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A new proof of Smoryński’s theorem

Apoloniusz Tyszka

Abstract. We prove: (1) the set of all Diophantine equations which have at most
finitely many solutions in non-negative integers is not recursively enumerable, (2) the
set of all Diophantine equations which have at most finitely many solutions in positive
integers is not recursively enumerable, (3) the set of all Diophantine equations which
have at most finitely many integer solutions is not recursively enumerable, (4) analogous
theorems hold for Diophantine equations D(x1, . . . , xp) = 0, where p ∈ N \ {0} and for
every i ∈ {1, . . . , p} the polynomial D(x1, . . . , xp) involves a monomialM with a non-zero
coefficient such that xi divides M, (5) the set of all Diophantine equations which have
at most k variables (where k > 9) and at most finitely many solutions in non-negative
integers is not recursively enumerable.
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There is no algorithm to decide whether or not a given Diophantine equation has an
integer solution ([4]). The same is true for solutions in non-negative integers and for
solutions in positive integers ([4]). The set of all Diophantine equations which have at
most finitely many solutions in non-negative integers is not recursively enumerable, see
[5, p. 104, Corollary 1] and [6, p. 240]. Let E denote the set of all Diophantine equations
D(x1, . . . , xp) = 0 such that p ∈ N \ {0} and the polynomial D(x1, . . . , xp) truly depends
on all the variables x1, . . . , xp. The last phrase means that for every i ∈ {1, . . . , p} the
polynomial D(x1, . . . , xp) involves a monomialM with a non-zero coefficient such that xi

dividesM.

Lemma 1. A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in non-negative
integers x1, . . . , xp if and only if the equation D(x1, . . . , xp) + 0 · xp+1 = 0 has at most
finitely many solutions in non-negative integers x1, . . . , xp+1.

Lemma 1a. A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in non-negative
integers x1, . . . , xp if and only if the equation

(
2xp+1 + 1

)
· D(x1, . . . , xp) = 0 has at most

finitely many solutions in non-negative integers x1, . . . , xp+1.
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Lemma 2. A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in positive integers
x1, . . . , xp if and only if the equation D(x1, . . . , xp) + 0 · xp+1 = 0 has at most finitely many
solutions in positive integers x1, . . . , xp+1.

Lemma 2a. A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in positive
integers x1, . . . , xp if and only if the equation

(
2xp+1 + 1

)
· D(x1, . . . , xp) = 0 has at most

finitely many solutions in positive integers x1, . . . , xp+1.

Lemma 3. A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in integers
x1, . . . , xp if and only if the equation D(x1, . . . , xp) + 0 · xp+1 = 0 has at most finitely many
solutions in integers x1, . . . , xp+1.

Lemma 3a. A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in integers
x1, . . . , xp if and only if the equation

(
2xp+1 + 1

)
· D(x1, . . . , xp) = 0 has at most finitely

many solutions in integers x1, . . . , xp+1.

Lemma 4. If a polynomial D(x1, . . . , xp) ∈ Z[x1, . . . , xp] truly depends on all the
variables x1, . . . , xp, then the polynomial

(
2xp+1 + 1

)
· D(x1, . . . , xp) truly depends on all

the variables x1, . . . , xp+1.

Theorem 1. If the set of all Diophantine equations which have at most finitely many
solutions in non-negative integers is recursively enumerable, then there exists an
algorithm which decides whether or not a given Diophantine equation has a solution
in non-negative integers.

Proof. Suppose that {Si = 0}∞i=2 is a computable sequence of all Diophantine equations
which have at most finitely many solutions in non-negative integers. The algorithm
presented in Flowchart 1 uses a computable surjection from N \ {0, 1} onto Np. By
this and Lemma 1, the execution of Flowchart 1 decides whether or not a Diophantine
equation D(x1, . . . , xp) = 0 has a solution in non-negative integers.
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Start

Input a Diophantine equation D(x1, . . . , xp) = 0

W(x1, . . . , xp+1) := D(x1, . . . , xp) + 0 · xp+1

i := 2
i := i + 1

Is W(x1, . . . , xp+1) = Si ?

Compute prime numbers B1, . . . , Bn and

positive integers b1, . . . , bn such

that i = Bb1
1 . . . B

bn
n and B1 < . . . < Bn

Is p 6 n ?

Is D(b1 − 1, . . . , bp − 1) = 0 ?

Print "The equation D(x1, . . . , xp) = 0 is
solvable in non-negative integers"

Print "The equation D(x1, . . . , xp) = 0 is
not solvable in non-negative integers"

Stop

No

Yes

Yes

Yes

No

No

Flowchart 1

�

Corollary 1. By Matiyasevich’s theorem, the set of all Diophantine equations which have
at most finitely many solutions in non-negative integers is not recursively enumerable.

Theorem 2. The analogous reasoning with Lemmas 1a and 4 shows that the set of all
equations from E which have at most finitely many solutions in non-negative integers is
not recursively enumerable.

Theorem 3. If the set of all Diophantine equations which have at most finitely many
solutions in positive integers is recursively enumerable, then there exists an algorithm
which decides whether or not a given Diophantine equation has a solution in positive
integers.
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Proof. Suppose that {Ti = 0}∞i=2 is a computable sequence of all Diophantine equations
which have at most finitely many solutions in positive integers. The algorithm presented
in Flowchart 2 uses a computable surjection from N \ {0, 1} onto (N \ {0})p. By this and
Lemma 2, the execution of Flowchart 2 decides whether or not a Diophantine equation
D(x1, . . . , xp) = 0 has a solution in positive integers.

Start

Input a Diophantine equation D(x1, . . . , xp) = 0

W(x1, . . . , xp+1) := D(x1, . . . , xp) + 0 · xp+1

i := 2
i := i + 1

Is W(x1, . . . , xp+1) = Ti ?

Compute prime numbers B1, . . . , Bn and

positive integers b1, . . . , bn such

that i = Bb1
1 . . . B

bn
n and B1 < . . . < Bn

Is p 6 n ?

Is D(b1, . . . , bp) = 0 ?

Print "The equation D(x1, . . . , xp) = 0
is solvable in positive integers"

Print "The equation D(x1, . . . , xp) = 0
is not solvable in positive integers"

Stop

No

Yes

Yes

Yes

No

No

Flowchart 2

�

Corollary 2. By Matiyasevich’s theorem, the set of all Diophantine equations which have
at most finitely many solutions in positive integers is not recursively enumerable.

Theorem 4. The analogous reasoning with Lemmas 2a and 4 shows that the set of all
equations from E which have at most finitely many solutions in positive integers is not
recursively enumerable.
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Theorem 5. If the set of all Diophantine equations which have at most finitely many
integer solutions is recursively enumerable, then there exists an algorithm which decides
whether or not a given Diophantine equation has an integer solution.

Proof. Suppose that {Ui = 0}∞i=2 is a computable sequence of all Diophantine equations
which have at most finitely many integer solutions. There are infinitely many prime
numbers of the form 3k + 1 and there are infinitely many prime numbers of the form
3k + 2, see [1, p. 80]. Hence, the algorithm presented in Flowchart 3 uses a computable
surjection from N \ {0, 1} onto Zp. By this and Lemma 3, the execution of Flowchart 3
decides whether or not a Diophantine equation D(x1, . . . , xp) = 0 has an integer solution.

Start

Input a Diophantine equation D(x1, . . . , xp) = 0

W(x1, . . . , xp+1) := D(x1, . . . , xp) + 0 · xp+1

i := 2
i := i + 1

Is W(x1, . . . , xp+1) = Ui ?

Compute prime numbers B1, . . . , Bn and

positive integers b1, . . . , bn such

that i = Bb1
1 . . . B

bn
n and B1 < . . . < Bn

∀i ∈
{
1, . . . , n

} 
ai := −1

(
if Bi ≡ 0 (mod 3)

)
ai := −1

(
if Bi ≡ 1 (mod 3)

)
ai := 1

(
if Bi ≡ 2 (mod 3)

)
Is p 6 n ?

Is D
(
a1 · (b1 − 1), . . . , ap · (bp − 1)

)
= 0 ?

Print "The equation D(x1, . . . , xp) = 0
is solvable in integers"

Print "The equation D(x1, . . . , xp) = 0
is not solvable in integers"

Stop

No

Yes

Yes

Yes

No

No

Flowchart 3
�
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Corollary 3. By Matiyasevich’s theorem, the set of all Diophantine equations which have
at most finitely many integer solutions is not recursively enumerable.

Theorem 6. The analogous reasoning with Lemmas 3a and 4 shows that the set of all
equations from E which have at most finitely many integer solutions is not recursively
enumerable.

For a positive integer k, let Dioph(k) denote the set of all Diophantine equations which
have at most k variables and at most finitely many solutions in non-negative integers.

Theorem 7. For every integer k > 9, the set Dioph(k) is not recursively enumerable.

Proof. Let {D j = 0}∞j=0 be a computable sequence of all Diophantine equations which
have at most k variables. A stronger version of the Davis-Putnam-Robinson-Matiyasevich
theorem states that each recursively enumerable subset of N has an infinite-fold
Diophantine representation with 9 variables, see [2], [3], [4, p. 163], and [6, p. 243]. By
applying this theorem, there exists a polynomial W(x, x1, . . . , x9) ∈ Z[x, x1, . . . , x9] such
that for every non-negative integer j, the equation D j = 0 is solvable in non-negative
integers if and only if the equation W( j, x1, . . . , x9) = 0 has infinitely many solutions
in non-negative integers x1, . . . , x9. Equivalently, for every non-negative integer j,
the equation D j = 0 has no solutions in non-negative integers if and only if the
equation W( j, x1, . . . , x9) = 0 has at most finitely many solutions in non-negative integers
x1, . . . , x9. Suppose, on the contrary, that {Gi = 0}∞i=2 is a computable sequence of all
equations from Dioph(k). Then, the execution of Flowchart 4 decides whether or not
a Diophantine equation D(x1, . . . , xp) = 0 (where p 6 k) has a solution in non-negative
integers x1, . . . , xp. Thus we have a contradiction to Matiyasevich’s theorem.

6



Input a Diophantine equation

D(x1, . . . , xp) = 0, where p 6 k

j := 0
j := j + 1

Is D(x1, . . . , xp) = D j ?

i := 2
i := i + 1

Is W( j, x1, . . . , x9) = Gi ?

Compute prime numbers B1, . . . , Bn and

positive integers b1, . . . , bn such

that i = Bb1
1 . . . B

bn
n and B1 < . . . < Bn

Is p 6 n ?

Is D(b1 − 1, . . . , bp − 1) = 0 ?

Print "The equation D(x1, . . . , xp) = 0 is
solvable in non-negative integers"

Print "The equation D(x1, . . . , xp) = 0 is
not solvable in non-negative integers"

Stop

No

Yes

No

Yes

Yes

Yes

No

No

Flowchart 4
�
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