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Abstract. Federated query engines have been enhanced to exploit new
data localities created by replicated data, e.g., Fedra. However, exist-
ing replication aware federated query engines mainly focus on pruning
sources during the source selection and query decomposition in order
to reduce intermediate results thanks to data locality. In this paper, we
implement a replication-aware parallel join operator: Pen. This opera-
tor can be used to exploit replicated data during query execution. For
existing replication-aware federated query engines, this operator exploits
replicated data to parallelize the execution of joins and reduce execution
time. For Triple Pattern Fragment (TPF) clients, this operator exploits
the availability of several TPF servers exposing the same dataset to share
the load among the servers. We implemented Pen in the federated query
engine FedX with the replicated-aware source selection Fedraand in
the reference TPF client. We empirically evaluated the performance of
engines extended with the Pen operator and the experimental results
suggest that our extensions outperform the existing approaches in terms
of execution time and balance of load among the servers, respectively.
Keywords: Linked Data ¨ Parallel Query Processing ¨ Fragment Replica-
tion ¨ Federated SPARQL Queries Processing ¨ Triple Pattern Fragment
¨ Load Balancing.

1 Introduction

Following the Linked Data principles, billions of RDF triples are made available
through SPARQL endpoints. Even if federated SPARQL query engines [9,17,1]
allow to execute SPARQL queries over multiple SPARQL endpoints, data avail-
ability and reliability of SPARQL endpoints is still an issue [5].

Data replication is a common practice to overcome availability issues in dis-
tributed databases [15]. However, data replication in Linked Data is more chal-
lenging: the autonomy of data providers hosting SPARQL endpoints, and data
consumers running federated query engines, prevent data replication to be de-
signed. The fragmentation schema and the replication schema remain unknown
until a data consumer defines a federation of SPARQL endpoints in a federated
query engine.



Existing replication-aware [13,14] and duplicate-aware [16] federated query
engines focus on source selection and query decomposition in order to prune
redundant sources and use data-locality to reduce intermediate results. We point
out that replicated data can also be used to parallelize query processing, and
consequently reduce execution time.

In the previous work [12], we proposed PeNeLoop, abbreviated as Pen in
this paper, a replication-aware parallel join operator. More precisely, Pen solves
the parallel join problem with fragment replication (PJP-FR). Given a SPARQL
query and a set of data sources with replicated fragments, the problem is to
use all data sources to reduce query execution time while preserving answer
completeness and reducing data redundancy.

In contrast to inter-operator parallelism proposed in the state-of-the-art fed-
erated query engines [1,17], Pen introduces parallelization at the operator level
in order to preserve properties ensured by replicated-aware source selection
strategies [13] and replication-aware query decompositions [14]. Pen is based
on Bound Join operator implemented in FedX [17]. Bound joins were origi-
nally designed to reduce the number of requests sent in a nested loop join [15].
Pen extends bound joins processing to use all relevant endpoints with replicated
fragments and distribute join processing among them.

In this work, we extend TPF client [18] with Pen. Pen will exploit the
availability of several TPF servers exposing the same dataset to share the load
among the servers. We implemented Pen in the reference TPF client. This paper
presents our contribution to SPARQL federation and TPF federation : (i) We
present Pen, a novel replication-aware parallel join operator that uses replicated
fragments to reduce query execution time.

(ii) We extend federated query engine FedX [17] and the source selection
strategy Fedra [13] and the TPF client with Pen.

(iii) We experiment FedX, FedX ` Fedra FedX ` Fedra ` Pen and
TPF`Pen in diffexrent setups. We show that FedX` Fedra`Pen outper-
forms FedX and FedX ` Fedra in terms of execution time while preserving
properties of Fedra in terms of reduced number of transferred tuples and an-
swer completeness. The improvements are significative for queries with a large
number of intermediate results. (iv) We show that TPF`Pen does not improve
execution time, however, it equally distributes the load among servers.

The paper is organized as follows: Section 2 provides background and moti-
vations. Section 3 presents the Pen approach and algorithm. Section 4 presents
our experimental setup and describes our results. Section 5 summarizes related
works. Finally, conclusions and future works are outlined in Section 6.

2 Background and Motivations

For replicating data, we follow the approach of replicated fragments introduced
in [13,14]. Data consumers replicate fragments composed of RDF triples that sat-
isfy a given triple pattern. Figure 1a shows a fragment from DBpedia which con-
tains RDF triples that match the triple pattern ?film dbo:director ?director.



(a) Fragment description

triples(f): { dbr:A Knight’s Tale
dbo:director dbr:Brian Helgeland,
dbr:A Thousand Clowns
dbo:director dbr:Fred Coe,
dbr:Alfie (1966 film)
dbo:director dbr:Lewis Gilbert,
dbr:A Moody Christmas
dbo:director dbr:Trent O’Donnell,
dbr:A Movie dbo:director
dbr:Bruce Conner, · · · }

fd(f): <dbpedia, ?film dbo:director ?director>

1

(b) Replicated fragments

DBpedia LinkedMDB

E0 E1 E2 E3

f2

f4

f2 f3,f5
f4, f5f1

fd(f1): <dbpedia, ?director dbo:nationality ?nat>
fd(f2): <dbpedia, ?film dbo:director ?director>
fd(f3): <linkedmdb, ?movie owl:sameAs ?film>
fd(f4): <linkedmdb, ?movie linkedmdb:genre ?genre>
fd(f5): <linkedmdb, ?genre linkedmdb:film genre name ?name>

1(c) Federated SPARQL query Q1 and its relevant fragments and endpoints

s e l e c t d i s t i n c t ∗
where {

? d i r e c t o r dbo : n a t i o n a l i t y ? nat . ( tp1 )
? f i l m db : d i r e c t o r ? d i r e c t o r . ( tp2 )
?movie owl : sameAs ? f i l m . ( tp3 )
?movie l inkedmdb : gen re ? gen re . ( tp4 )
? gen re l inkedmdb : f i lm gen r e name ?gname . ( tp5 )

}

Triple Relevant Relevant
pattern fragment endpoint

tp1 f1 E0

tp2 f2 E1, E2

tp3 f3 E2

tp4 f4 E1, E3

tp5 f5 E2, E3

Fig. 1: A federation with replicated fragments

Fragments are described using a 2-tuple fd that indicates the authoritative
source of the fragment, e.g. DBpedia, and the triple pattern met by the frag-
ment’s triples.

Figure 1b shows a federation with four SPARQL endpoints: E0, E1, E2 and
E3. These endpoints expose replicated fragments from DBpedia and Linked-
MDB. Figure 1c describes a federated SPARQL query Q1 executed against this
federation and its relevant fragments. For instance, the triple pattern tp4 has
relevant fragment f4 that has been replicated at E1 and E3.

The logical plan of Q1 produced by FedX [17] is presented in Figure 2a. As
FedX is not replication-aware, i.e., it does not know that the evaluation of tp2
at E1 or E2 will produce the same results, query execution following this plan
will retrieve redundant data from endpoints and increase significantly the query
execution time.

The Fedra [13] replication-aware source selection prunes redundant sources
in order to minimize intermediate results. Fedra selects E2 for tp2, tp3 and tp5,
E1 for tp4 and E0 for tp1. Next, Fedra lets FedX builds the logical plan of
Figure 2b that minimizes intermediate results. Notice that this plan sends a
large subquery to E2, which can be heavy to compute, reducing the endpoint’s
availability. Therefore, data locality have a negative impact on load balancing
by creating hotspots.



(a) FedX Left-Linear plan for Q1
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(b) FedX` Fedra Left-Linear plan for Q1
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Fig. 2: Logical plans generated by FedX and FedX` Fedra for Q1

As pointed in Figure 2b, Fedra has removed E3 from selected sources of tp4.
However, it also removes an opportunity of parallelization. Indeed, it is possible
to use both endpoints to perform in parallel half of the join of ’2 with E1 and
the other half with E3, as they mirror each other 3.

The same parallelization principle can be applied in the context of Triple
Pattern Fragments (TPF) interface [18]. Traditionally, a TPF client decompose
a SPARQL query Q into simple triple patterns queries (TPQs) evaluated by a
TPF server, and results are joined locally. TPQs processing can be distributed
among TPF servers that replicate the same relevant data for Q.

Moreover, as TPF interfaces only accept TPQs, a TPF client cannot use
data locality during query processing. This generate more remote HTTP calls,
but also prevent the creation of hotspots as those seen before. Parallelization of
these remote calls will then balance the load among servers and increase their
availability.

Such parallelization can be obtained with a replication-aware query decom-
poser or with intra-operator [15] parallelism. In this paper, we focus on intra-
operator parallelism because it can be easily embedded in current (federated)
query engines. Consequently, the challenge is to build replication-aware parallel
operators to speed-up query execution.

Parallel Join Problem with Fragment Replication (PJP-FR)
Given S1 and S2 two disjoint sets of replicated data sources. A set of repli-

cated data sources is a set of endpoints that replicate the same fragments. Given
a join ’i between O1 and O2 with relevant sources respectively, S1 and S2. The
parallel join problem with fragment replication is to distribute the execution of
join ’i among endpoints of S1 and S2 in order to minimize the execution time
while guaranteeing complete query answers.

3 Note that joins ’1 and ’3 cannot be parallelized in this way, because ’1 is a local
join performed at E2, and tp1 has only one relevant source.



3 Pen : A Replication-Aware Nested Loop Join Operator

Pen is a solution for parallel join problem with fragment replication with the
following assumptions: (i) we focus on nested loop join (NLJ), (ii) we do not con-
sider the load of different endpoints, (iii) we consider that replicated fragments
are synchronized, (iv) replicated sources are determined by a replication-aware
source selection algorithm, such as Fedra before pruning.

Pen can be used for any federation of SPARQL processing services, endpoint,
that provides access to replicated data. These services can process unrestricted
SPARQL queries, e.g., SPARQL endpoints, or restricted SPARQL queries, e.g.,
TPF servers.

3.1 NLJ Processing

During a NLJ processing, the query engine iteratively evaluates each triple pat-
tern, starting with a single pattern and substituting the set of mappings pro-
duced by the pattern’s execution in the next evaluation step. Even if a NLJ
is more efficient when the first evaluated triple pattern is more selective than
the others, it still produces many remote requests in a distributed setting. For
federated SPARQL queries, Schwarte et al. [17] proposed the Bound Join (BJ)
operator to minimize the number of join steps and the number of requests sent in
nested loop joins. A BJ consists of a nested loop join where sets of mappings are
grouped in blocks, i.e., as a single subquery using SPARQL UNION constructs.
The subquery is then sent to the relevant endpoint in a single remote request.
This technique acts as a distributed semijoin and allows to reduce the number
of requests by a factor equivalent to the size of the block.

SPARQL query processing with Triple Pattern Fragments [18] (TPF) also
resolves joins in a NLJ fashion and rely on dynamic iterators that optimize locally
each join step. The TPF reference server provides only support for BJ with block
size b “ 1, i.e., simple nested loop (SNJ) join. In the following sections we detail
a new strategy to evaluate BJs, but naturally this applies to the particular case
of SNJ.

Pen proposes to parallelize the BJ operator itself. Instead of sending all
blocks to the same endpoint, Pen uses the knowledge about replicated sources
to further parallelize the bound join operator. When processing a join in a basic
graph pattern (BGP), if the current triple pattern has N relevant sources that
replicate the same fragment, Pen sends each block to a different endpoint in a
Round Robin fashion, i.e., the block bi is sent to the endpoint Ek, k “ i mod N .
Therefore, Pen does not increase the number of remote calls while increasing
the parallelization during join processing.

3.2 Pen Algorithm

Pen is defined as part of a pipelining approach allowing for intermediate results
to be processed by the next operator as soon as they are ready, providing higher
throughput than a blocking model.



Algorithm 1: PeNeLoop join algorithm

Input: tp “ ăs, p, oą: a triple pattern, E “ tE0, . . . , Em´1u: relevant endpoints
of tp, NextOp: next operator in the pipeline, b: maximum number of
mappings per block

Data: Mi: a set of mappings produced by the previous operator in the pipeline,
B “ tM1, . . . ,Mnu: block of sets of mappings waiting to be sent

Init: B “ tu, k “ 0

1 SendBlock(block, tp):
2 Q “ GroupedSubquery(block, tp)
3 SendQuery(Q) to Ek

4 B = tu

5 k = pk ` 1q mod Size(E)

6 � onMappings(Mi):
7 B = B Y tMiu

8 if Size(B) ě b then
9 SendBlock(B, tp)

10 end

11 � onResults(R):
12 Send(R) to NextOp

13 � onEnd():
14 if Size(B) ě 0 then
15 SendBlock(B, tp)
16 end
17 Close()

Algorithm 1 describes the Pen algorithm using an event driven paradigm.
Sets of mappings Mi are produced by the previous operator in the pipeline and
sent in continuous to Pen operator. When a set Mi arrives (Line 6), it is stored
in the next block B. When B reaches its maximum size b (Line 8), Pen generates
a subquery in a Bound Join fashion using B and tp (Line 2). Then, the subquery
is sent to the endpoint Ek (Line 3), B is cleared and the next endpoint is selected
using our Round Robin approach (Line 5).

When results, i.e., new sets of mappings, arrive from the requested endpoints
(Line 11), they are sent to the next operator in the pipeline. Finally, when the
previous operator has completed its work and will not produce any more data
(Line 13), Pen sends the last non-empty block and then close the operator.

In the following, we illustrate Pen processing for the query Q1 (Figure 1c)
using the query plan generated by FedX ` Fedra (Figure 2b). For simplicity,
we fix b “ 2.

Figure 3 illustrates a snapshot of the pipeline during the evaluation of the
triple pattern tp4 of the query Q1. We focus on processing of join ’2, performed
using Pen. Two blocks tM1,M2u and tM3,M4u have been already sent to E1 and
E3, respectively. A set of mappings M5 arrived from the join ’1 and was placed
in the next block. When another set of mappings M6 arrives, the block will be
full and sent to the next endpoint E1. Join ’2 ends when no more mappings are
produced by join ’1.

4 Experimental Study

The goal of the experimental study is to evaluate the impact of Pen paral-
lelization on execution time. For federated SPARQL queries, such reduction is
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./i PeNeLoop Join
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1Fig. 3: Join processing of federated query Q1 with Pen

obtained without degrading the reduced number of transferred tuples and the
answer completeness granted by Fedra. For Triple Pattern Fragments, Pen par-
allelization has a positive effect on load balancing between servers.

For federated SPARQL queries, we compare the performance of the federated
query engine FedX alone, FedX with the addition of Fedra (FedX`Fedra)
and FedX with both Fedra and Pen (FedX ` Fedra ` Pen). For TPF, we
compare the performance of the reference TPF client alone and an extension with
Pen (TPF ` Pen). Note that combination of TPF with Fedrais not possible
because the TPF server cannot take advantage of data locality.

We expect to see that FedX`Fedra`Pen exhibits lower query execution
time than FedX and FedX ` Fedra, while maintaining the same number of
transferred tuples and answer completeness. We also expect to see that TPF`
Penexhibits similar query execution time than the reference, but reduce the
number of HTTP calls addressed per server.

Dataset and Queries: We use one instance of the Waterloo SPARQL Di-
versity Test Suite (WatDiv) synthetic dataset [2,3] with 105 triples. We gener-
ate 50,000 queries from 500 templates. Next, we unbound subjects and objects
of each query. 100 queries with at least one join are then randomly picked to
be executed against our federations. Generated queries are STAR, PATH and
SNOWFLAKE shaped queries, we use the DISTINCT modifier.

Queries that failed to deliver an answer due to a query engine internal error
are excluded from the final results.

Federations: For the SPARQL endpoints, we consider replication of dataset
fragments, i.e., partial replication. We setup three federations with respectively
10, 20 and 30 SPARQL endpoints, and generate three versions of each of these
federations by randomizing the fragmentation schema. Every schema is distinct
from the others. Fragments are created from the 100 random queries and are
replicated exactly three times to provide opportunities of parallelization. For
the TPF federations we consider TPF server that provide access to the same



dataset, i.e., total replication. For experiments with TPF, we setup up to five
TPF servers, each one using four workers and a HDT backend [7].

To measure the number of transferred tuples and the repartition of HTTP
calls, query engines accesses SPARQL endpoints and TPF servers through a
proxy. All the federation endpoints and TPF servers are deployed on the same
machine, and to simulate the network latency, the proxies were configured to
add a delay of 30ms to each request.

Hardware configuration: One machine with Intel Xeon E5-2680 v2 2.80GHz
and 128GB of RAM hosts the SPARQL endpoints and performs the queries. Each
SPARQL endpoint is deployed using Jena Fuseki 1.1.14. Fuseki is configured to
handle incoming queries on only one executing thread to increase the stress load
and study the effect of the parallelization done by the engine. Endpoints have
no limitations in term of memory used.

Implementations: FedX ` Fedra implementation5 (in Java) has been
modified to preserve the multiple sources that provide the same relevant frag-
ments. For TPF, Pen is implemented on top of the reference TPF client6.

Additionally, FedX join processing has been modified to remove some re-
dundant synchronization barriers imposed by FedX on the first join of a plan,
i.e., the right operand can start execution before the left one has finished its
evaluation, and to use Pen operator when possible7. Every configuration of this
experimental study has received the same modifications. Proxies used to measure
results are implemented in Java 1.7, using the Apache HttpComponents Client
library 4.3.58.

4.1 Pen with Federated SPARQL queries

Evaluation Metrics: i) Execution Time (ET): is the elapsed time since the
query is posed until the complete answer is produced. We used a timeout of 1800
seconds. ii) Number of parallelized queries (NPQ): is the number of queries where
at least one join has been parallelized by Pen. Queries marked as improved have a
lower execution time (ET ) with FedX`Fedra`Pen than with FedX`Fedra.
iii) Number of Transferred Tuples (NTT): is the number of transferred tuples
from all the endpoints to the query engine during a query evaluation. This metric
is only used for federated SPARQL queries. iv) Completeness (C): is the ratio
between the answers produced by the query execution engine and the answers
produced by the evaluation of the query over the set of all triples available in
the federation; values range between 0.0 and 1.0.

Results presented for ET, NTT and C correspond to the average over the
three versions generated for each size of federation. In all cases, FedX`Fedra`
Pen is able to produce the same answers as FedX ` Fedra for all queries
(detailed completeness (C ) results are presented in [12].)

4 http://jena.apache.org/, January 2015.
5 https://github.com/gmontoya/fedra, June 2016.
6 https://github.com/LinkedDataFragments/Client.js, June 2017
7 Implementation available at: https://github.com/Callidon/peneloop-fedx
8 https://hc.apache.org/, October 2014.

http://jena.apache.org/
https://github.com/gmontoya/fedra
https://github.com/LinkedDataFragments/Client.js
https://github.com/Callidon/peneloop-fedx
https://hc.apache.org/
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Fig. 4: Average execution time with FedX (F), FedX ` Fedra (F+F) and
FedX` Fedra`Pen (F+F+P).

Statistical Analysis: The Wilcoxon signed rank test [19] for paired non-
uniform data is used to study the significance of the improvements on perfor-
mance obtained when the join execution benefits from replicated fragments.9

Execution time Figure 4 summarizes the execution time (ET ) for the three
federations. Execution time (ET ) with FedX ` Fedra ` Pen is better for all
federations than with FedX and FedX ` Fedra. As queries have unbounded
subjects and unbounded objects, they generated more intermediate results dur-
ing joins, which allow Pen to distribute more bindings between relevant sources.
Figure 5 presents the execution time for queries with a large number of inter-
mediate results (at least 1000 tuples). This represents 562 queries out of 865 for
all federations. Pen is even more efficient for queries with a large number of
intermediate results. This is an important result because generally the number
of the intermediate results impacts negatively the query execution time.

Both FedX`Fedra and FedX`Fedra`Pen benefit from the reduction
of transferred tuples granted by Fedra, which reduce the number of mappings
that Pen can distribute.

To confirm that Pen reduces the execution time of FedX`Fedra, a Wilcoxon
signed rank test was run for results of Figure 4 with the hypotheses:
H0 : Pen does not change the engine query execution time.
H1 : Pen reduces FedX` Fedra’s query execution time.

9 The Wilcoxon signed rank test was computed using the R project (http://www.
r-project.org/)

http://www.r-project.org/
http://www.r-project.org/
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Fig. 5: Average execution time with FedX (F), FedX ` Fedra (F+F) and
FedX ` Fedra ` Pen (F+F+P) for queries with at least 1000 intermediate
results.

We obtain p-values no greater than 1.639ˆ 10´4 for each federation. These
low p-values allow for rejecting the null hypothesis that the execution time of
FedX`Fedra and FedX`Fedra`Pen are the same. Additionally, it supports
the acceptance of the alternative hypothesis that FedX` Fedra` Pen has a
lower execution time.

Number of Parallelized Queries Figure 6 presents the number of parallelized
queries (NPQ) in FedX`Fedra`Pen for the three versions of each federation.
Pen increases query parallelization during join processing, especially in larger
federations where fragments are more scattered across endpoints. In most cases,
queries parallelized by Pen are improved, i.e., they exhibit a lower execution
time compared to FedX ` Fedra. Parallelized queries with unimproved exe-
cution time are those that do not have a large number of intermediate results.
Parallelization of such queries does not improve query performance, as their joins
were not originally costly to evaluate.

As pointed in Figure 6, the number of parallelized queries is not constant
within different versions the same federation, because the replication schema
directly influences query parallelization. When this schema is not designed, as
in Linked Open Data, Pen creates parallelization where locality cannot be used
by Fedra to optimize the query execution plan.
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Number of transferred tuples Figure 7 summarizes the number of trans-
ferred tuples (NTT ) in different federations. FedX ` Fedra ` Pen trans-
fers the same amount of tuples as FedX ` Fedra. This demonstrates that
Pen does not deteriorate the reduction of transferred tuples provided by Fe-
dra. Moreover, modifications performed on FedX to remove some synchroni-
sation barriers do not introduce any difference between FedX ` Fedra and
FedX ` Fedra ` Pen in terms of number of transferred tuples and do not
impact FedX` Fedra performance.

4.2 Pen with Triple Pattern Fragments

Evaluation Metrics: i) Execution Time (ET): is the elapsed time since the
query is posed until the complete answer is produced. We used a timeout of
1800 seconds. ii) Percentage of HTTP calls per server (PHC): is, for a given
server, the ratio between the number of HTTP calls received by the server and
the total number of HTTP calls produced by the query.

Results presented for ET correspond to the average over three consecutive
executions of our random queries.

Execution time Figure 8a summarizes the average execution time (ET ) with
the reference TPF client (1 server) and TPF` Pen(using 2 to 5 servers). Pen
does not reduce the query execution time of SPARQL queries. As we are in a
context were servers are not under a heavy load, they respond quickly to TPQs
issued by the client. Therefore, parallelizing these remote calls does not have an
impact on the query execution as they are already very cheap to execute.

Repartition of HTTP calls Figure 8b summarizes the percentage of HTTP
calls per server (PHC ) with TPF ` Penusing up to 5 servers. Pen is able to
evenly distribute the load between servers, increasing the availability of each
server. However, Pen only affects join processing, so the first triple pattern of
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Fig. 7: Average number of transferred tuples with FedX (F), FedX `

Fedra (F+F) and FedX` Fedra`Pen (F+F+P).

a query will still be evaluated against the first server (E1), which has a slightly
heavier load than the others.

4.3 Synthesis

Experimental study results confirm that Pen can further increase the perfor-
mance of join processing in presence of replicated fragments.

For federated SPARQL queries, execution time in average is lower with
FedX ` Fedra ` Pen than with FedX or FedX ` Fedra, and the reduced
number of transferred tuples granted by Fedra is maintained. Answer complete-
ness is not degraded. Pen is able to parallelize a significant number of queries
in presence of replicated fragments and shows to be more efficient on larger fed-
erations. Query performance are significantly improved for queries with a large
number of intermediate results, and the time to evaluate joins is reduced by
taking advantage of parallel processing.

For Triple Pattern Fragments, execution time is not reduced by Pen, but the
load is evenly balanced between all servers used, increasing the overall availabil-
ity.

5 Related Work

Fedra [13] is a replication-aware source selection that uses data locality pro-
duced by replicated fragments to enhance federated query engines performances.
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Fig. 8: Experimental results for TPF`Pen

Fedra uses Union and BGP reductions to prune data sources and finds as many
sub-queries that can be executed against the same endpoint as possible, leading
to evaluation of local joins and a reduced number of transferred tuples. Pen uses
replicated fragments differently. As seen in Section 2, Fedra prunes redundant
endpoints that cannot be used to creates localities, whereas Pen uses these
endpoints to create more opportunities of parallelization.

LILAC [14] is a replication-aware decomposer. Compared to Fedra, LILAC
is able to reduce intermediate results by allocating a triple pattern to several
endpoints. As for Fedra, Pen can reuse source selection performed by LILAC
to introduce intra-operator parallelism.

Other existing sources selection techniques reduce the number of selected
sources by a federated SPARQL query engine. BBQ [10] and DAW [16] use
sketches to estimate the overlapping among sources, but they only operate on
duplicated sources and not on replication itself. They do not provide informa-
tion about replicated fragments that allow Pen to efficiently parallelize join
processing.

Parallel join processing in distributed database systems has been the sub-
ject of significant investigation. Parallel nested loop algorithms have been in-
vestigated in [4,6], but they do not use replication for parallelization. Instead,
replication is mostly used for fault tolerance and to locate data closer to their
access points [11,15], improving query performance by reducing communication
time. Pen does not use localities created by data redundancy, but opportunities
of parallelization created by this redundancy.

Parallel join processing has been also studied in federated query engines.
For instance, [1,17,8] propose parallel architectures for executing queries con-
currently at different data sources. Anapsid [1] takes advantage of bushy query
execution plans to create inter-operator parallelism. FedX [17] implements bound
joins in a distributed and highly parallelized environment where different sub-
queries can be executed at the endpoints concurrently. Pen creates intra-operator
parallelism and proposes a more advanced parallel join processing using repli-



cation. Similar to FedX, subqueries are executed concurrently, but they are
distributed between endpoints, increasing parallelization.

To our knowledge, none of existing federated query engines propose to take
advantage of replicated data for join processing or propose a replication-aware
parallel join operator.

The Triple Pattern Fragments (TPF) [18] propose to shift complex query
processing from servers to clients to improve availability and reliability of servers,
at the cost of performance. A low-cost triple pattern-based interface is deployed
server-side, and a client-side algorithm decomposes a SPARQL query into triple
patterns that are evaluated against this interface. Compared to TPF, Pen allows
for the execution of a single query over different TPF servers that replicate
the same dataset. This improves the load balancing by distributing the query
processing over several servers instead of one.

6 Conclusions and Future Works

In this paper, we extended a replication-aware federated query engine and the ref-
erence TPF client with a new replication-aware parallel join operator Pen. Pen
provides intra-operator parallelism relying on replicated data. In this way, Pen
preserves properties of source-selection and query decomposition replication-
aware federated query engines. We implemented Pen in both FedX and TPF.
Evaluation results demonstrates that Pen improves significantly query perfor-
mance, in terms of execution time for FedX and in terms of load balancing for
TPF.

Pen is the first attempt to use replicated data to parallelize query processing
in Linked Open Data and opens several perspectives.

First, we made the assumption that the load of the endpoints is uniform
during query execution. We can leverage this hypothesis by making Pen adaptive
to the performances of endpoints.

Second, we focused on a Nested Loop Join operator, we can also parallelize
others operators such as Symmetric Hash-Join [20] used in Anapsid.
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