scale or large-scale cases, this conclusion does not hold 

and the same model has difficulty capturing all scales without any 

coefficient change. This result illustrates one of the main deficien- 

cies of these algebraic models, i.e. the need for an a priori fitting 

of the model parameters. At the same time, it also highlights the 

need for large variations of Reynolds and Damköhler numbers 

offered by the present database in order to correctly test models. 

Possible solutions to overcome the limitations of algebraic mod- 

els is to use more refined models, such as the promising dynamic 

model recently developed by Wang et al. for instance [20,72] . This 

model, taking advantage of the known resolved flow field to auto- 

matically adjust model parameters during the simulation, has the 

capacity of providing a much better precision over a wide range 

of scales. It is also a priori able to better handle out-of-equilibrium 

situations between turbulence motions and flame dynamics such 

as laminar–turbulent or turbulent–laminar transitions. 
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