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Applications with Security Needs

Applications: smart cards, computers, Internet, telecommunications,
set-top boxes, data storage, RFID tags, WSN, smart grids. . .
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Software vs Hardware Support
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Cryptographic Features

Objectives:

• Confidentiality

• Integrity

• Authenticity

• Non-repudiation

• . . .

Cryptographic primitives:

• Encryption

• Digital signature

• Hash function

• Random numbers generation

• . . .

Implementation issues in hardware:

• Performances: speed, delay, throughput, latency

• Cost: device (memory, size, weight), low power/energy consumption,
design

• Security: protection against physical attacks

Arnaud Tisserand. CNRS – Lab-STICC. Hardware Support for Physical Security 6/57

Symmetric / Private-Key Cryptography

A BM

E D

k

Ek (M)

k

Dk (Ek (M)) =M

E

• A : Alice, B : Bob

• M: plain text/message

• E : encryption/ciphering algorithm, D: decryption/deciphering
algorithm

• k : secret key to be shared by A and B

• Ek (M): encrypted text

• Dk (Ek (M)): decrypted text

• E : eavesdropper/spy
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Asymmetric / Public-Key Cryptography

A BM

E D

k

Ek (M)

k

k ′

Dk ′(Ek (M)) =M

E

• k : B’s public key (known to everyone including E)

• Ek (M): ciphered text

• k ′: B’s private key (must be kept secret)

• Dk ′(Ek (M)): deciphered text
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RSA Asymmetric Cryptosystem (1/2)

Published in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman [11]

Key generation (Bob side)

• Choose two large prime integers p and q

• Compute the modulus n = pq

• Compute ϕ(n) = (p − 1)(q − 1)

• Choose an integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1

• Compute d = e−1 mod ϕ(n)

• Private key (kept secret by Bob): d and also p, q, ϕ(n)

• Public key (published): (n, e)
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RSA Asymmetric Cryptosystem (2/2)

Private key (Bob): d Public key (all): (n, e)

Encryption (Alice side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Bob side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough
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Modular Exponentiation

Computation of operations such as : ab mod n

ab = a× a× a× a× . . .× a× a× a︸ ︷︷ ︸
a appears b times

Order of magnitude of exponents: 2size of exponent  21024 . . . 22048 . . . 24096

Fast exponentiation principle:

ab = (a2)
b
2 when b is even

= a× (a2)
b−1

2 when b is odd

Least significant bit of the exponent: bit = 0 even and bit = 1 odd

Arnaud Tisserand. CNRS – Lab-STICC. Hardware Support for Physical Security 11/57

Square and Multiply Algorithm

input : a , b , n where b = (bt−1bt−2 . . . b1b0)2

output : ab mod n

r = 1
f o r i from 0 to t − 1 do

i f bi = 1 then
r = r · a mod n

e n d i f
a = a2 mod n

endfor
return r

This is the right to left version (there exists a left to right one)
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Elliptic Curve Cryptography in 1 Slide...
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E : y2 = x3 + 4x + 20 over GF(1009)

points: P, Q= (x , y) or (x , y , z) or . . .

coordinates: x , y , z ∈ GF(·)
GF(p), GF(2m), t : 200–600 bits

k = (kt−1kt−2 . . . k1k0)2 ∈ N

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

GF(p) or GF(2m) operations
operation modulo large prime (GF(p))
or irreducible polynomial (GF(2m))
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Attacks

attack

observation

perturbation

invasive

timing analysis power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

advanced algorithms

optimized programming

EMR = Electromagnetic radiation
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Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

• the message (or parts of the message)

• informations on the message

• the secret (or parts of the secret)

“Old style” side channel attacks:

+

clic

clac

good value

bad value
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Side Channel Attacks (SCAs) (2/2)

A B
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E

measure

k , M???
attack

General principle: measure external parameter(s) on running device in
order to deduce internal informations
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What Should be Measured?

Answer: everything that can “enter” and/or “get out” in/from the device

• power consumption

• electromagnetic radiation

• temperature

• sound

• computation time

• number of cache misses

• number and type of error messages

• ...

The measured parameters may provide informations on:

• global behavior (temperature, power, sound...)

• local behavior (EMR, # cache misses...)
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Power Consumption Analysis

General principle:

1. measure the current i(t) in the cryptosystem

2. use those measurements to “deduce” secret informations

VDD

i(t)

crypto.

R

traces

secret key = 962571. . .
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Simple Power Analysis (SPA)

Source: [5]
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Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces
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Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis
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Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis
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Electromagnetic Radiation Analysis

General principle: use a probe to measure the EMR

circuit

VDD

GND

EMR measurement:

• global EMR with a large probe

• local EMR with a micro-probe
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Side Channel Attack on ECC
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Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks
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Activity in a Processor
Operation to be executed: r ← x + a[i]

ti
m

e
signals

x a[i]

r

+

ADD R3,R1,@R2

AS

processor internal status (PIS)

processor internal status (PIS)

processor internal status (PIS)

• AS: ALU status

• PIS: pipeline management, bypasses, memory hierarchy, branch predictor,
monitoring, etc)

Arnaud Tisserand. CNRS – Lab-STICC. Hardware Support for Physical Security 25/57

Fault Injection Attacks

Objective: alter the correct functioning of a system “from outside”

Fault effects examples:

• modify a value in a register

• modify a value in the memory hierarchy

• modify an address (data location or code location)

• modify a control signal (e.g. status flag, branch direction)

• skip/modify the instruction decoding

• delay/advance propagation of internal control signals

• etc.

Also called perturbation attacks
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Fault Injection Techniques

Typical techniques:

• perturbation in the power supply voltage

• perturbation of the clock signal

• temperature (over/under-heating the chip)

• radiation or electromagnetic (EM) disturbances

• exposing the chip to intense lights or beams

• etc

Accuracy:

• time: part of clock cycle, clock cycle, code block (instruction sequence)

• space: gate, block, unit, core, chip, package

• value: set to a specific value, bit flip, stuck-at 0 or 1, random
modification
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Perturbation on the Power Supply
Principle:

controlled
power
supply

device
under
attack

device
under
attack

power
glitch

generator

VDD

GND

time

voltage

• Nominal power supply (e.g. ≈ [0.7, 1.2] V for current technologies)

• Non-nominal constant power supply (e.g. 0.7 V instead of 1.2 V)

• Glitches (dips, spikes) in the power supply at some selected moments
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Power Glitching Example
Source: FDTC 2008 conference paper [12]

Setup: AVR microcontroller with RSA implementation

Attack result: a power glitch causes to skip some instruction
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Perturbation on the External Clock
Principle:

time

voltage

CLK

MCLK

GCLK

glitches

• Normal clock (at a given frequency, duty cycle ≈ 50%)
• Clock with a modified duty cycle
• Glitched clock
• Etc.
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Clock Glitch Attack Example

Source: paper [1] presented at FDTC 2011 conference

Setup: AVR ATMega 163 microcontroller @ 1MHz

mode glitch period cycle instruction opcode (bin)

normal - i NOP 0000 0000 0000 0000
normal - i + 1 EOR R15,R5 0010 0100 1111 0101

glitch 59 ns i + 1 NOP 0000 0000 0000 0000

mode glitch period cycle instruction opcode (bin)

normal - i NOP 0000 0000 0000 0000
normal - i + 1 SER R18 1110 1111 0010 1111

glitch 61 ns i + 1 LDI R18,0xEF 1110 1110 0010 1111
glitch 60 ns i + 1 SBC R12,R15 0000 1000 0010 1111
glitch 59 ns i + 1 NOP 0000 0000 0000 0000
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mode glitch period cycle instruction opcode (bin)

normal - i TST R12 0010 0000 1100 1100
normal - i + 1 BREQ PC+0x02 1111 0000 0000 1001
normal - i + 2 SER R26 1110 1111 1010 1111

glitch 57 ns i + 2 LDI R26,0xEF 1110 1110 1010 1111
glitch 56 ns i + 2 LDI R26,0xCF 1110 1100 1010 1111
glitch 52 ns i + 2 LDI R26,0x0F 1110 0000 1010 1111
glitch 45 ns i + 2 LDI R16,0x09 1110 0000 0000 1001
glitch 32 ns i + 2 LD R0,Y+0x01 1000 0000 0000 1001
glitch 28 ns i + 2 LD R9,Y 1000 0000 0000 1000
glitch 27 ns i + 2 LDI R16,0x09 1110 0000 0000 1001
glitch 15 ns i + 2 BREQ PC+0x02 1111 0000 0000 1001
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Electromagnetic Perturbations

Principle:

circuit
pulse
gen-

erator

Y

X

Z

• large antenna

• micro-antenna with motorized (X,Y,Z) stage/table
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Electromagnetic Attack Example
Source: article [6] presented at FDTC 2013 conference

Setup: 32-b Cortex-M3 ARM microprocessor (CMOS 130 nm SoC at
56 MHz), magnetic antenna with pulses in [-200, 200] V and [10, 200] ns
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Loaded value: 12345678

Pulse voltage [V] Loaded value Occurrence rate [%]
170 1234 5678 100
172 1234 5678 100
174 9234 5678 73
176 FE34 5678 30
178 FFF4 5678 53
180 FFFD 5678 50
182 FFFF 7F78 46
184 FFFF FFFB 40
186 FFFF FFFF 100
188 FFFF FFFF 100
190 FFFF FFFF 100
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Lights / Lasers

Principle:

circuit

light source

light source

• large illuminated area (flash light with microscope)

• small “spot” (laser with variable locations)
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Safe Error Attack

Principle: exploit the link (or the lack of link) between injected fault(s)
during “useful” (or “useless”) operations and the final result

time

o1 o2 o3 o4 o5o3 o4 o5 end

fault injection

time

o1 o2 o5

o3 o4o3 o4

end

fault injection
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Safe Error Attack Example in Asymmetric Crypto

for i from 0 to n − 1 do

if si = 1 then

v ← f (v , . . .)

v ← g(v , . . .)

WEAK against SPA

for i from 0 to n − 1 do

if si = 1 then

v ← f (v , . . .)

v ← g(v , . . .)

else

w ← f (v , . . .)

v ← g(v , . . .)

WEAK against SEA

Useless or dummy operations are a bad idea (most of the time)
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Countermeasures

Principles for preventing attacks:

• embed additional protection blocks

• modify the original circuit into a secured version

• application levels: circuit, architecture, algorithm, protocol. . .

Countermeasures:

• electrical shielding

• detectors, estimators, decoupling

• use uniform computation durations and power consumption

• use detection/correction codes (for fault injection attacks)

• provide a random behavior (algorithms, representation, operations. . . )

• add noise (e.g. masking, useless instructions/computations)

• circuit reconfiguration (algorithms, block location, representation of
values. . . )
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Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1
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Circuit Logic Styles
Countermeasure principles: uniformize circuit activity and exclusive
coding

Solution based on precharge logic and dual-rail coding:

cycles

pc

r0

r1

evaluation

b = 0

precharge

invalid

evaluation

b = 0

precharge

invalid

evaluation

b = 1

precharge

invalid

Solution based on validity line and dual-rail coding:

r1
r0

valid

Important overhead: silicon area and local storage (registers)
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Circuit-Level Protections for Arithmetic Operators

References: [3] and [4]
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Countermeasure: Architecture

Increase internal parallelism:

• replace one fast but big operator

• by several instances of a small but slow one
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Protected Multipliers

Unprotected

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500

#
tr

a
n

s
it
io

n
s

cycles

Mastrovito 233

 200  225  250
cycles

Protected

Overhead:
Area/time < 10 %

References:
PhD D. Pamula [7]
Articles: [10], [9], [8]
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Protected ECC Accelerator
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Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1

2t−1

kt−2

2t−2

. . .

. . .

k2

22

k1

21

k0

20

t explicit digits

implicit weights

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

kn−1

an−1

bn−1

. . .

. . .

. . .

k1

a1

b1

k0

a0

b0

n (2, 3)−terms

explicit “digits”

explicit ranks

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .
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Randomized DBNS Recoding of the Scalar k
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On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2� 3 1 + 3� 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules

recoded ki (,ki+1)random choice

DBNS is redundant ⇒ security ↗
DBNS is sparse ⇒ 20–30 % speed ↗

Ref: [2] Chabrier, Pamula & Tisserand.
Asilomar 2009
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Comparison ECC 256 vs HECC 128 (1/2)
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On average HECC is 40 % faster than ECC for a similar silicon cost
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Comparison ECC 256 vs HECC 128 (2/2)
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Accelerator Specifications

encryption
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• Performances =⇒ hardware (HW)
I dedicated functional units
I internal parallelism

• Limited cost (embedded systems)
I reduced silicon area
I low energy (& power consumption)
I large area used at each clock cycle

• Flexibility =⇒ software (SW)
I curves, algorithms, representations

(points/elements), k recoding, . . .
I at design time / at run time

• Security against SCAs =⇒ HW
I secure units (GF(2m), GF(p))
I secure key storage/management
I secure control
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Accelerator Architecture
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accelerator
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file

FU1 FU2 FU3

Data: w -bit (32, . . . , 128) except for k digits, control: a few bits per unit
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ANR PAVOIS Integrated Circuit

ECC 256 bits
65 nm CMOS
1.5 mm2
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Conclusion

• Side channel and fault attacks are serious threats

• Attacks are more and more efficient (many variants)

• Security analysis is mandatory at all levels (specification, algorithm,
operation, implementation)

• Security = trade-off between performances, robustness and cost

• Security = func( secret value, attacker capabilities )

• security = computer science + microelectronics + mathematics

Current works examples:

• Methods/tools for automating security analysis

• Circuit reconfiguration (representations, algorithms)

• Circuits with reduced activity variations

• Representation of numbers with error detection/correction “codes”

• Design space exploration

• CAD tools with security improvement capabilities
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Our Long Term Objectives
Study the links between:

• cryptosystems

• arithmetic algorithms

• Fq, pts representations

• architectures & units

• circuit optimisations

to ensure

• high security against
I theoretical attacks
I physical attacks

• low design cost

• low silicon cost

• low energy(/power)

• high performances

• high flexibility

area 1 1 + a

delay 1 1 + t

energy 1 1 + e

a, t, e ∈ 0%, 5%, 10%, . . . , 100%

security 1

×10

×100
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The end, questions ?

Contact:

• mailto:arnaud.tisserand@univ-ubs.fr

• http://www-labsticc.univ-ubs.fr/~tisseran

• CNRS, Lab-STICC Laboratory
University South Brittany (UBS),
Centre de recherche C. Huygens, rue St Maudé, BP 92116,
56321 Lorient cedex, France

Thank you
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