Summary

• Introduction & Cryptographic Background

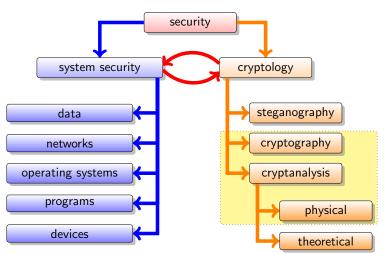
Hardware Support for Physical Security

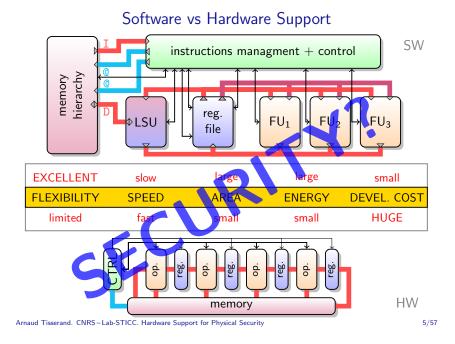
Arnaud Tisserand

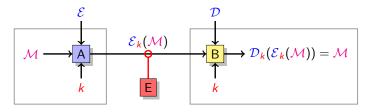
CNRS, Lab-STICC laboratory

CRiSIS 2017, Dinard, France

- Side Channel Attacks
- Fault Injection Attacks
- Protections Examples
- Conclusion and References


Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security


Applications with Security Needs


Applications: smart cards, computers, Internet, telecommunications, set-top boxes, data storage, RFID tags, WSN, smart grids...

Symmetric / Private-Key Cryptography

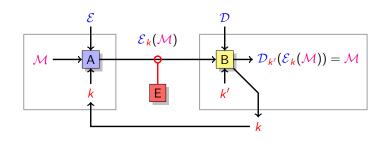
- A : Alice, B : Bob
- \mathcal{M} : plain text/message
- \mathcal{E} : encryption/ciphering algorithm, \mathcal{D} : decryption/deciphering algorithm
- k: secret key to be shared by A and B
- $\mathcal{E}_k(\mathcal{M})$: encrypted text
- $\underline{\mathcal{D}}_k(\mathcal{E}_k(\mathcal{M}))$: decrypted text
- E: eavesdropper/spy

Cryptographic Features

Objectives:

- Confidentiality
- Integrity
- Authenticity
- Non-repudiation
- ...

Cryptographic primitives:


- Encryption
- Digital signature
- Hash function
- Random numbers generation
- . . .

Implementation issues in hardware:

- Performances: speed, delay, throughput, latency
- Cost: device (memory, size, weight), low power/energy consumption, design
- Security: protection against physical attacks

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

Asymmetric / Public-Key Cryptography

- k: B's public key (known to everyone including E)
- $\mathcal{E}_{k}(\mathcal{M})$: ciphered text
- k': B's private key (must be kept secret)
- $\mathcal{D}_{k'}(\mathcal{E}_k(\mathcal{M}))$: deciphered text

RSA Asymmetric Cryptosystem (1/2)

Published in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman [11]

Key generation (Bob side)

- Choose two large prime integers p and q
- Compute the modulus n = pq
- Compute $\varphi(n) = (p 1)(q 1)$
- Choose an integer e such that $1 < e < \varphi(n)$ and $\gcd(e, \varphi(n)) = 1$
- Compute $d = e^{-1} \mod \varphi(n)$
- Private key (kept secret by Bob): d and also $p, q, \varphi(n)$
- Public key (published): (*n*, *e*)

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

9/57

RSA Asymmetric Cryptosystem (2/2)

Private key (Bob): <i>d</i>	Public key (all): (n, e)
 Encryption (Alice side): convert the message M to an integer m compute the cipher text c = m^e mod n 	$(1 < m < n ext{ and } \gcd(m, n) = 1)$
 Decryption (Bob side): compute m = c^d mod n convert the integer m to the message M 	
Theoretical security : integer factorization, <i>i.e. n</i> , is not possible when <i>n</i> is large enough	computing (p,q) knowing
Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security	10/57

Modular Exponentiation

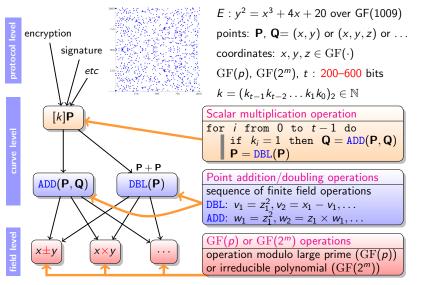
Computation of operations such as : $a^b \mod n$

$$a^{b} = \underbrace{a \times a \times a \times a \times \dots \times a \times a \times a}_{a \text{ appears } b \text{ times}}$$

Order of magnitude of exponents: $2^{\text{size of exponent}} \rightsquigarrow 2^{1024} \dots 2^{2048} \dots 2^{4096}$

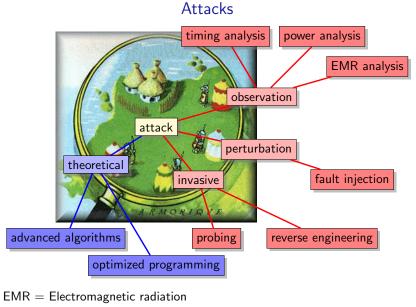
Fast exponentiation principle:

$$a^{b} = (a^{2})^{\frac{b}{2}} \quad \text{when } b \text{ is even}$$
$$= a \times (a^{2})^{\frac{b-1}{2}} \quad \text{when } b \text{ is odd}$$


Least significant bit of the exponent: $\texttt{bit} = 0 \rightsquigarrow \texttt{even} \texttt{ and } \texttt{bit} = 1 \rightsquigarrow \texttt{odd}$

Square and Multiply Algorithm

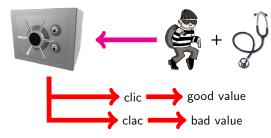
```
input: a, b, n where b = (b_{t-1}b_{t-2} \dots b_1b_0)_2
output: a^b \mod n
r = 1
for i from 0 to t-1 do
    if b_i = 1 then
        r = r \cdot a \mod n
    endif
        a = a^2 \mod n
endfor
return r
```


This is the right to left version (there exists a left to right one)

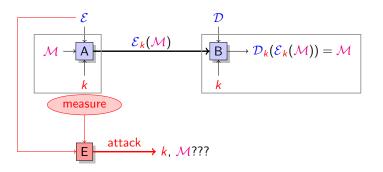
Elliptic Curve Cryptography in 1 Slide...

13/57

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security


14/57

Side Channel Attacks (SCAs) (1/2)


Attack: attempt to find, without any knowledge about the secret:

- the message (or parts of the message)
- informations on the message
- the secret (or parts of the secret)

"Old style" side channel attacks:

Side Channel Attacks (SCAs) (2/2)

General principle: measure external parameter(s) on running device in order to deduce internal informations

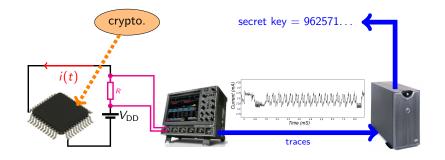
What Should be Measured?

Answer: everything that can "enter" and/or "get out" in/from the device

- power consumption
- electromagnetic radiation
- temperature
- sound
- computation time
- number of cache misses
- number and type of error messages
- ...

The measured parameters may provide informations on:

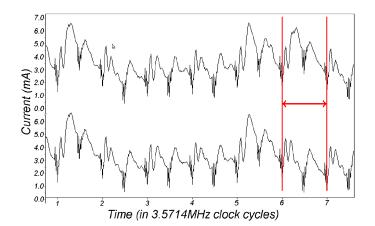
- global behavior (temperature, power, sound...)
- local behavior (EMR, # cache misses...)


Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

17/57

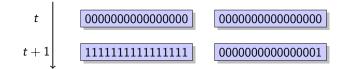
Power Consumption Analysis

General principle:


- 1. measure the current i(t) in the cryptosystem
- 2. use those measurements to "deduce" secret informations

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

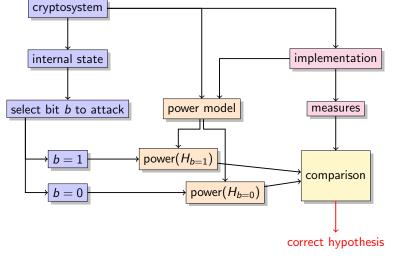
18/57


Simple Power Analysis (SPA)

Source: [5]

Limits of the SPA

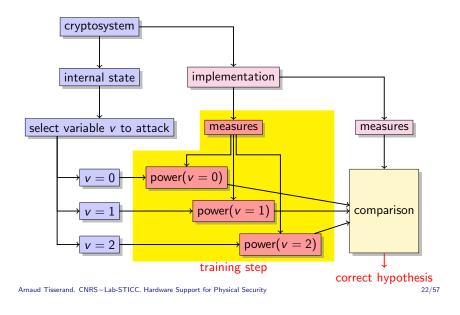
Example of behavior difference: (activity into a register)



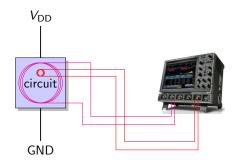
Important: a small difference may be evaluated has a noise during the measurement \rightarrow traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces


Differential Power Analysis (DPA)

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security


21/57

Template Attack

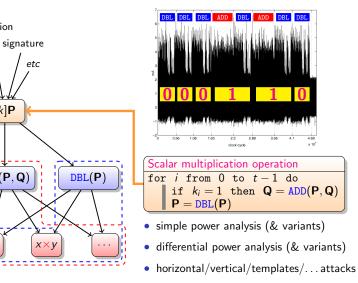
Electromagnetic Radiation Analysis

General principle: use a probe to measure the EMR

EMR measurement:

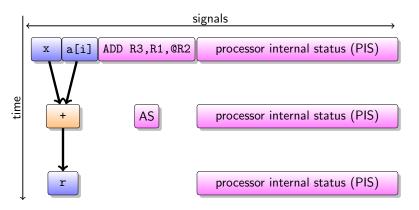
- global EMR with a large probe
- local EMR with a micro-probe

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security


encryption

[k]**P**

 $ADD(\mathbf{P}, \mathbf{Q})$


etc

Side Channel Attack on ECC

Activity in a Processor

Operation to be executed: $r \leftarrow x + a[i]$

- AS: ALU status
- PIS: pipeline management, bypasses, memory hierarchy, branch predictor, monitoring, etc)

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

25/57

Fault Injection Attacks

Objective: alter the correct functioning of a system "from outside"

Fault effects examples:

- modify a value in a register
- modify a value in the memory hierarchy
- modify an address (data location or code location)
- modify a control signal (e.g. status flag, branch direction)
- skip/modify the instruction decoding
- delay/advance propagation of internal control signals
- etc.

Also called perturbation attacks

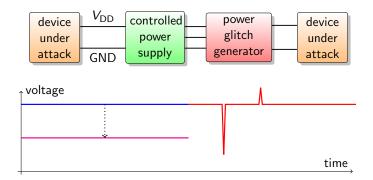
Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

26/57

Fault Injection Techniques

Typical techniques:

- perturbation in the power supply voltage
- perturbation of the clock signal
- temperature (over/under-heating the chip)
- radiation or electromagnetic (EM) disturbances
- exposing the chip to intense lights or beams
- etc

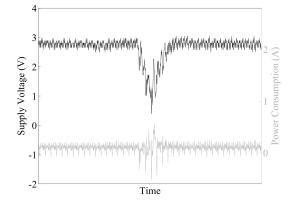

Accuracy:

- time: part of clock cycle, clock cycle, code block (instruction sequence)
- space: gate, block, unit, core, chip, package
- value: set to a specific value, bit flip, stuck-at 0 or 1, random modification

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

Perturbation on the Power Supply

Principle:

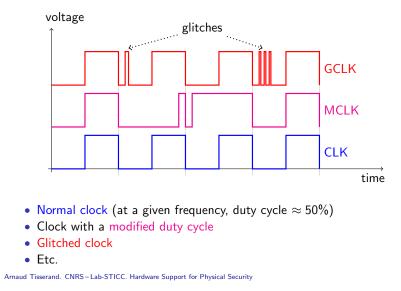


- Nominal power supply (e.g. \approx [0.7, 1.2] V for current technologies)
- Non-nominal constant power supply (e.g. 0.7 V instead of 1.2 V)
- Glitches (dips, spikes) in the power supply at some selected moments

Power Glitching Example

Source: FDTC 2008 conference paper [12]

Setup: AVR microcontroller with RSA implementation



Attack result: a power glitch causes to skip some instruction Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

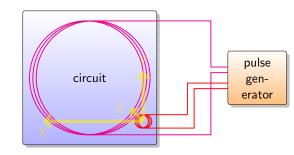
29/57

Perturbation on the External Clock

Clock Glitch Attack Example

Source: paper [1] presented at FDTC 2011 conference

Setup: AVR ATMega 163 microcontroller @ 1MHz


mode	glitch period	cycle	instruction	opcode (bin)		
normal	-	i	NOP	0000 0000 0000 0000		
normal	-	i + 1	EOR R15,R5	0010 0100 1111 0101		
glitch	59 ns	i + 1	NOP	0000 0000 0000 0000		

mode	glitch period	cycle	instruction	opcode (bin)		
normal	-	- <i>i</i> NOP		0000 0000 0000 0000		
normal	-	i + 1	SER R18	1110 1111 0010 1111		
glitch	61 ns	i + 1	LDI R18,0xEF	1110 1110 0010 1111		
glitch	60 ns	i + 1	SBC R12,R15	0000 1000 0010 1111		
glitch	59 ns	i + 1	NOP	0000 0000 0000 0000		

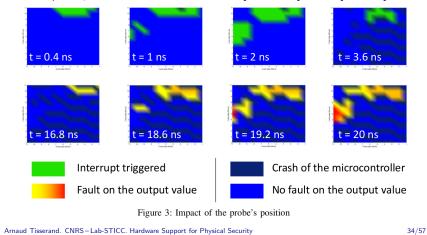
mode	glitch period	cycle	instruction	opcode (bin)
normal	-	i	TST R12	0010 0000 1100 1100
normal	-	i + 1	BREQ PC+0x02	1111 0000 0000 1001
normal	-	<i>i</i> + 2	SER R26	1110 1111 1010 1111
glitch	57 ns	<i>i</i> + 2	LDI R26,0xEF	1110 1110 1010 1111
glitch	56 ns	<i>i</i> + 2	LDI R26,0xCF	1110 1100 1010 1111
glitch	52 ns	<i>i</i> + 2	LDI R26,0x0F	1110 0000 1010 1111
glitch	45 ns	<i>i</i> + 2	LDI R16,0x09	1110 0000 0000 1001
glitch	32 ns	<i>i</i> + 2	LD RO,Y+0x01	1000 0000 0000 1001
glitch	28 ns	<i>i</i> + 2	LD R9,Y	1000 0000 0000 1000
glitch	27 ns	i + 2	LDI R16,0x09	1110 0000 0000 1001
glitch	15 ns	<i>i</i> + 2	BREQ PC+0x02	1111 0000 0000 1001

Electromagnetic Perturbations

Principle:

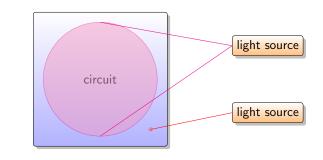
- large antenna
- micro-antenna with motorized (X,Y,Z) stage/table

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security


Loaded value: 12345678

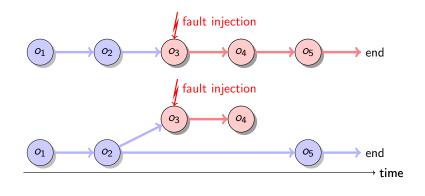
Pulse voltage [V]	Loaded value	Occurrence rate [%]
170	1234 5678	100
172	1234 5678	100
174	<mark>9</mark> 234 5678	73
176	FE34 5678	30
178	FFF4 5678	53
180	FFFD 5678	50
182	FFFF 7F78	46
184	FFFF FFFB	40
186	FFFF FFFF	100
188	FFFF FFFF	100
190	FFFF FFFF	100

Electromagnetic Attack Example


Source: article [6] presented at FDTC 2013 conference

Setup: 32-b Cortex-M3 ARM microprocessor (CMOS 130 nm SoC at 56 MHz), magnetic antenna with pulses in [-200, 200] V and [10, 200] ns

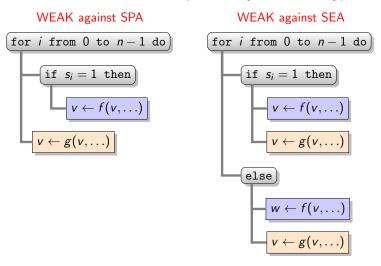
Lights / Lasers



large illuminated area (flash light with microscope)
small "spot" (laser with variable locations)

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

Safe Error Attack


 $\label{eq:principle:exploit the link (or the lack of link) between injected fault(s) during "useful" (or "useless") operations and the final result$

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

37/57

Safe Error Attack Example in Asymmetric Crypto

Useless or dummy operations are a bad idea (most of the time) Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

38/57

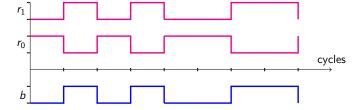
Countermeasures

Principles for preventing attacks:

- embed additional protection blocks
- modify the original circuit into a secured version
- application levels: circuit, architecture, algorithm, protocol...

Countermeasures:

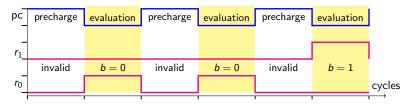
- electrical shielding
- detectors, estimators, decoupling
- use uniform computation durations and power consumption
- use detection/correction codes (for fault injection attacks)
- provide a random behavior (algorithms, representation, operations...)
- add noise (e.g. masking, useless instructions/computations)
- circuit reconfiguration (algorithms, block location, representation of values...)


Low-Level Coding and Circuit Activity

Assumptions:

- **b** is a bit (i.e. $b \in \{0, 1\}$, logical or mathematical value)
- electrical states for a wire ----: V_{DD} (logical 1) or GND (logical 0)

Low-level codings of a bit:

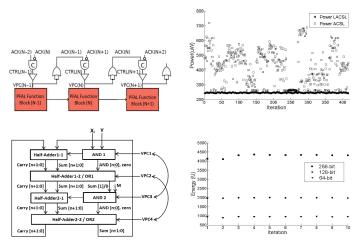

	<i>b</i> = 0	<i>b</i> = 1
standard	GND	V _{DD}
dual rail	$ \begin{array}{c} \hline & r_0 = V_{\text{DD}} \\ r_1 = \text{GND} \end{array} \right] (1,0)_{\text{DR}} $	$r_0 = GND \\ r_1 = V_{\mathrm{DD}} \ (0, 1)_{\mathrm{DR}}$

Circuit Logic Styles

Countermeasure principles: uniformize circuit activity and exclusive coding

Solution based on precharge logic and dual-rail coding:

Solution based on validity line and dual-rail coding:



Important overhead: silicon area and local storage (registers)

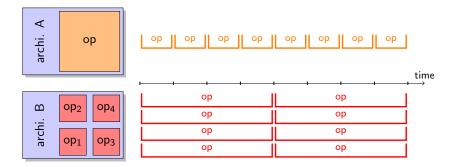
Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

41/57

Circuit-Level Protections for Arithmetic Operators

References: [3] and [4]

Protected Multipliers


Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

42/57

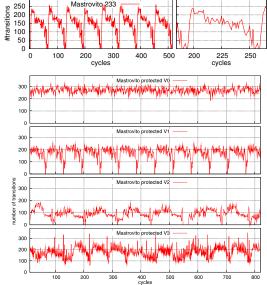
Countermeasure: Architecture

Increase internal parallelism:

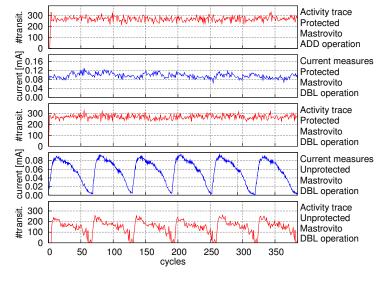
- replace one fast but big operator
- by several instances of a small but slow one

Unprotected

Protected


Overhead:

References:


Area/time < 10%

PhD D. Pamula [7]

Articles: [10], [9], [8]

Protected ECC Accelerator

Randomized DBNS Recoding of the Scalar k

possible rules

random choice ·

 $TPL(\mathbf{P})$

 $1+2 \leftrightarrows 3$ $1+3 \leftrightarrows 2^2$

k

On-the-fly DBNS random recoding for the scalar k randomly recode windows of the scalar k on-the-fly:

control number of reductions (\leftarrow) and expansions (\rightarrow

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

encryption

 $[k]\mathbf{P}$

 $ADD(\mathbf{P}, \mathbf{Q})$

x +

signature

etc

45/57

Double-Base Number System

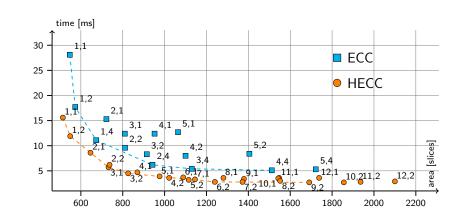
Standard radix-2 representation:

$$k = \sum_{i=0}^{t-1} k_i 2^i = \begin{bmatrix} 2^{t-1} & 2^{t-2} & \cdots & 2^2 & 2^1 & 2^0 & \text{implicit weights} \\ \hline k_{t-1} & k_{t-2} & \cdots & k_2 & k_1 & k_0 \end{bmatrix} t \text{ explicit digits}$$

Digits: $k_i \in \{0, 1\}$, typical size: $t \in \{160, ..., 600\}$

Double-Base Number System (DBNS):

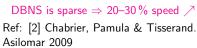
n-1	k_{n-1}		k_1	k_0	n (2,3)-terms
$k = \sum k_j 2^{a_j} 3^{b_j} =$	a_{n-1}		a_1	<i>a</i> 0	explicit "digits"
$k=\sum_{j=0}^{n-1}k_j2^{a_j}3^{b_j}=$	b_{n-1}		b_1	<i>b</i> 0	explicit ranks
$a_j, b_j \in \mathbb{N}, k_j \in \{1\} \text{ or } k_j \in \{-1, 1\}, \text{size } n \approx$; t


DBNS is a very redundant and sparse representation: 1701 = (11010100101)₂

1701	=	243 + 1458	=	$2^{0}3^{5} + 2^{1}3^{6}$	=	(1, 0, 5), (1, 1, 6)
						(1, 6, 3), (-1, 0, 3)
	=	729 + 972	=	$2^{0}3^{6} + 2^{2}3^{5}$	=	(1, 0, 6), (1, 2, 5)

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

46/57



On average HECC is 40 % faster than ECC for a similar silicon cost

DBNS is redundant \Rightarrow security \nearrow

DBL(P)

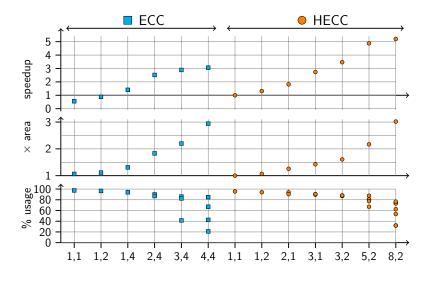
 $1+2^3 \leftrightarrows 3^2$

k:

time

Point tripling operation

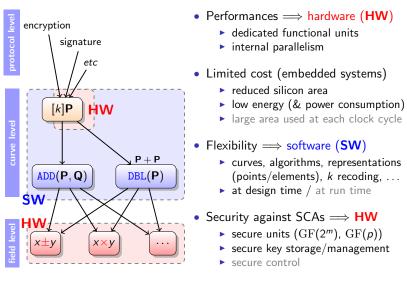
 $\mathbf{Q} = \mathrm{TPL}(\mathbf{P}) = \mathbf{P} + \mathbf{P} + \mathbf{P}$

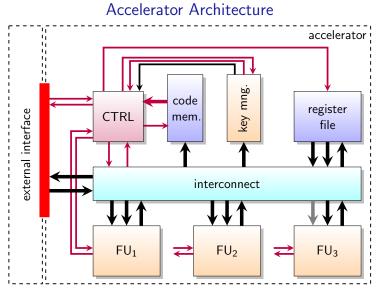

recoding rules

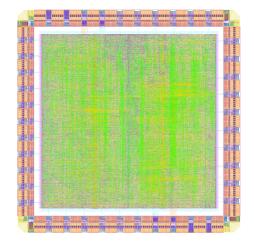
 \dots recoded k_i (k_{i+1})

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

XX


Comparison ECC 256 vs HECC 128 (2/2)


Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security



Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

accelerator

ANR PAVOIS Integrated Circuit

ECC 256 bits 65 nm CMOS 1.5 mm²

Data: *w*-bit (32,..., 128) except for *k* digits, **control**: a few bits per unit Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

Conclusion

- Side channel and fault attacks are serious threats
- Attacks are more and more efficient (many variants)
- Security analysis is mandatory at all levels (specification, algorithm, operation, implementation)
- Security = trade-off between performances, robustness and cost
- Security = func(secret value, attacker capabilities)
- security = computer science + microelectronics + mathematics

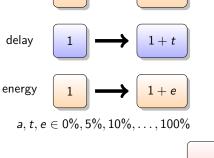
Current works examples:

- Methods/tools for automating security analysis
- Circuit reconfiguration (representations, algorithms)
- Circuits with reduced activity variations
- Representation of numbers with error detection/correction "codes"
- Design space exploration
- CAD tools with security improvement capabilities

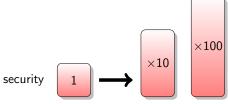
Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

53/57

Our Long Term Objectives


area

Study the links between:


- cryptosystems
- arithmetic algorithms
- \mathbb{F}_q , pts representations
- architectures & units
- circuit optimisations

to ensure

- high security against
 - theoretical attacks
 - physical attacks
- low design cost
- low silicon cost
- Iow energy(/power)
- high performances
- high flexibility

1 + a

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security

References I

- J. Balasch, B. Gierlichs, and I. Verbauwhede.
 An in-depth and black-box characterization of the effects of clock glitches on 8-bit MCUs. In Proc. 8th International Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 105–114, Nara, Japan, September 2011. IEEE.
- [2] T. Chabrier, D. Pamula, and A. Tisserand. Hardware implementation of DBNS recoding for ECC processor. In Proc. 44rd Asilomar Conference on Signals, Systems and Computers, pages 1129–1133, Pacific Grove, California, U.S.A., November 2010. IEEE.
- [3] J. Chen, A. Tisserand, E. M. Popovici, and S. Cotofana. Robust sub-powered asynchronous logic.

In J. Becker and M. R. Adrover, editors, Proc. 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), pages 1–7, Palma de Mallorca, Spain, September 2014. IEEE.

- [4] J. Chen, A. Tisserand, E. M. Popovici, and S. Cotofana. Asynchronous charge sharing power consistent Montgomery multiplier. In J. Sparso and E Yahya, editors, Proc. 21st IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), pages 132–138, Mountain View, California, USA, May 2015.
- [5] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis.

In Proc. Advances in Cryptology (CRYPTO), volume 1666 of LNCS, pages 388-397. Springer, August 1999.

- [6] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller. In Proc. 10th International Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 77–88, Santa Barbara, CA, USA, August 2013. IEEE.
- D. Pamula.
 Arithmetic Operators on GF(2^m) for Cryptographic Applications: Performance Power Consumption Security Tradeoffs. Phd thesis, University of Rennes 1 and Silesian University of Technology, December 2012.

References II

- [8] D. Pamula, E. Hrynkiewicz, and A. Tisserand. Analysis of GF(2²³³) multipliers regarding elliptic curve cryptosystem applications. In 11th IFAC/IEEE International Conference on Programmable Devices and Embedded Systems (PDeS), pages 271–276, Brno, Czech Republic, May 2012.
 [9] D. Pamula and A. Tisserand.
 - $GF(2^m)$ finite-field multipliers with reduced activity variations. In 4th International Workshop on the Arithmetic of Finite Fields, volume 7369 of LNCS, pages 152–167, Bochum, Germany, July 2012. Springer.
- [10] D. Pamula and A. Tisserand. Fast and secure finite field multipliers. In Proc. 18th Euromicro Conference on Digital System Design (DSD), pages 653–660, Madeira, Portugal, August 2015.
- [11] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems *Communications of the ACM*, 21(2):120–126, February 1978.
- [12] J. Schmidt and C. Herbst. A practical fault attack on square and multiply.

A practical ratic attack on square and multiply. In Proc. 5th International Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 53–58, Washington, DC, USA, August 2008. IEEE.

The end, questions ?

Contact:

- mailto:arnaud.tisserand@univ-ubs.fr
- http://www-labsticc.univ-ubs.fr/~tisseran
- CNRS, Lab-STICC Laboratory University South Brittany (UBS), Centre de recherche C. Huygens, rue St Maudé, BP 92116, 56321 Lorient cedex, France

Thank you

Arnaud Tisserand. CNRS-Lab-STICC. Hardware Support for Physical Security