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Introduction and basic lemmas

Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive, see [START_REF] Yu | Hilbert's tenth problem[END_REF]. Martin Davis' theorem states that the set of all Diophantine equations which have at most finitely many solutions in positive integers is not recursive, see [START_REF] Davis | On the number of solutions of Diophantine equations[END_REF]. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable, see [4, p. 104, Corollary 1] and [5, p. 240].

Let P denote the set of prime numbers, and let

P = {p 1 , q 1 , r 1 , p 2 , q 2 , r 2 , p 3 , q 3 , r 3 , . . .}, where p 1 < q 1 < r 1 < p 2 < q 2 < r 2 < p 3 < q 3 < r 3 < . . . Lemma 1. For a non-negative integer x, let ∞ i=1 p α i i • q β i i • r γ i i
be the prime decomposition of x + 1. For every positive integer n, the mapping which sends x ∈ N to

(-1) α 1 • β 1 γ 1 + 1 , . . . , (-1) α n • β n γ n + 1 ∈ Q n is a computable surjection from N onto Q n .
Let s n : N → Q n denote the surjection defined in Lemma 1.

Lemma 2. For every infinite set R ⊆ Q, a Diophantine equation D(x 1 , . . . , x n ) = 0 has no solutions in x 1 , . . . , x n ∈ R if and only if the equation D(x 1 , . . . , x n ) + 0 • x n+1 = 0 has at most finitely many solutions in x 1 , . . . , x n+1 ∈ R.

Let R be a subring of Q with or without 1. By H 10 (R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether or not the equation has a solution in R.

A positive solution to H 10 (R) implies that the set of all

Diophantine equations with a finite number of solutions in R is recursively enumerable

In the next three lemmas we assume that {0} R ⊆ Q and r • Z ⊆ R for every r ∈ R. Every non-zero subring R of Q (with or without 1) satisfies these conditions.

Lemma 3. There exists a non-zero integer m ∈ R.

Proof. There exist m, n

∈ Z \ {0} such that m n ∈ R. Hence, m = m n • n ∈ (Z \ {0}) ∩ R. Lemma 4. Let m ∈ (Z \ {0}) ∩ R. We claim that for every b ∈ R, b 0 if and only if the equation y • b -m 2 - 4 i=1 y 2 i = 0 is solvable in y, y 1 , y 2 , y 3 , y 4 ∈ R.
Proof. If b = 0, then for every y, y 1 , y 2 , y 3 ,

y 4 ∈ R, y • b -m 2 -y 2 1 -y 2 2 -y 2 3 -y 2 4 = -m 2 -y 2 1 -y 2 2 -y 2 3 -y 2 4 -m 2 < 0 If b 0, then b = p q
, where p ∈ N \ {0} and q ∈ Z \ {0}. In this case, we define y as m 2 • q and observe that

m 2 • q = (m • q) • m ∈ R as m • q ∈ R and m ∈ Z. Hence, y • b = (m 2 • q) • p q = m 2 • p ∈ m 2 • (N \ {0})
By Lagrange's four-square theorem, there exist

t 1 , t 2 , t 3 , t 4 ∈ N such that y • b -m 2 m 2 = t 2 1 + t 2 2 + t 2 3 + t 2 4 Therefore, y • b -m 2 -(m • t 1 ) 2 -(m • t 2 ) 2 -(m • t 3 ) 2 -(m • t 4 ) 2 = 0, where m • t 1 , m • t 2 , m • t 3 , m • t 4 ∈ R.
Lemma 5. We can uniquely express every rational number r as r / r, where r ∈ Z, r ∈ N \ {0}, and the integers r and r are relatively prime. If r ∈ R, then r ∈ R.

Proof. For every r ∈ R, r = r • r ∈ r • Z ⊆ R.

Lemma 6. Let R be a non-zero subring of Q with or without 1. We claim that for every T 0 , . . . , T k ∈ R n and for every x 1 , . . . , x n ∈ R, the following product

(r 1 , . . . , r n ) ∈ {T 0 , . . . , T k } n i=1 x i • r i -r i 2 (1)
differs from 0 if and only if (x 1 , . . . , x n ) {T 0 , . . . , T k }. Product (1) belongs to R.

Proof. The last claim follows from Lemma 5.

Lemma 7. Let R be a non-zero subring of Q (with or without 1) such that there exists an algorithm which for every (a, b) ∈ Z × (Z \ {0}) decides whether or not a b ∈ R. Let ρ n : Q n → R n denote the function which equals the identity on R n and equals (0, . . . , 0) outside R n . We claim that for every positive integer n the function ρ n • s n : N → R n is surjective and computable.

Theorem 1. Let R be a non-zero subring of Q (with or without 1) such that Hilbert's 10th Problem for solutions in R has a positive solution. We claim that the set of all Diophantine equations with a finite number of solutions in R is recursively enumerable.

Proof. By Lemma 3, there exists a non-zero integer m ∈ R. For every (a, b) ∈ Z × (Z \ {0}), the solvability in R of the equation b • xa = 0 is decidable. Hence, for every (a, b) ∈ Z × (Z \ {0}) we can decide whether or not a b ∈ R. By Lemmas 4 and 6, the answer to the question in Flowchart 1 is positive if and only if the equation D(x 1 , . . . , x n ) = 0 is solvable in R n \ {θ(0), . . . , θ(k)}. Hence, by Lemma 7, the algorithm in Flowchart 1 halts if and only if the equation D(x 1 , . . . , x n ) = 0 has at most finitely many solutions in R.

3 If the set of all Diophantine equations with a finite number of solutions in R is recursively enumerable, then H 10 (R) has a positive solution

Starting from this moment up to the end of Theorem 2, we assume that R is an infinite subset of Q and there exist computable functions τ 1 , τ 2 : N → Z which satisfy

(∀n ∈ N τ 2 (n) 0) ∧ τ 1 (n) τ 2 (n) : n ∈ N = R
In other words, the function N n τ -→ τ 1 (n) τ 2 (n) ∈ R is surjective and computable. Hence, the function (τ, . . . , τ) : N n → R n is surjective and computable.

Lemma 8. Let σ n : Q n → N n denote the function which equals the identity on N n and equals (0, . . . , 0) outside N n . We claim that for every positive integer n the function (τ, . . . , τ) • σ n • s n : N → R n is surjective and computable.

Theorem 2. If the set of all Diophantine equations which have at most finitely many solutions in R is recursively enumerable, then there exists an algorithm which decides whether or not a given Diophantine equation has a solution in R.

Proof. Suppose that {S i = 0} ∞ i=0 is a computable sequence of all Diophantine equations which have at most finitely many solutions in R. By Lemma 2, the execution of Flowchart 2 decides whether or not a Diophantine equation D(x 1 , . . . , x n ) = 0 has a solution in R. The flowchart algorithm uses a computable surjection ϕ : N → R n (which exists by Lemma 8).

Harvey Friedman conjectures that the set of all polynomials of several variables with integer coefficients that have a rational solution is not recursive, see [START_REF] Friedman | Complexity of statements[END_REF]. Harvey Friedman conjectures that the set of all polynomials of several variables with integer coefficients that have only finitely many rational solutions is not recursively enumerable, see [START_REF] Friedman | Complexity of statements[END_REF]. These conjectures are equivalent by Theorems 1 and 2 taking R = Q.
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is solvable in x 1 , . . . , x n , y, y 1 , y 2 , y 3 , y 4 ∈ R ?

Print "The equation D x 1 , . . . , x n = 0 has at most finitely many solutions in R"

Theorem 1 remains true when R = {0}.

The flowchart algorithm depends on m ∈ (Z \ {0}) ∩ R. For a constructive proof of Theorem 1, we must compute an element of (Z \ {0}) ∩ R. By Lemma 7, the function ρ n • s n : N → R n is computable and surjective. We compute the smallest i ∈ N such that (ρ n • s n )(i) starts with a non-zero integer. This integer belongs to (Z \ {0}) ∩ R.

Start

Input a Diophantine equation D(x 1 , . . . , x n ) = 0

The flowchart algorithm always terminates because there exists a non-negative integer i such that (D(x 1 , . . . ,

Indeed, for every Diophantine equation D(x 1 , . . . x n ) = 0, the flowchart algorithm finds a solution in R, or finds the equation D(x 1 , . . . , x n ) + 0 • x n+1 = 0 on the infinite list [S 0 , S 1 , S 2 , . . .] if the equation D(x 1 , . . . , x n ) = 0 is not solvable in R.

Corollary. Theorem 2 for R = N implies that Craig Smoryński's theorem follows from Yuri Matiyasevich's theorem.