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A spectral approach for quenched limit theorems for random expanding dynamical systems

We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem (LCLT) for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form

An important aspect of our results is that we only assume ergodicity and invertibility of the random driving σ : Ω → Ω; in particular no expansivity or mixing properties are required.

Introduction

The Nagaev-Guivarc'h spectral method for proving the central limit theorem (due to Nagaev [START_REF] Nagaev | Some limit theorems for stationary markov chains[END_REF][START_REF] Nagaev | More exact statement of limit theorems for homogeneous markov chains[END_REF] for Markov chains and Guivarc'h [START_REF] Rousseau-Egele | Un théoreme de la limite locale pour une classe de transformations dilatantes et monotones par morceaux[END_REF][START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF] for deterministic dynamics) is a powerful approach with applications to several other limit theorems, in particular large deviations and the local limit theorem. In the deterministic setting a map T : X → X on a state space X preserves a probability measure µ on X. An observable g : X → R generates µ-stationary process {g(T n x)} n≥0 and one studies the statistics of this process. Central to the spectral method is the transfer operator L : B , acting on a Banach space B ⊃ L 1 (µ) of complexvalued functions with regularity properties compatible with the regularity of T 1 . A twist is introduced to form the twisted transfer operator L θ f := L(e θg f ). The three key steps to the spectral approach are: S1. Representing the characteristic function of Birkhoff (partial) sums S n g = n-1 i=0 g • T i as integrals of n th powers of twisted transfer operators. S2. Quasi-compactness (existence of a spectral gap) for the twisted transfer operators L θ for θ near zero.

S3. Regularity (e.g. twice differentiable for the CLT) of the leading eigenvalue of the twisted transfer operators L θ with respect to the twist parameter θ, for θ near zero.

This spectral approach has been widely used to prove limit theorems for deterministic dynamics, including large deviation principles [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF][START_REF] Rey-Bellet | Large deviations in non-uniformly hyperbolic dynamical systems[END_REF], central limit theorems [START_REF] Rousseau-Egele | Un théoreme de la limite locale pour une classe de transformations dilatantes et monotones par morceaux[END_REF][START_REF] Broise | Transformations dilatantes de l'intervalle et théorèmes limites[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF][START_REF] Ayyer | Quenched CLT for random toral automorphism[END_REF], Berry-Esseen theorems [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF][START_REF] Gouëzel | Berry-esseen theorem and local limit theorem for non uniformly expanding maps[END_REF], local central limit theorems [START_REF] Rousseau-Egele | Un théoreme de la limite locale pour une classe de transformations dilatantes et monotones par morceaux[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF][START_REF] Gouëzel | Berry-esseen theorem and local limit theorem for non uniformly expanding maps[END_REF], and vector-valued almost-sure invariance principles [START_REF] Melbourne | A vector-valued almost sure invariance principle for hyperbolic dynamical systems[END_REF][START_REF] Gouëzel | Almost sure invariance principle for dynamical systems by spectral methods[END_REF]. We refer the reader to the excellent review paper [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method. In Hyperbolic dynamics, fluctuations and large deviations[END_REF], which provides a broader overview of how to apply the spectral method to problems of these types, and the references therein.

In this paper, we extend this spectral approach to the situation where we have a family of maps {T ω } ω∈Ω , parameterised by elements of a probability space (Ω, P). These maps are composed according to orbits of a driving system σ : Ω → Ω. The resulting dynamics takes the form of a map cocycle T σ n-1 ω •• • ••T σω •T ω . In terms of real-world applications, we imagine that Ω is the class of underlying configurations that govern the dynamics on the (physical or state) space X. As time evolves, σ updates the current configuration and the dynamics T ω on X correspondingly changes. To retain the greatest generality for applications, we make minimal assumptions on the configuration updating (the driving dynamics) σ, and only assume σ is P-preserving, ergodic and invertible; in particular, no mixing hypotheses are imposed on σ.

We will assume certain uniform-in-ω (eventual) expansivity conditions for the maps T ω . Our observable g : Ω × X → R can (and, in general, will) depend on the base configuration ω and will satisfy a fibrewise finite variation condition. One can represent the random dynamics by a deterministic skew product transformation τ (ω, x) = (σ(ω), T ω (x)), ω ∈ Ω, x ∈ X. It is well known that whenever σ is invertible and μ is a τ -invariant probability measure with marginal P on the base Ω, the disintegration of μ with respect to P produces conditional measures µ ω which are equivariant; namely µ ω • T -1 ω = µ σω . Our limit theorems will be established µ ω -almost surely and for P-almost all choices of ω; we therefore develop quenched limit theorems. In the much simpler case where σ is Bernoulli, which yields an i.i.d. composition of the elements of {T ω } ω∈Ω , one is often interested in the study of limit laws with respect to a measure μ which is invariant with respect to the averaged transfer operator, and reflects the outcomes of averaged observations [START_REF] Ohno | Asymptotic behaviors of dynamical systems with random parameters[END_REF][START_REF] Arnold | Random dynamical systems[END_REF]. The corresponding limit laws with respect to μ are typically called annealed limit laws; see [START_REF] Aimino | Annealed and quenched limit theorems for random expanding dynamical systems[END_REF] and references therein for recent results in this framework.

As is common in the quenched setting, we impose a fiberwise centering condition for the observable. Thus, limit theorems in this context deal with fluctuations about a timedependent mean. For example, if the observable is temperature, the limit theorems would characterise temperature fluctuations about the mean, but this mean is allowed to vary with the seasons. The recent work [START_REF] Abdelkader | On the quenched central limit theorem for random dynamical systems[END_REF] provides a discussion of annealed and quenched limit theorems, and in particular an example regarding the necessity of fibrewise centering the observable for the quenched case. Without such a condition, quenched limit theorems have been established exclusively in special cases where all maps preserve a common invariant measure [START_REF] Ayyer | Quenched CLT for random toral automorphism[END_REF][START_REF] Nándori | A central limit theorem for time-dependent dynamical systems[END_REF] (and where the centering is obviously identical on each fibre).

In the quenched random setting we generalise the above three key steps of the spectral approach:

R1. Representing the (ω-dependent) characteristic function of Birkhoff (partial) sums S n g(ω, •) = n-1 i=0 g(ω, •) • T i ω (•) as an integral of n th random compositions of twisted transfer operators.

R2. Quasi-compactness for the twisted transfer operator cocycle; equivalently, existence of a gap in the Lyapunov spectrum of the cocycle L θ,(n) ω

:= L θ σ n-1 ω • • • • • L θ σω • L θ ω for θ near zero.
R3. Regularity (e.g. twice differentiable for the CLT) of the leading Lyapunov exponent and Oseledets spaces of the twisted transfer operators cocycle with respect to the twist parameter θ, for θ near zero.

At this point we note that the key steps S1-S3 in the deterministic spectral approach mean that one satisfies the requirement for a naive version of the Nagaev-Guivarc'h method [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method. In Hyperbolic dynamics, fluctuations and large deviations[END_REF]; namely E(e iθSn ) = c(θ)λ(θ) n + d n (θ) for c continuous at 0 and |d n | ∞ → 0. In this case, λ(θ) is the leading eigenvalue of L θ . Similarly, the key steps R1-R3 yield an analogue naive version of a random Nagaev-Guivarc'h method, where for all complex θ in a neighborhood of 0, and P-a.e. ω ∈ Ω, we have that

lim n→∞ 1 n log |E µω (e θSng(ω,•) )| = Λ(θ),
where Λ(θ) is the top Lyapunov exponent of the random cocycle generated by L θ ω (see Lemma 4.3). This condition is of course weaker than the asymptotic equivalence of [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method. In Hyperbolic dynamics, fluctuations and large deviations[END_REF], but together with the exponential decay of the norm of the projections to the complement of the top Oseledets space (see Section 4.2), which handles the error corresponding to quantity d n above, we are able to achieve the desired limit theorems. Under this analogy, we could consider our result as a new naive version of the Nagaev-Guivarc'h method, framed and adapted to random dynamical systems.

The quasi-compactness of the twisted transfer operator cocycle (item 2 above) will be based on the works [START_REF] Froyland | A semi-invertible Oseledets theorem with applications to transfer operator cocycles[END_REF][START_REF] González-Tokman | A semi-invertible operator Oseledets theorem[END_REF], which have adapted multiplicative ergodic theory to the setting of cocycles of possibly non-injective operators; the non-injectivity is crucial for the study of endomorphisms T ω . These new multiplicative ergodic theorems, and in particular the quasi-compactness results, utilise random Lasota-Yorke inequalities in the spirit of Buzzi [START_REF] Buzzi | Exponential Decay of Correlations for Random Lasota-Yorke Maps[END_REF]. For the regularity of the leading Lyapunov exponent (item 3 above) we develop ab initio a cocycle-based perturbation theory, based on techniques of [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]. This is necessary because in the random setting objects such as eigenvalues and eigenfunctions of individual transfer operators have no dynamical meaning and therefore one cannot simply apply standard perturbation results such as [START_REF] Kato | Perturbation theory for linear operators[END_REF], as is done in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] and all other spectral approaches for limit theorems. Multiplicative ergodic theorems do not provide, in general, a spectral decomposition with eigenvalues and eigenvectors as in the classical sense, but only a hierarchy of equivariant Oseledets spaces containing vectors which grow at a fixed asymptotic exponential rate, determined by the corresponding Lyapunov exponent.

Let us now summarise the main results of the present paper, obtained with our new cocycle-based perturbation theory. These are limit theorems for random Birkhoff sums S n g, associated to an observable g : Ω × X → R, and defined by

S n g(ω, x) := n-1 i=0 g(τ i (ω, x)) = n-1 i=0 g(σ i ω, T (i) ω x), (ω, x) ∈ Ω × X, n ∈ N. (1) 
The observable will be required to satisfy some regularity properties, which are made precise in Section 3.1. Moreover, we will suppose that g is fiberwise centered with respect to the invariant measure µ for τ . That is, g(ω, x) dµ ω (x) = 0 for P-a.e. ω ∈ Ω.

(

The necessary conditions on the dynamics are summarised in an admissibility notion, which is introduced in Definition 2.8. Our first results are quenched forms of the Large Deviations Theorem and the Central Limit Theorem. We remark that, while our results are all stated in terms of the fiber measures µ ω , in our examples, the same results hold true when µ ω is replaced by Lebesgue measure m. This is a consequence of a the result of Eagleson [START_REF] Eagleson | Some simple conditions for limit theorems to be mixing[END_REF] combined with the fact that, in our examples, µ ω is equivalent to m.

Theorem A (Quenched large deviations theorem). Assume the transfer operator cocycle R is admissible, and the observable g satisfies conditions (2) and [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF]. Then, there exists ǫ 0 > 0 and a non-random function c : (-ǫ 0 , ǫ 0 ) → R which is nonnegative, continuous, strictly convex, vanishing only at 0 and such that lim n→∞ 1 n log µ ω (S n g(ω, •) > nǫ) = -c(ǫ), for 0 < ǫ < ǫ 0 and P-a.e. ω ∈ Ω.

Theorem B (Quenched central limit theorem). Assume the transfer operator cocycle R is admissible, and the observable g satisfies conditions (2) and [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF]. Assume also that the non-random variance Σ 2 , defined in (47) satisfies Σ 2 > 0. Then, for every bounded and continuous function φ : R → R and P-a.e. ω ∈ Ω, we have

lim n→∞ φ S n g(ω, x) √ n dµ ω (x) = φ dN (0, Σ 2 ).
(The discussion after (47) deals with the degenerate case Σ 2 = 0).

Similar LDT and CLT results were previously obtained by Kifer [START_REF] Kifer | Perron-Frobenius theorem, large deviations, and random perturbations in random environments[END_REF][START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF]. For the LDT, Kifer applied a small stochastic perturbation, additional to the randomness of the cocycle, and used variational principles to construct quantities analogous to our top Lyapunov exponent and top Oseledets spaces. He then showed that in the limit of vanishing stochastic perturbations one can recover limits of these objects for the original random dynamical system. In the present work we go further by avoiding auxiliary stochastic perturbations and directly developing a general and powerful spectral machinery for addressing quenched limit laws. For the CLT, Kifer used martingale techniques, however, to control the rate of mixing, strong conditions (φ-mixing and α-mixing) are assumed in [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF], which are generally hard to check in the dynamical systems context. We use instead quenched decay of correlations on a space of regular observables, for example, bounded variation observables in one dimension or quasi-Hölder observables in higher dimensions. Finally, we note that in our recent article [START_REF] Dragičević | Almost sure invariance principle for random Lasota-Yorke maps[END_REF] we provide the first complete proof of the Almost Sure Invariance Principle for random transformations of the type covered in this paper using martingale techniques.

In this work, we prove for the first time a Local Central Limit Theorem for random transformations. Theorem C presents the aperiodic version: This result relies on an assumption concerning fast decay in n of the norm of the twisted operator cocycle L it,(n) ω B , for t ∈ R \ {0} and P-a.e. ω ∈ Ω. This hypothesis is made precise in (C5). Such an assumption is usually stated in the deterministic case (resp. in the random annealed situation), by asking that the twisted operator (resp. the averaged random twisted operator) L it has spectral radius strictly less than one for t ∈ R \ {0}; this is called the aperiodicity condition.

Theorem C (Quenched local central limit theorem). Assume the transfer operator cocycle R is admissible, and the observable g satisfies conditions (2) and [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF]. In addition, suppose the aperiodicity condition (C5) is satisfied. Then, for P-a.e. ω ∈ Ω and every bounded interval J ⊂ R, we have

lim n→∞ sup s∈R Σ √ nµ ω (s + S n g(ω, •) ∈ J) - 1 √ 2π e -s 2 2nΣ 2 |J| = 0.
In the autonomous case, aperiodicity is equivalent to a co-boundary condition, which can be checked in particular examples [START_REF] Morita | A generalized local limit theorem for Lasota-Yorke transformations[END_REF]. We are also able to state an equivalence between the decay of L it,(n) ω and a (random) co-boundary equation, which opens the possibility to verify the hypotheses of the local limit theorem in specific examples. In addition, we establish a periodic version of the LCLT in Theorem 4. [START_REF] Froyland | Coherent structures and isolated spectrum for Perron-Frobenius cocycles[END_REF].

In summary, a main contribution of the present work is the development of the spectral method for establishing limit theorems for quenched (or ω fibre-wise) random dynamics. Our hypotheses are natural from a dynamical point of view, and we explicitly verify them in the framework of the random Lasota-Yorke maps, and more generally for random piecewise expanding maps in higher dimensions. The new spectral approach for the quenched random setting we present here has been specifically designed for generalisation and we are hopeful that this method will afford the same broad flexibility that continues to be exploited by work in the deterministic setting. While at present we have uniform-in-ω assumptions on time-asymptotic expansion and decay properties of the random dynamics, we hope that in the future these assumptions can be relaxed to enable even larger classes of dynamical systems to be treated with our new spectral technique. For example, limit theorems for dynamical systems beyond the uniformly hyperbolic setting continues to be an active area of research, e.g. [START_REF] Gouëzel | Berry-esseen theorem and local limit theorem for non uniformly expanding maps[END_REF][START_REF] Gouëzel | Almost sure invariance principle for dynamical systems by spectral methods[END_REF][START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method. In Hyperbolic dynamics, fluctuations and large deviations[END_REF][START_REF] Bahsoun | Mixing rates and limit theorems for random intermittent maps[END_REF][START_REF] De Simoi | Fast-slow partially hyperbolic systems: beyond averaging[END_REF][START_REF] Nicol | Central limit theorems for sequential and random intermittent dynamical systems[END_REF][START_REF] Leppänen | Quasistatic dynamics with intermittency[END_REF], and another interesting set of related results on limit theorems occur in the setting of homogenisation [START_REF] Gottwald | Homogenization for deterministic maps and multiplicative noise[END_REF][START_REF] Kelly | Smooth approximation of stochastic differential equations[END_REF][START_REF] Kelly | Deterministic homogenization for fast-slow systems with chaotic noise[END_REF]. Our extension to the quenched random case opens up a wide variety of potential applications and future work will explore generalisation to random dynamical systems with even more complicated forms of behaviour.

Preliminaries

We begin this section by recalling several useful facts from multiplicative ergodic theory. We then introduce assumptions on the state space X; X will be a probability space equipped with a notion of variation for integrable functions. This abstract approach will enable us to simultaneously treat the cases where (i) X is a unit interval (in the context of Lasota-Yorke maps) and (ii) X is a subset of R n (in the context of piecewise expanding maps in higher dimensions). We introduce several dynamical assumptions for the cocycle L ω , ω ∈ Ω of transfer operators under which our limit theorems apply. This section is concluded by constructing large families of examples of both Lasota-Yorke maps and piecewise expanding maps in R n that satisfy all of our conditions.

Multiplicative ergodic theorem

In this subsection we recall the recently established versions of the multiplicative ergodic theorem which can be applied to the study of cocycles of transfer operators and will play an important role in the present paper. We begin by recalling some basic notions.

A tuple R = (Ω, F , P, σ, B, L) will be called a linear cocycle, or simply a cocycle, if σ is an invertible ergodic measure-preserving transformation on a probability space (Ω, F , P), (B, • ) is a Banach space and L : Ω → L(B) is a family of bounded linear operators such that log + L(ω) ∈ L 1 (P). Sometimes we will also use L to refer to the full cocycle R. In order to obtain sufficient measurability conditions in our setting of interest, we assume the following:

(C0) σ is a homeomorphism, Ω is a Borel subset of a separable, complete metric space and L is P-continuous (that is, L is continuous on each of countably many Borel sets whose union is Ω).

For each ω ∈ Ω and n ≥ 0, let L

(n) ω be the linear operator given by

L (n) ω := L σ n-1 ω • • • • • L σω • L ω .
Condition (C0) implies that the maps ω → log L

(n) ω are measurable. Thus, Kingman's sub-additive ergodic theorem ensures that the following limits exist and coincide for P-a.e. ω ∈ Ω:

Λ(R) := lim n→∞ 1 n log L (n) ω κ(R) := lim n→∞ 1 n log ic(L (n) ω ),
where ic(A) := inf r > 0 : A(B B ) can be covered with finitely many balls of radius r ,

and B B is the unit ball of B. The cocycle R is called quasi-compact if Λ(R) > κ(R).
The quantity Λ(R) is called the top Lyapunov exponent of the cocycle and generalises the notion of (logarithm of) spectral radius of a linear operator. Furthermore, κ(R) generalises the notion of essential spectral radius to the context of cocycles. Let (B ′ , | • |) be a Banach space such that B ⊂ B ′ and that the inclusion (B,

• ) ֒→ (B ′ , | • |) is compact.
The following result, based on a theorem of Hennion [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF], is useful to establish quasi-compactness.

Lemma 2.1. ([18, Lemma C.5]) Let (Ω, F , P) be a probability space, σ an ergodic, invertible, P-preserving transformation on Ω and R = (Ω, F , P, σ, B, L) a cocycle. Assume L ω can be extended continuously to (B ′ , | • |) for P-a.e. ω ∈ Ω, and that there exist measurable functions α ω , β ω , γ ω : Ω → R such that the following strong and weak Lasota-Yorke type inequalities hold for every f ∈ B,

L ω f ≤ α ω f + β ω |f | and (3) 
L ω ≤ γ ω . (4) 
In addition, assume log α ω dP(ω) < Λ(R), and log γ ω dP(ω) < ∞.

Then, κ(R) ≤ log α ω dP(ω). In particular, R is quasi-compact.

Another result which will be useful in the sequel is the following comparison between Lyapunov exponents with respect to different norms. In what follows, we denote by λ B (ω, f) the Lyapunov exponent of f with respect to the norm

• B . That is, λ B (ω, f) = lim n→∞ 1 n log L (n) ω f B , where f ∈ B and (B, • B ) is a Banach space.
Lemma 2.2 (Lyapunov exponents for different norms). Under the notation and hypotheses of Lemma 2.1, let r := Ω log α ω dP(ω) and assume that for some

f ∈ B, λ B ′ (ω, f ) > r. Then, λ B (ω, f ) = λ B ′ (ω, f ). Proof. The inequality λ B (ω, f ) ≥ λ B ′ (ω, f ) is trivial, because • is stronger than | • | (i.e. because the embedding (B, • ) ֒→ (B ′ , | • |) is compact).
In the other direction, the result essentially follows from Lemma C.5(2) in [START_REF] González-Tokman | A semi-invertible operator Oseledets theorem[END_REF]. Indeed, this lemma establishes that if r < 0 and λ B ′ (ω, f) ≤ 0 then λ B (ω, f) ≤ 0. The choice of 0 is irrelevant, because if the cocycle is rescaled by a constant C > 0, all Lyapunov exponents and r are shifted by log C. Thus, we conclude that if

λ B ′ (ω, f ) > r then, λ B (ω, f ) ≤ λ B ′ (ω, f ), as claimed.
A spectral-type decomposition for quasi-compact cocycles can be obtained via a multiplicative ergodic theorem, as follows.

Theorem 2.3 (Multiplicative ergodic theorem, MET [START_REF] Froyland | A semi-invertible Oseledets theorem with applications to transfer operator cocycles[END_REF]). Let R = (Ω, F , P, σ, B, L) be a quasi-compact cocycle and suppose that condition (C0) holds. Then, there exists 1 ≤ l ≤ ∞ and a sequence of exceptional Lyapunov exponents

Λ(R) = λ 1 > λ 2 > . . . > λ l > κ(R) (if 1 ≤ l < ∞) or Λ(R) = λ 1 > λ 2 > . . . and lim n→∞ λ n = κ(R) (if l = ∞);
and for P-almost every ω ∈ Ω there exists a unique splitting (called the Oseledets splitting) of B into closed subspaces

B = V (ω) ⊕ l j=1 Y j (ω), (5) 
depending measurably on ω and such that:

(I) For each 1 ≤ j ≤ l, dim Y j (ω) is finite-dimensional (m j := dim Y j (ω) < ∞), Y j is equivariant i.e. L ω Y j (ω) = Y j (σω) and for every y ∈ Y j (ω) \ {0}, lim n→∞ 1 n log L (n) ω y = λ j .
(Throughout this work, we will also refer to Y 1 (ω) as simply Y (ω) or Y ω .)

(II) V is equivariant i.e. L ω V (ω) ⊆ V (σω) and for every v ∈ V (ω),

lim n→∞ 1 n log L (n) ω v ≤ κ(R).
The adjoint cocycle associated to R is the cocycle R * := (Ω, F , P, σ -1 , B * , L * ), where (L * ) ω := (L σ -1 ω ) * . In a slight abuse of notation which should not cause confusion, we will often write L * ω instead of (L * ) ω , so L * ω will denote the operator adjoint to L σ -1 ω .

Remark 2.4. It is straightforward to check that if (C0) holds for R, it also holds for R * . Furthermore, Λ(R * ) = Λ(R) and κ(R * ) = κ(R). The last statement follows from the equality, up to a multiplicative factor (2), ic(A) and ic(A * ) for every A ∈ L(B) [3, Theorem 2.5.1].

The following result gives an answer to a natural question on whether one can relate the Lyapunov exponents and Oseledets splitting of the adjoint cocycle R * with the Lyapunov exponents and Oseledets decomposition of the original cocycle R.

Corollary 2.5. Under the assumptions of Theorem 2.3, the adjoint cocycle R * has a unique, measurable, equivariant Oseledets splitting

B * = V * (ω) ⊕ l j=1 Y * j (ω), (6) 
with the same exceptional Lyapunov exponents λ j and multiplicities m j as R.

The proof of this result involves some technical properties about volume growth in Banach spaces, and is therefore deferred to Appendix A.

Next, we establish a relation between Oseledets splittings of R and R * , which will be used in the sequel. Let the simplified Oseledets decomposition for the cocycle L (resp. L * ) be

B = Y (ω) ⊕ H(ω) (resp. B * = Y * (ω) ⊕ H * (ω)), (7) 
where Y (ω) (resp. Y * (ω)) is the top Oseledets subspace for L (resp. L * ) and H(ω) (resp. H * (ω)) is a direct sum of all other Oseledets subspaces.

For a subspace S ⊂ B, we set S • = {φ ∈ B * : φ(f ) = 0 for every f ∈ S} and similarly for a subspace S * ⊂ B * we define (S * ) • = {f ∈ B : φ(f ) = 0 for every φ ∈ S * }.

Lemma 2.6 (Relation between Oseledets splittings of R and R * ). The following relations hold for P-a.e. ω ∈ Ω:

H * (ω) = Y (ω) • and H(ω) = Y * (ω) • . (8) 
Proof. We first claim that lim sup

n→∞ 1 n log L * ,(n) ω | Y (ω) • < λ 1 , for P-a.e. ω ∈ Ω. ( 9 
)
Let Π ω denote the projection onto H(ω) along Y (ω) and take an arbitrary φ ∈ Y (ω) • . We have

L * ,(n) ω φ B * = sup f B ≤1 |(L * ,(n) ω φ)(f )| = sup f B ≤1 |φ(L (n) σ -n ω (f ))| = sup f B ≤1 |φ(L (n) σ -n ω (Π σ -n ω f ))| ≤ φ B * • L (n) σ -n ω Π σ -n ω ,
and thus

L * ,(n) ω | Y (ω) • ≤ L (n) σ -n ω Π σ -n ω .
Hence, in order to prove [START_REF] Broise | Transformations dilatantes de l'intervalle et théorèmes limites[END_REF] it is sufficient to show that lim sup

n→∞ 1 n log L (n) σ -n ω Π σ -n ω < λ 1 , for P-a.e. ω ∈ Ω. ( 10 
)
However, it follows from results in [START_REF] Dragičević | Hölder continuity of Oseledets splittings for semiinvertible operator cocycles. Ergodic Theory and Dynamical Systems[END_REF] and [START_REF] Froyland | Coherent structures and isolated spectrum for Perron-Frobenius cocycles[END_REF]Lemma 8.2] that

lim n→∞ 1 n log L (n) σ -n ω | H(σ -n ω) = λ 2 and lim n→∞ 1 n log Π σ -n ω = 0,
which readily imply [START_REF] Buzzi | Exponential Decay of Correlations for Random Lasota-Yorke Maps[END_REF]. We now claim that

B * = Y (ω) * ⊕ Y (ω) • , for P-a.e. ω ∈ Ω. ( 11 
)
We first note that the sum on the right hand side of ( 11) is direct. Indeed, each nonzero vector in Y (ω) * grows at the rate λ 1 , while by [START_REF] Broise | Transformations dilatantes de l'intervalle et théorèmes limites[END_REF] all nonzero vectors in Y (ω) • grow at the rate < λ 1 . Furthermore, since the codimension of Y (ω) • is the same as dimension of Y (ω) * , we have that [START_REF] De Simoi | Fast-slow partially hyperbolic systems: beyond averaging[END_REF] holds. Finally, by comparing decompositions [START_REF] Bahsoun | Mixing rates and limit theorems for random intermittent maps[END_REF] and [START_REF] De Simoi | Fast-slow partially hyperbolic systems: beyond averaging[END_REF], we conclude that the first equality in (8) holds. Indeed, each φ ∈ H * (ω) can be written as φ = φ 1 + φ 2 , where φ 1 ∈ Y (ω) * and φ 2 ∈ Y (ω) • . Since φ and φ 2 grow at the rate < λ 1 and φ 1 grows at the rate λ 1 , we obtain that φ 1 = 0 and thus

φ = φ 2 ∈ Y (ω) • . Hence, H * (ω) ⊂ Y (ω) • and similarly Y (ω) • ⊂ H * (ω).
The second assertion of the lemma can be obtained similarly.

Notions of variation

Let (X, G) be a measurable space endowed with a probability measure m and a notion of a variation var : L 1 (X, m) → [0, ∞] which satisfies the following conditions: (V1) var(th) = |t| var(h); (V2) var(g + h) ≤ var(g) + var(h);

(V3) h L ∞ ≤ C var ( h 1 + var(h)) for some constant 1 ≤ C var < ∞;
(V4) for any C > 0, the set {h : X → R :

h 1 + var(h) ≤ C} is L 1 (m)-compact;
(V5) var(1 X ) < ∞, where 1 X denotes the function equal to 1 on X;

(V6) {h : X → R + : h 1 = 1 and var(h) < ∞} is L 1 (m)-dense in {h : X → R + : h 1 = 1}. (V7) for any f ∈ L 1 (X, m) such that ess inf f > 0, we have var(1/f ) ≤ var(f ) (ess inf f ) 2 . (V8) var(f g) ≤ f L ∞ • var(g) + g L ∞ • var(f ). (V9) for M > 0, f : X → [-M, M] measurable and every C 1 function h : [-M, M] → C, we have var(h • f ) ≤ h ′ L ∞ • var(f ).
We define

B := BV = BV (X, m) = {g ∈ L 1 (X, m) : var(g) < ∞}.
Then, B is a Banach space with respect to the norm

g B = g 1 + var(g).
From now on, we will use B to denote a Banach space of this type, and g B , or simply g will denote the corresponding norm.

Well-known examples of this notion correspond to the case where X is a subset of R n . In the one-dimensional case we use the classical notion of variation given by var(g) = inf

h=g(mod m)

sup 0=s 0 <s 1 <...<sn=1 n k=1 |h(s k ) -h(s k-1 )| ( 12 
)
for which it is well known that properties (V1)-(V9) hold. On the other hand, in the multidimensional case, we let m = Leb and define

var(f ) = sup 0<ǫ≤ǫ 0 1 ǫ α R d osc(f, B ǫ (x))) dx, (13) 
where

osc(f, B ǫ (x)) = ess sup x 1 ,x 2 ∈Bǫ(x) |f (x 1 ) -f (x 2 )|
and where ess sup is taken with respect to product measure m×m. For this notion properties (V1)-(V9) have been verified by Saussol except for (V7) which is proved in [START_REF] Dragičević | Almost sure invariance principle for random Lasota-Yorke maps[END_REF] and (V9) which we prove now.

Lemma 2.7. The notion of var defined by (13) satisfies (V9).

Proof. Take M > 0, f and h as in the statement of (V9). For arbitrary x ∈ X, ǫ > 0 and x 1 , x 2 ∈ B ǫ (x), it follows from the mean value theorem that

|(h • f )(x 1 ) -(h • f )(x 2 )| ≤ h ′ L ∞ • |f (x 1 ) -f (x 2 )|, which immediately implies that osc(h • f, B ǫ (x)) ≤ h ′ L ∞ • osc(f, B ǫ (x)
), and we obtain the conclusion of the lemma.

Admissible cocycles of transfer operators

Let (Ω, F , P, σ) be as Section 2.1, and X and B as in Section 2.2. Let T ω : X → X, ω ∈ Ω be a collection of non-singular transformations (i.e. m • T -1 ω ≪ m for each ω) acting on X. The associated skew product transformation τ : Ω × X → Ω × X is defined by

τ (ω, x) = (σ(ω), T ω (x)), ω ∈ Ω, x ∈ X. (14) 
Each transformation T ω induces the corresponding transfer operator L ω acting on L 1 (X, m) and defined by the following duality relation

X (L ω φ)ψ dm = X φ(ψ • T ω ) dm, φ ∈ L 1 (X, m), ψ ∈ L ∞ (X, m).
For each n ∈ N and ω ∈ Ω, set

T (n) ω = T σ n-1 ω • • • • • T ω and L (n) ω = L σ n-1 ω • • • • • L ω .
Definition 2.8 (Admissible cocycle). We call the transfer operator cocycle R = (Ω, F , P, σ, B, L) admissible if, in addition to (C0), the following conditions hold.

(C1) there exists K > 0 such that

L ω f B ≤ K f B ,
for every f ∈ B and P-a.e. ω ∈ Ω.

(C2) there exists N ∈ N and measurable α N , β N : Ω → (0, ∞), with Ω log α N (ω) dP(ω) < 0, such that for every f ∈ B and P-a.e. ω ∈ Ω,

L (N ) ω f B ≤ α N (ω) f B + β N (ω) f 1 .
(C3) there exist K ′ , λ > 0 such that for every n ≥ 0, f ∈ B such that f dm = 0 and P-a.e. ω ∈ Ω.

L (n) ω (f ) B ≤ K ′ e -λn f B .
(C4) there exist N ∈ N, c > 0 such that for each a > 0 and any sufficiently large n ∈ N,

ess inf L (N n) ω f ≥ c/2 f 1 , for every f ∈ C a and P-a.e. ω ∈ Ω,
where C a := {f ∈ B : f ≥ 0 and var(f ) ≤ a f dm}.

Admissible cocycles of transfer operators can be investigated via Theorem 2.3. Indeed, the following holds. Lemma 2.9. An admissible cocycle of transfer operators R = (Ω, F , P, σ, B, L) is quasicompact. Furthermore, the top Oseledets space is one-dimensional. That is, dim Y (ω) = 1 for P-a.e. ω ∈ Ω.

Proof. The first statement follows readily from Lemma 2.1, (C2) and a simple observation that for a cocycle R of transfer operators we have that Λ(R) = 0. The fact that dim Y (ω) = 1 follows from (C3).

The following result shows that, in this context, the top Oseledets space is indeed the unique random acim. That is, there exists a unique measurable function v

0 : Ω × X → R + such that for P-a.e. ω ∈ Ω, v 0 ω := v 0 (ω, •) ∈ B, v 0 ω (x)dm = 1 and
L ω v 0 ω = v 0 σω , for P-a.e. ω ∈ Ω. ( 15 
)
Lemma 2.10 (Existence and uniqueness of a random acim). Let R = (Ω, F , P, σ, B, L) be an admissible cocycle of transfer operators, satisfying the assumptions of Theorem 2.3. Then, there exists a unique random absolutely continuous invariant measure for R.

Proof. Theorem 2.3 shows that the map ω → Y ω is measurable, where Y ω is regarded as an element of the Grassmannian G of B. Furthermore, [START_REF] Froyland | A semi-invertible Oseledets theorem with applications to transfer operator cocycles[END_REF]Lemma 10] and an argument analogous to [START_REF] González-Tokman | A semi-invertible operator Oseledets theorem[END_REF]Lemma 10] yields existence of a measurable selection of bases for Y ω . Lemma 2.9 ensures that dim Y (ω) = 1. Hence, there exists a measurable map ω → h ω , with h ω ∈ B such that h ω spans Y ω for P-a.e. ω ∈ Ω. Notice that Lebesgue measure m, when regarded as an element of B * , is a conformal measure for R. That is, m spans Y * ω for P-a.e. ω ∈ Ω. In fact, it is straightforward to verify L * ω m = m, because the L ω preserve integrals. Thus, the simplified Oseledets decomposition [START_REF] Bahsoun | Mixing rates and limit theorems for random intermittent maps[END_REF] in combination with the duality relations of Lemma 2.6 imply that m(h ω ) = 0 for P-a.e. ω ∈ Ω. In particular we can consider the (still measurable) function ω → v 0 ω := hω hωdm . The equivariance property of Theorem 2.3 ensures that L ω v 0 ω ∈ Y σω and the fact that L ω preserves integrals, combined with the normalized choice of v 0 ω and the assumption that dim Y σω = 1, implies that L ω v 0 ω = v 0 σω . The fact that v 0 ω ≥ 0 for P-a.e. ω ∈ Ω follows from the positivity and linearity properties of L ω , which ensure that the positive and negative parts,

v + ω and v - ω , are equivariant. Recall that v + ω , v - ω , have non-overlapping supports. Thus, if v + ω = 0 = v - ω for a set of positive measure of ω ∈ Ω, the spaces Y + ω , Y - ω spanned by v + ω , v - ω , respectively, are subsets of Y (ω), contradicting the fact that dim Y (ω) = 1.
Then, since the normalization condition implies v + ω = 0, we have v - ω = 0 for P-a.e. ω ∈ Ω. The fact that the random acim is unique is also a direct consequence of the fact that dim Y (ω) = 1.

For an admissible transfer operator cocycle R, we let µ be the invariant probability measure given by

µ(A × B) = A×B v 0 (ω, x) d(P × m)(ω, x), for A ∈ F and B ∈ G, (16) 
where v 0 is the unique random acim for R and G is the Borel σ-algebra of X. We note that µ is τ -invariant, because of [START_REF] Froyland | Coherent structures and isolated spectrum for Perron-Frobenius cocycles[END_REF]. Furthermore, for each

G ∈ L 1 (Ω × X, µ) we have that Ω×X G dµ = Ω X G(ω, x) dµ ω (x) dP(ω),
where µ ω is a measure on X given by dµ ω = v 0 (ω, •)dm. We now list several important consequences of conditions (C2), (C3) and (C4) established in [13, §2].

Lemma 2.11. The unique random acim v 0 of an admissible cocycle of transfer operators satiesfies the following:

1. ess sup ω∈Ω v 0 ω B < ∞; (17) 2. ess inf v 0 ω (•) ≥ c/2 > 0, for P-a.e. ω ∈ Ω; (18) 
3. there exists K > 0 and ρ ∈ (0, 1) such that

X L (n) ω (f v 0 ω )h dm - X f dµ ω • X h dµ σ n ω ≤ Kρ n h L ∞ • f B , (19) 
for n ≥ 0, h ∈ L ∞ (X, m), f ∈ B and P-a.e. ω ∈ Ω.

We emphasize that ( 19) is a special case of a more general decay of correlations result proved by Buzzi [START_REF] Buzzi | Exponential Decay of Correlations for Random Lasota-Yorke Maps[END_REF], but in this case with the stronger conclusion that the decay rates and coefficients K are uniform over ω ∈ Ω.

Examples

In order to be able to be in the setting of admissible transfer operators cocycles, we need to ensure that (C0) holds. To fulfill this requirement (see [START_REF] Froyland | A semi-invertible Oseledets theorem with applications to transfer operator cocycles[END_REF]Section 4.1] for a detailed discussion) in the rest of the paper we will assume (C0') σ is a homeomorphism, Ω is a Borel subset of a separable, complete metric space, the map ω → T ω has a countable range T 1 , T 2 , . . . and for each j, {ω ∈ Ω :

T ω = T j } is measurable.
Although this condition is somewhat restrictive, we emphasize that the assumptions on the structure of Ω are very mild and that the only requirements for σ are that it has to be an ergodic, measure-preserving homeomorphism. In particular, no mixing conditions are required. Furthermore, the T ω need only be chosen from a countable family. Following [13, §2], we present two classes of examples, one-and higher-dimensional piecewise smooth expanding maps, which yield admissible transfer operator cocycles.

Random Lasota-Yorke maps. Let X = [0, 1], a Borel σ-algebra G on [0, 1] and the Lebesgue measure m on [0, 1]. Consider the notion of variation defined in [START_REF] Dragičević | Hölder continuity of Oseledets splittings for semiinvertible operator cocycles. Ergodic Theory and Dynamical Systems[END_REF]. For a piecewise

C 2 map T : [0, 1] → [0, 1], set δ(T ) = ess inf x∈[0,1] |T ′ | and let b(T ) denote the number of intervals of monoticity (branches) of T . Consider now a measurable map ω → T ω , ω ∈ Ω of piecewise C 2 maps on [0, 1] such that b := ess sup ω∈Ω b(T ω ) < ∞, δ := ess inf ω∈Ω δ(T ω ) > 1, and D := ess sup ω∈Ω T ′′ ω L ∞ < ∞. ( 20 
) For each ω ∈ Ω, let b ω = b(T ω ), so that there are essentially disjoint sub-intervals J ω,1 , . . . , J ω,bω ⊂ I, with ∪ bω k=1 J ω,k = I, so that T ω | J ω,k is C 2 for each 1 ≤ k ≤ b ω .
The minimal such partition P ω := {J ω,1 , . . . , J ω,bω } is called the regularity partition for T ω . It is well known that whenever δ > 2, and ess inf ω∈Ω min 1≤k≤bω m(J ω,k ) > 0, there exist α ∈ (0, 1) and K > 0 such that var(L ω f ) ≤ α var(f ) + K f 1 , for f ∈ BV and P-a.e. ω ∈ Ω.

More generally, when δ < 2, one can take an iterate N ∈ N so that δ N > 2. If the regularity partitions

P N ω := {J N 1,ω , . . . , J N ω,b (N) ω } corresponding to the maps T (N ) ω also satisfy ess inf ω∈Ω min 1≤k≤b (N) ω m(J N ω,k ) > 0, then there exist α N ∈ (0, 1) and K N > 0 such that var(L N ω f ) ≤ α N var(f ) + K N f 1 , for f ∈ BV and P-a.e. ω ∈ Ω. ( 21 
)
We assume that ( 21) holds for some N ∈ N.

Finally, we suppose the following uniform covering condition holds:

For every subinterval J ⊂ I, ∃k = k(J) s.t. for a.e. ω ∈ Ω,

T (k) ω (J) = I. ( 22 
)
The results of [13, §2] ensure that random Lasota-Yorke maps which satisfy the conditions of this section plus (C0') are admissible. (While (C2) is not explicitely required by [START_REF] Dragičević | Almost sure invariance principle for random Lasota-Yorke maps[END_REF], it is established in the process of showing the remaining conditions.) Random piecewise expanding maps in higher dimensions. We now discuss the case of piecewise expanding maps in higher dimensions. Let X be a compact subset of R N which is the closure of its non-empty interior. Let X be equipped with a Borel σ-algebra G and Lebesgue measure m. We consider the notion of variation defined in [START_REF] Dragičević | Almost sure invariance principle for random Lasota-Yorke maps[END_REF] for suitable α and ǫ 0 . We say that the map T : X → X is piecewise expanding if there exist finite families

A = {A i } m i=1 and à = { Ãi } m i=1 of open sets in R N , a family of maps T i : Ãi → R N , i = 1, . . . , m and ǫ 1 (T ) > 0 such that: 1. A is a disjoint family of sets, m(X \ i A i ) = 0 and Ãi ⊃ A i for each i = 1, . . . , m; 2. there exists 0 < γ(T i ) ≤ 1 such that each T i is of class C 1+γ(T i ) ; 3. For every 1 ≤ i ≤ m, T | A i = T i | A i and T i ( Ãi ) ⊃ B ǫ 1 (T ) (T (A i ))
, where B ǫ (V ) denotes a neighborhood of size ǫ of the set V. We say that T i is the local extension of T to the Ãi ;

4. there exists a constant C 1 (T ) > 0 so that for each i and x, y ∈ T (A i ) with dist(x, y) ≤ ǫ 1 (T ),

| det DT -1 i (x) -det DT -1 i (y)| ≤ C 1 (T )| det DT -1 i (x)|dist(x, y) γ(T ) ;
5. there exists s(T ) < 1 such that for every x, y ∈ T ( Ãi ) with dist(x, y) ≤ ǫ 1 (T ), we have

dist(T -1 i x, T -1 i y) ≤ s(T ) dist(x, y); 6. each ∂A i is a codimension-one embedded compact piecewise C 1 submanifold and s(T ) γ(T ) + 4s(T ) 1 -s(T ) Z(T ) Γ N -1 Γ N < 1,
where Z(T ) = sup

x i #{smooth pieces intersecting ∂A i containing x} and Γ N is the volume of the unit ball in R N .

Consider now a measurable map ω → T ω , ω ∈ Ω of piecewise expanding maps on X such that

ǫ 1 := inf ω∈Ω ǫ 1 (T ω ) > 0, γ := inf ω∈Ω γ(T ω ) > 0, C 1 := sup ω∈Ω C 1 (T ω ) < ∞, s := sup ω∈Ω s(T ω ) < 1 and sup ω∈Ω s(T ω ) γ(Tω) + 4s(T ω ) 1 -s(T ω ) Z(T ω ) Γ N -1 Γ N < 1.
Then, [START_REF] Saussol | Absolutely continuous invariant measures for multidimensional expanding maps[END_REF]Lemma 4.1] implies that there exist ν ∈ (0, 1) and

K > 0 independent on ω such that var(L ω f ) ≤ ν var(f ) + K f 1 for each f ∈ B and ω ∈ Ω, ( 23 
)
where var is given by ( 13) with α = γ and some ǫ 0 > 0 sufficiently small (which is again independent on ω). We note that ( 23) readily implies that conditions (C1) and (C2) hold. Finally, we note that under additional assumption that for any open set J ⊂ X, there exists k = k(J) such that for a.e. ω ∈ Ω,

T k ω (J) = X,
the results in [13, §2] show that (C3) and (C4) also hold.

Remark. We point out that while conditions (C1), (C3) and (C4) are stated in a uniform way, sometimes it is possible to recover them from non-uniform assumptions. For example, assuming that {T ω } ω∈Ω takes only finitely many values, one can recover a uniform version of (C3) from a non-uniform one, for example by compactness arguments (see the proof of Lemma 4.7 for a similar argument). Also, our results apply to cases where conditions (C1)-(C4), or the hypotheses which imply them (e.g. ( 20)), are only satisfied eventually; that is, for some iterate

T (N )
ω , where N is independent of ω ∈ Ω.

Twisted transfer operator cocycles

We begin by introducing the class of observables to which our limit theorems apply. For a fixed observable and each parameter θ ∈ C, we introduce the twisted cocycle L θ = {L θ ω } ω∈Ω . We show that the cocycle L θ is quasicompact for θ close to 0. Most of this section is devoted to the study of regularity properties of the map θ → Λ(θ) on a neighborhood of 0 ∈ C, where Λ(θ) denotes the top Lyapunov exponent of the cocycle L θ . In particular, we show that this map is of class C 2 and that its restriction to a neighborhood of 0 ∈ R is strictly convex. This is achieved by combining ideas from the perturbation theory of linear operators with our multiplicative ergodic theory machinery. As a byproduct of our approach, we explicitly construct the top Oseledets subspace of cocycle L θ for θ close to 0.

The observable

Definition 3.1 (Observable). Let an observable be a measurable map g : Ω × X → R satisfying the following properties:

• Regularity:

g(ω, x) L ∞ (Ω×X) =: M < ∞ and ess sup ω∈Ω var(g ω ) < ∞, (24) 
where g ω = g(ω, •), ω ∈ Ω.

• Fiberwise centering:

g(ω, x) dµ ω (x) = g(ω, x)v 0 ω (x) dm(x) = 0 for P-a.e. ω ∈ Ω, ( 25 
)
where v 0 is the density of the unique random acim, satisfying [START_REF] Froyland | Coherent structures and isolated spectrum for Perron-Frobenius cocycles[END_REF].

The main results of this paper will deal with establishing limit theorems for Birkhoff sums associated to g, S n g, defined in (1).

Basic properties of twisted transfer operator cocycles

Throughout this section, R = (Ω, F , P, σ, B, L) will denote an admissible transfer operator cocycle. For θ ∈ C, the twisted transfer operator cocycle, or twisted cocycle, R θ is defined as R θ = (Ω, F , P, σ, B, L θ ), where for each ω ∈ Ω, we define

L θ ω (f ) = L ω (e θg(ω,•) f ), f ∈ B. ( 26 
)
For convenience of notation, we will also use L θ to denote the cocycle R θ . For each θ ∈ C, set Λ(θ) := Λ(R θ ), κ(θ) := κ(R θ ) and

L θ, (n) ω = L θ σ n-1 ω • • • • • L θ ω , for ω ∈ Ω and n ∈ N.
The next lemma provides basic information about the dependence of L θ ω on θ.

Lemma 3.2 (Basic regularity of θ → L θ ω ).
1. Assume (C1) holds. Then, there exists a continuous function

K : C → (0, ∞) such that L θ ω h B ≤ K(θ) h B , for h ∈ B, θ ∈ C and P-a.e. ω ∈ Ω. ( 27 
)
2. For ω ∈ Ω, θ ∈ C, let M θ ω be the linear operator on B given by

M θ ω (h(•)) := e θg(ω,•) h(•). Then, θ → M θ ω is continuous in the norm topology of B. Consequently, θ → L θ ω is also continuous in the norm topology of B.
Proof. Note that it follows from (24) that |e θg(ω,•) h| 1 ≤ e |θ|M |h| 1 . Furthermore, by (V8) we have var(e θg(ω,•) h) ≤ e θg(ω,•) L ∞ • var(h) + var(e θg(ω,•) ) • h L ∞ . On the other hand, it follows from Lemma B.1 and (V9) that e θg(ω,•) L ∞ ≤ e |θ|M and var(e θg(ω,•) ) ≤ |θ|e |θ|M var(g(ω, •))

and thus using (V3),

e θg(ω,•) h B = var(e θg(ω,•) h) + |e θg(ω,•) h| 1 ≤ e |θ|M h B + |θ|e |θ|M var(g(ω, •)) h L ∞ ≤ (e |θ|M + C var |θ|e |θ|M ess sup ω∈Ω var(g(ω, •))) h B . (28) 
We now establish part 1 of the Lemma. It follows from (C1) that

L θ ω (h) B = L ω (e θg(ω,•) h) B ≤ K e θg(ω,•) h B .
Hence, [START_REF] Kelly | Smooth approximation of stochastic differential equations[END_REF] implies that ( 27) holds with

K(θ) = K(e |θ|M + C var |θ|e |θ|M ess sup ω∈Ω var(g(ω, •))). (29) 
For part 2 of the Lemma, we observe that

|(M θ 1 ω -M θ 2 ω )h B ≤ M θ 1 ω B (I -M θ 2 -θ 1 ω ) B h B .
By [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF] and the mean value theorem for the map z → e (θ 1 -θ 2 )z , we have that for each x ∈ X,

|e (θ 1 -θ 2 )g(ω,x) -1| ≤ Me |θ 1 -θ 2 |M |θ 1 -θ 2 |. Thus, 1 -e (θ 2 -θ 1 )g(ω,•) L ∞ ≤ Me |θ 1 -θ 2 |M |θ 1 -θ 2 | (30) 
and

|(I -M θ 2 -θ 1 ω )h| 1 ≤ Me |θ 1 -θ 2 |M |θ 1 -θ 2 | • |h| 1 . (31) 
Assume that |θ 2θ 1 | ≤ 1. We note that conditions (V3) and (V8) together with [START_REF] Kifer | Perron-Frobenius theorem, large deviations, and random perturbations in random environments[END_REF] and Lemma B.2 imply var((

I -M θ 2 -θ 1 ω )h) ≤ 1 -e (θ 2 -θ 1 )g(ω,•) L ∞ + C var var(1 -e (θ 2 -θ 1 )g(ω,•) ) h B ≤ C ′ |θ 2 -θ 1 | h B , (32) 
for some C ′ > 0. Hence, it follows from ( 31) and (32) that θ → M θ ω is continuous in the norm topology of B. Continuity of θ → L θ ω then follows immediately from continuity of L ω and the definition of L θ ω , in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]. The following lemma shows that the twisted cocycle naturally appears in the study of Birkhoff sums (1).

Lemma 3.3. The following statements hold:

1. for every φ ∈ B * , f ∈ B, ω ∈ Ω, θ ∈ C and n ∈ N we have that L θ,(n) ω (f ) = L (n)
ω (e θSng(ω,•) f ), and

L θ * ,(n) ω (φ) = e θSng(ω,•) L * (n) ω (φ), (33) 
where (e θSng(ω,•) φ)(f ) := φ(e θSng(ω,•) f );

2. for every f ∈ B, ω ∈ Ω and n ∈ N we have that

L θ, (n) ω (f ) dm = e θSng(ω,•) f dm. ( 34 
)
Proof. We establish the first identity in [START_REF] Melbourne | A vector-valued almost sure invariance principle for hyperbolic dynamical systems[END_REF] by induction on n. The case n = 1 follows from the definition of L θ ω . We recall that for every f, f ∈ B,

L (n) ω (( f • T (n) ω ) • f ) = f • L (n) ω (f ). ( 35 
)
Assuming the claim holds for some n ≥ 1, we get

L (n+1) ω (e θS n+1 g(ω,•) f ) = L σ n ω L (n) ω (e θg(σ n ω,•)•T (n) ω e θSng(ω,•) f ) = L σ n ω e θg(σ n ω,•) L (n) ω (e θSng(ω,•) f ) = L θ σ n ω L θ,(n) ω (f ) = L θ, (n+1) ω (f ). 
The second identity in [START_REF] Melbourne | A vector-valued almost sure invariance principle for hyperbolic dynamical systems[END_REF] follows directly from duality. Finally, we note that the second assertion of the lemma follows by integrating the first equality in [START_REF] Melbourne | A vector-valued almost sure invariance principle for hyperbolic dynamical systems[END_REF] with respect to m and using the fact that L n ω preserves integrals with respect to m.

An auxiliary existence and regularity result

In this section we establish a regularity result, Lemma 3.5, which generalises a theorem of Hennion and Hervé [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] to the random setting. This result will be used later to show regularity of the top Oseledets space Y θ ω := Y θ 1 (ω) of the twisted cocycle, for θ near 0. Let

S := V : Ω × X → C | V is measurable, V(ω, •) ∈ B, ess sup ω∈Ω V(ω, •) B < ∞, V(ω, x)dm = 0 for P-a.e. ω ∈ Ω , (36) 
endowed with the Banach space structure defined by the norm

V ∞ := ess sup ω∈Ω V(ω, •) B . ( 37 
)
For θ ∈ C and W ∈ S, set

F (θ, W)(ω, •) = L θ σ -1 ω (W(σ -1 ω, •) + v 0 σ -1 ω (•)) L θ σ -1 ω (W(σ -1 ω, •) + v 0 σ -1 ω (•))dm -W(ω, •) -v 0 ω (•). ( 38 
)
Lemma 3.4. There exist ǫ, R > 0 such that F : D → S is a well-defined map on D := {θ ∈ C : |θ| < ǫ} × B S (0, R), where B S (0, R) denotes the ball of radius R in S centered at 0.

Proof. We define a map H by

H(θ, W)(ω) = L θ σ -1 ω (W(σ -1 ω, •) + v 0 σ -1 ω (•)) dm = e θg(σ -1 ω,•) (W(σ -1 ω, •) + v 0 σ -1 ω (•)) dm.
It is proved in Lemmas B.4 and B.5 of Appendix B.1 that H is a well-defined and differentiable function on a neighborhood of (0, 0) (and thus in particular continuous) with values in L ∞ (Ω, P). Moreover, we observe that H(0, 0)(ω) = 1 for each ω ∈ Ω and therefore

|H(θ, W)(ω)| ≥ 1 -|H(0, 0)(ω) -H(θ, W)(ω)| ≥ 1 -H(0, 0) -H(θ, W) L ∞ , for P-a.e. ω ∈ Ω. Continuity of H implies that H(0, 0) -H(θ, W) L ∞ ≤ 1/2 for all (θ, W)
in a neighborhood of (0, 0) and hence, in such neighborhood,

ess inf ω |H(θ, W)(ω)| ≥ 1/2.
The above inequality together with Lemma 3.2 ( 1) and ( 17) yields the desired conclusion. Proof. We notice that F (0, 0) = 0. Furthermore, Proposition B.12 of Appendix B ensures that F is C 2 on a neighborhood (0, 0) ∈ C × S, and

(D 2 F (0, 0)X )(ω, •) = L σ -1 ω (X (σ -1 ω, •)) -X (ω, •), for ω ∈ Ω and X ∈ S.
We now prove that D 2 F (0, 0) is bijective operator.

For injectivity, we have that if D 2 F (0, 0)X = 0 for some nonzero X ∈ S, then L ω X ω = X σω for P-a.e. ω ∈ Ω. Notice that X ω / ∈ v 0 ω because X ω (•)dm = 0 and X ω = 0. Hence, this yields a contradiction with the one-dimensionality of the top Oseledets space of the cocycle L, given by Lemma 2.9. Therefore, D 2 F (0, 0) is injective. To prove surjectivity, take X ∈ S and let

X (ω, •) := - ∞ j=0 L (j) σ -j ω X (σ -j ω, •). ( 40 
)
It follows from (C3) that X ∈ S and it is easy to verify that D 2 F (0, 0) X = X . Thus, D 2 F (0, 0) is surjective.

Combining the previous arguments, we conclude that D 2 F (0, 0) is bijective. The conclusion of the lemma now follows directly from the implicit function theorem for Banach spaces (see, e.g. Theorem 3.2 [START_REF] Avez | Differential calculus[END_REF]).

We end this section with a specialisation of the previous results to real valued θ. Proposition 3.6. There exists δ > 0 such that for each θ ∈ (-δ, δ), O(θ)(ω, •) + v 0 ω is a density for P-a.e. ω ∈ Ω.

We first show the following auxiliary result. Lemma 3.7. For θ ∈ R sufficiently close to 0, O(θ) is real-valued.

Proof. We consider the space

S := V : Ω × X → R | V is measurable, V(ω, •) ∈ B, ess sup ω∈Ω V(ω, •) B < ∞, V(ω, x)dm = 0 for P-a.e. ω ∈ Ω .
Hence, S consists of real-valued functions V ∈ S. We note that S is a Banach space with the norm • ∞ defined by [START_REF] Nagaev | More exact statement of limit theorems for homogeneous markov chains[END_REF]. Moreover, we can define a map F on a neighborhood of (0, 0) in R × S with values in S by the RHS of [START_REF] Nándori | A central limit theorem for time-dependent dynamical systems[END_REF]. Proceeding as in Appendix B.1, one can show that F is a differentiable map on a neighborhood of (0, 0). Moreover, arguing as in the proof of Lemma 3.5 one can conclude that for θ sufficiently close to 0, there exists a unique Õ(θ) ∈ S such that F (θ, Õ(θ)) = 0 and that Õ(θ) is differentiable with respect to θ. Since S ⊂ S and from the uniqueness property in the implicit function theorem, we conclude that O(θ) = Õ(θ) for θ sufficiently close to 0 which immediately implies the conclusion of the lemma.

Proof of Proposition 3.6. By Lemma 3.7, for θ sufficiently close to 0, O(θ)(ω, 

•) + v 0 ω (•) is real-valued. Moreover, (O(θ)(ω, •) + v 0 ω (•)) dm =
By (18), ess inf(O(θ)(ω, •) + v 0 ω (•)) ≥ c/4
, for a.e. ω ∈ Ω, which completes the proof of the proposition.

A lower bound on Λ(θ)

The goal of this section is to establish a differentiable lower bound ( Λ(θ)) on Λ(θ), the top Lyapunov exponent of the twisted cocycle, for θ ∈ C in a neighborhood of 0. In Section 3.5, we will show that this lower bound in fact coincides with Λ(θ), and hence all the results of this section will immediately translate into properties of Λ. Let 0 < ǫ < 1 be as in Lemma 3.4 and O(θ) be as in Lemma 3.5. Let

v θ ω (•) := v 0 ω (•) + O(θ)(ω, •). (41) 
We notice that v θ ω (•) dm = 1 and by Lemma 3.5, θ → v θ is continuously differentiable. Let us define Λ(θ) := log e θg(ω,x) v θ ω (x) dm(x) dP(ω),

and

λ θ ω := e θg(ω,x) v θ ω (x) dm(x) = L θ ω v θ ω (x) dm(x), (43) 
where the last identity follows from [START_REF] Morita | A generalized local limit theorem for Lasota-Yorke transformations[END_REF]. Notice also that ω → λ θ ω is an integrable function. Lemma 3.8. For every θ ∈ B C (0, ǫ)

:= {θ ∈ C : |θ| < ǫ}, Λ(θ) ≤ Λ(θ). Proof. Recall that O(θ) satisfies the equation F (θ, O(θ)) = 0, for θ ∈ {θ ∈ C : |θ| < ǫ}. Hence, for P-a.e. ω ∈ Ω, v θ ω (•) satisfies the equivariance equation L θ ω v θ ω (•) = λ θ ω v θ σω (•)
Thus, using Birkhoff's ergodic theorem to go from the first to the second line below, we get

Λ(θ) ≥ lim n→∞ 1 n log L θ,(n) ω v θ ω B ≥ lim n→∞ 1 n log L θ,(n) ω v θ ω 1 ≥ lim n→∞ 1 n n-1 j=0 log |λ θ σ j ω | = log |λ θ ω |dP(ω) = log e θg(ω,x) v θ ω (•) dm(x) dP(ω) = Λ(θ).
The rest of the section deals with differentiability properties of Λ(θ). From now on we shall also use the notation O(θ) ω for O(θ)(ω, •). Lemma 3.9. We have that Λ is differentiable on a neighborhood of 0, and

Λ′ (θ) = ℜ λ θ ω ( g(ω, •)e θg(ω,•) (O(θ) ω (•) + v 0 ω (•)) + e θg(ω,•) O ′ (θ) ω (•) dm) |λ θ ω | 2 dP(ω) ,
where ℜ(z) denotes the real part of z and z the complex conjugate of z.

Proof. Write Λ(θ) = Z(θ, ω) dP(ω), where Z(θ, ω) := log |λ θ ω | = log e θg(ω,x) (O(θ) ω (x) + v 0 ω (x)) dm(x) . Note that Z(θ, ω) = log |H(θ, O(θ))(σω)|
, where H is as in Lemma 3.4. Since H(0, 0) = 1 and both H and O are continuous (by Lemma 3.5), there is a neighborhood U of 0 in C on which

H(θ, O(θ)) -H(0, 0) L ∞ < 1/2.
In particular, Z is well defined and Z(θ, ω) ∈ [log 1 2 , log 3 2 ] for every θ ∈ U ∩ B C (0, ǫ) and P-a.e. ω ∈ Ω. Thus, the map ω → Z(θ, ω) is P-integrable for every θ ∈ U ∩ B C (0, ǫ). It follows from Lemma 3.10 below that for P-a.e. ω ∈ Ω, the map θ → Z ω (θ) := Z(θ, ω) is differentiable in a neighborhood of 0, and

Z ′ ω (θ) = ℜ λ θ ω ( g(ω, •)e θg(ω,•) (O(θ) ω (•) + v 0 ω (•)) + e θg(ω,•) O ′ (θ) ω (•) dm) |λ θ ω | 2
, where ℜ(z) denotes the real part of z and z the complex conjugate of z. In particular,

|Z ′ ω (θ)| ≤ (g(ω, x)e θg(ω,x) (O(θ) ω (x) + v 0 ω (x)) + e θg(ω,x) O ′ (θ) ω (x)) dm(x)| | e θg(ω,x) (O(θ) ω (x) + v 0 ω (x)) dm(x)| .
We claim that there exists an integrable function C : Ω → R such that

|Z ′ ω (θ)| ≤ C(ω)
, for all θ in a neighborhood of 0 and P-a.e.

ω ∈ Ω. ( 44 
)
Once this is established, the conclusion of the lemma follows from Leibniz rule for exchanging the order of differentiation and integration. To complete the proof, let us show (44). For θ ∈ U we have

e θg(ω,x) (O(θ) ω (x) + v 0 ω (x)) dm(x) ≥ 1 2 .
Also, recall that ǫ < 1, so that for θ ∈ B C (0, ǫ) one has

g(ω, x)e θg(ω,x) (O(θ) ω (x) + v 0 ω (x)) dm(x) ≤ g(ω, x)e θg(ω,x) (O(θ) ω (x) + v 0 ω (x)) dm(x) ≤ Me M |O(θ) ω + v 0 ω | 1 ≤ Me M (1 + O(θ) ω B ) ≤ Me M (1 + O(θ) ∞ ).
Finally,

e θg(ω,x) O ′ (θ) ω (x) dm(x) ≤ e M |O ′ (θ) ω | 1 ≤ e M O ′ (θ) ω B ≤ e M O ′ (θ) ∞ ,
for P-a.e. ω ∈ Ω. Since O and O ′ are continuous by Lemma 3.5, the terms on the RHS of the above inequalities are uniformly bounded for θ in a (closed) neighborhood of 0. Hence, (44) holds for a constant function C.

Lemma 3.10. For P-a.e. ω ∈ Ω, and θ in a neighborhood of 0, the map θ → Z ω (θ) := Z(θ, ω) is differentiable. Moreover,

Z ′ ω (θ) = ℜ λ θ ω ( g(ω, •)e θg(ω,•) (O(θ) ω (•) + v 0 ω (•)) + e θg(ω,•) O ′ (θ) ω (•) dm) |λ θ ω | 2
, where ℜ(z) denotes the real part of z and z the complex conjugate of z.

Proof. First observe that if θ → f (θ) ∈ C, has polar decomposition f (θ) = r(θ)e iφ(θ) , then,

whenever |f |(θ) = 0, d|f |(θ) dθ = ℜ( f (θ)f ′ (θ)) r(θ)
, where f ′ denotes differentiation with respect to θ. Thus, by the chain rule, it is sufficient to prove that the map λ θ ω is differentiable with respect to θ and that

D θ λ θ ω = g(ω, x)e θg(ω,x) (O(θ) ω (x) + v 0 ω (x)) + e θg(ω,x) O ′ (θ) ω (x) dm(x). (45) 
Using the same notation as in Lemma 3.4, we can write

λ θ ω = H(θ, O(θ)) σω .
The differentiability of the map θ → H(θ, W) implies the differentiability of the map θ → H(θ, W) ω for a.e. ω. Hence, differentiability of λ θ ω with respect to θ and (45), for P-a.e. ω ∈ Ω, follow directly from the differentiability of O, Lemma B.5 (in particular (94)) and the chain rule. Lemma 3.11. We have that Λ′ (0) = 0.

Proof. Let F be as in Lemma 3.5. By identifying D 1 F (0, 0) with its value at 1, it follows from the implicit function theorem that

O ′ (0) = -D 2 F (0, 0) -1 (D 1 F (0, 0)).
It is shown in Lemma 3.5 that D 2 F (0, 0) : S → S is bijective. Thus, D 2 F (0, 0) -1 : S → S and therefore O ′ (0) ∈ S which implies that O ′ (0) ω dm(x) = 0 for P-a.e. ω ∈ Ω.

(

) 46 
The conclusion of the lemma follows directly from Lemma 3.9 and the centering condition (25).

Quasicompactness of twisted cocycles and differentiability of Λ(θ)

In this section we establish quasicompactness of the twisted transfer operator cocycle, as well as differentiability of the top Lyapunov exponent with respect to θ, for θ ∈ C near 0.

Theorem 3.12 (Quasi-compactness of twisted cocycles, θ near 0). For θ ∈ C sufficiently close to 0, we have that the twisted cocycle L θ is quasi-compact. Furthermore, for such θ, the top Oseledets space of L θ is one-dimensional. That is, dim Y θ (ω) = 1 for P-a.e. ω ∈ Ω.

The following Lasota-Yorke type estimate will be useful in the proof.

Lemma 3.13. Assume conditions (C1) and (C2) hold. Then, we have

L θ,(N ) ω f B ≤ αθ,N (ω) f B + β N (ω) f 1 ,
where

αθ,N (ω) = α N (ω) + C|θ|e |θ|M N -1 j=0 K N -1-j K(θ) j ,
for some constant C > 0 where K(θ) is given by Lemma 3.2 and K is given by ((C1)).

Proof. It follows from (C2) that

L θ,(N ) ω f B ≤ L (N ) ω f B + L θ,(N ) ω -L (N ) ω B • f B ≤ α N (ω) f B + β N (ω) f 1 + L θ,(N ) ω -L (N ) ω B • f B .
On the other hand, we have that

L θ,(N ) ω -L (N ) ω = N -1 j=0 L θ,(j) σ N-j ω (L θ σ N-1-j ω -L σ N-1-j ω )L (N -1-j) ω .
It follows from (C1) and ( 27) that

L (N -1-j) ω B ≤ K N -1-j and L θ,(j) σ N-j ω B ≤ K(θ) j .
Furthermore, using (V3) and Lemma B.2, we have that for any h ∈ B,

(L θ ω -L ω )(h) B = L ω (e θg(ω,•) h -h) B ≤ K (e θg(ω,•) -1)h B = K var((e θg(ω,•) -1)h) + K (e θg(ω,•) -1)h 1 ≤ K e θg(ω,•) -1 L ∞ • var(h) + K var(e θg(ω,•) -1) • h L ∞ + K e θg(ω,•) -1 L ∞ • h 1 ≤ K|θ|e |θ|M M h B + KC var |θ|e |θ|M ess sup ω∈Ω (var g(ω, •)) h B ,
where Lemma 2.1, (C2), and (V3) are used to obtain the final inequality. Therefore,

L θ,(N ) ω -L (N ) ω B ≤ C|θ|e |θ|M N -1 j=0 K(θ) j K N -1-j ,
where C = KM + KC var ess sup ω∈Ω (var g(ω, •))

and the conclusion of the lemma follows by combining the above estimates.

Theorem 3.12 may now be established as follows.

Proof of Theorem 3.12. It follows from Lemma 3.13 and the dominated convergence theorem that

Ω log αθ,N (ω) dP(ω) → Ω log α N (ω) dP(ω) < 0 when θ → 0.
Thus, there exists δ > 0 such that

Ω log αθ,N (ω) dP(ω) ≤ 1 2 Ω log α N (ω) dP(ω), for θ ∈ B C (0, δ).
Lemma 3.8 implies that Λ is bounded below by a continuous function Λ in a neighborhood of 0, and Λ(0) = Λ(0) = 0. Hence, by decreasing δ if necessary, we can assume that

NΛ(θ) > 1 2 Ω log α N (ω) dP(ω) for θ ∈ B C (0, δ),
noting that NΛ(θ) is the top Lyapunov exponent of the cocycle over σ N with generator ω → L θ,(N ) ω

. Indeed, the inequality NΛ(θ) ≥ Λ(R θ(N ) ) is straightforward from subadditivity, and the reverse inequality essentially follows from existence of the limits and basic facts from ergodic theory (see e.g. [18, Appendix C]). By Lemma 2.1, we conclude that this cocycle is quasi-compact, which immediately implies the first statement of the Theorem.

Now we show dim

Y θ := dim Y θ 1 = 1. Let λ θ 1 = µ θ 1 ≥ µ θ 2 ≥ • • • ≥ µ θ L θ > κ(θ) be the exceptional Lyapunov exponents of twisted cocycle L θ ω , enumerated with multiplicity. That is, m θ j = dim Y θ j (ω) denotes the multiplicity of the Lyapunov exponent λ θ j . As in Theorem 2.3, let M θ j := m θ 1 + • • • + m θ j . Therefore, Λ(θ) = λ θ 1 = µ θ i for every 1 ≤ i ≤ M θ 1
and λ θ j = µ θ i for every M θ j-1 + 1 ≤ i ≤ M θ j and for every finite 1 < j ≤ l θ . By Lemma 3.2(2) the map θ → L θ ω is continuous in the norm topology of B for every ω ∈ Ω and also that the functions ω → log + L θ ω are dominated by an integrable function whenever θ is restricted to a compact set. Thus, Lemma A.3 of Appendix A shows that θ → µ θ 1 + µ θ 2 is upper-semicontinuous. Hence,

0 > µ 0 1 + µ 0 2 ≥ lim sup θ→0 (µ θ 1 + µ θ 2 ),
where the first inequality follows from the one-dimensionality of the top Oseledets subspace of the cocycle L ω . We note that Lemmas 3.8 and 3.9, ensure that lim sup θ→0 µ θ 1 ≥ Λ(0) = 0. Therefore lim sup θ→0 µ θ 2 < 0 and dim Y θ 1 = 1, as claimed. Corollary 3.14. For θ ∈ C near 0, we have that Λ(θ) = Λ(θ). In particular, Λ(θ) is differentiable near 0 and Λ ′ (0) = 0.

Proof. We recall that Λ(0) = 0 and Λ is differentiable near 0, by Lemma 3.9. In addition, v θ ω (•), defined in [START_REF] Rey-Bellet | Large deviations in non-uniformly hyperbolic dynamical systems[END_REF], gives a one-dimensional measurable equivariant subspace of B which grows at rate Λ(θ) (see [START_REF] Rousseau-Egele | Un théoreme de la limite locale pour une classe de transformations dilatantes et monotones par morceaux[END_REF]). Theorem 3.12 shows that lim sup θ→0 µ θ 2 < 0. In particular, µ θ 2 < Λ(θ) for θ sufficiently close to 0. Combining this information with the multiplicative ergodic theorem (Theorem 2.3) and Lemma 3.8, we get that Λ(θ) = Λ(θ) and Y θ 1 (ω) = v θ ω , for all θ ∈ C near 0. Thus, lemma 3.11 implies that Λ ′ (0) = 0.

Convexity of Λ(θ)

We continue to denote by µ the invariant measure for the skew product transformation τ defined in [START_REF] Froyland | A semi-invertible Oseledets theorem with applications to transfer operator cocycles[END_REF]. Furthermore, let S n g be given by [START_REF] Abdelkader | On the quenched central limit theorem for random dynamical systems[END_REF]. By expanding the term [S n g(ω, x)] 2 it is straightforward to verify using standard computations and (19) that

lim n→∞ 1 n Ω×X [S n g(ω, x)] 2 dµ(ω, x) = Ω×X g(ω, x) 2 dµ(ω, x)+2 ∞ n=1 Ω×X g(ω, x)g(τ n (ω, x)) dµ(ω, x)
and that the right-hand side of the above equality is finite. Set

Σ 2 := Ω×X g(ω, x) 2 dµ(ω, x) + 2 ∞ n=1 Ω×X g(ω, x)g(τ n (ω, x)) dµ(ω, x). (47) 
Obviously, Σ 2 ≥ 0 and from now on we shall assume that Σ 2 > 0. This is equivalent to a non-coboundary condition on g; we refer the interested reader to [START_REF] Dragičević | Almost sure invariance principle for random Lasota-Yorke maps[END_REF] for a precise statement characterising the degenerate case Σ 2 = 0.

Lemma 3.15. We have that Λ is of class C 2 on a neighborhood of 0 and Λ ′′ (0) = Σ 2 .

Proof. Using the notation in subsection 3.4, it follows from Lemma 3.9 and Corollary 3.14 that

Λ ′ (θ) = ℜ λ θ ω ( g(ω, •)e θg(ω,•) (O(θ) ω (•) + v 0 ω (•)) + e θg(ω,•) O ′ (θ) ω (•) dm) |λ θ ω | 2 dP(ω) .
Proceeding as in the proof of Lemma 3.9, one can show that Λ is of class C 2 on a neighborhood of 0 and that

Λ ′′ (θ) = ℜ λ θ ω ′′ λ θ ω - (λ θ ω ′ ) 2 (λ θ ω ) 2 dP(ω) , (48) 
where we have used ′ to denote derivative with respect to θ. We recall that λ 0 ω = 1, λ θ ω ′ is given by (45), and in particular λ θ ω ′ | θ=0 = 0 for P-a.e. ω ∈ Ω. It is then straightforward, using (48), the chain rule and the formulas in Appendices B.1 and B.2, to verify that

Λ ′′ (0) = ℜ g(ω, x) 2 v 0 ω (x) + 2g(ω, x)O ′ (0) ω (x) + O ′′ (0) ω (x) dm(x) dP(ω) .
Moreover, since θ → O ′ (θ) is a map on a neighborhood of 0 with values in S we can regard O ′′ (0) as an element of S which implies that O ′′ (0) ω (x) dm(x) = 0 for a.e. ω and thus

Λ ′′ (0) = ℜ (g(ω, x) 2 v 0 ω (x) + 2g(ω, x)O ′ (0) ω (x)) dm(x) dP(ω) . (49) 
On the other hand, by the implicit function theorem,

O ′ (0) ω = -(D 2 F (0, 0) -1 (D 1 F (0, 0))) ω .
Furthermore, [START_REF] Ohno | Asymptotic behaviors of dynamical systems with random parameters[END_REF] implies that

(D 2 F (0, 0) -1 W) ω = - ∞ j=0 L (j) σ -j ω (W σ -j ω ),
for each W ∈ S. This together with Proposition B.7 gives that

O ′ (0) ω = ∞ j=1 L (j) σ -j ω (g(σ -j ω, •)v 0 σ -j ω (•)). ( 50 
)
Using ( 49), (50), the duality property of transfer operators, as well as the fact that σ preserves P, we have that

Λ ′′ (0) = g(ω, x) 2 v 0 ω dm(x) + 2 ∞ j=1 g(ω, x)L (j) σ -j ω (g(σ -j ω, •)v 0 σ -j ω ) dm(x) dP(ω) = g(ω, x) 2 dµ ω (x) + 2 ∞ j=1 g(ω, T (j) 
σ -j ω x)g(σ -j ω, x) dµ σ -j ω (x) dP(ω) = g(ω, x) 2 dµ(ω, x) + 2 ∞ j=1 g(σ j ω, T (j) ω x)g(ω, x) dµ ω (x) dP(ω) = g(ω, x) 2 dµ(ω, x) + 2 ∞ j=1 g(ω, x)g(τ j (ω, x)) dµ(ω, x) = Σ 2 .
The following result is a direct consequence of the previous lemma.

Corollary 3.16. Λ is strictly convex on a neighborhood of 0.

Choice of bases for top Oseledets spaces Y θ ω and Y * θ ω

We recall that Y θ ω and Y * θ ω are top Oseledets subspaces for twisted and adjoint twisted cocycle, L θ and L θ * , respectively. The Oseledets decomposition for these cocycles can be written in the form

B = Y θ ω ⊕ H θ ω and B * = Y * θ ω ⊕ H * θ ω , (51) 
where

H θ ω = V θ (ω) ⊕ l θ j=2 Y θ j (ω) is the equivariant complement to Y θ ω := Y θ 1 (ω)
, and H * θ ω is defined similarly. Furthermore, Lemma 2.6 shows that the following duality relations hold: ψ(y) = 0 whenever y ∈ Y θ ω and ψ ∈ H * θ ω , and φ(f ) = 0 whenever φ ∈ Y * θ ω and f ∈ H θ ω .

(52)

Let us fix convenient choices for elements of the one-dimensional top Oseledets spaces Y θ ω and Y * θ ω , for θ ∈ C close to 0. Let v θ ω ∈ Y θ ω be as in [START_REF] Rey-Bellet | Large deviations in non-uniformly hyperbolic dynamical systems[END_REF], so that v θ ω (•)dm = 1. (In view of Proposition 3.6, when θ ∈ R close to 0, the operators L θ ω are positive, so we can additionally assume v θ ω ≥ 0 and so v θ ω 1 = 1). Since dim Y θ ω = 1, v θ ω is defined uniquely for P-a.e. ω ∈ Ω. Theorem 2.3 ensures that, for P-a.e. ω ∈ Ω, there exists

λ θ ω ∈ C (λ θ ω > 0 if θ ∈ R) such that L θ ω v θ ω = λ θ ω v θ σω . (53) 
Integrating (53), and using [START_REF] Saussol | Absolutely continuous invariant measures for multidimensional expanding maps[END_REF], we obtain

λ θ ω = e θg(ω,x) v θ ω (x) dm(x), (54) 
and thus λ θ ω coincides with the quantity introduced in [START_REF] Saussol | Absolutely continuous invariant measures for multidimensional expanding maps[END_REF]. By [START_REF] Rousseau-Egele | Un théoreme de la limite locale pour une classe de transformations dilatantes et monotones par morceaux[END_REF] and Corollary 3.14,

Λ(θ) = log |λ θ ω | dP(ω). (55) 
Next, let us fix

φ θ ω ∈ Y * θ ω so that φ θ ω (v θ ω ) = 1.
This selection is again possible and unique, because of (52). Furthermore, this choice implies that

(L θ ω ) * φ θ σω = λ θ ω φ θ ω , (56) 
because Y * θ ω is one-dimensional and equivariant. Indeed, if C θ ω is the constant such that (L θ ω ) * φ θ σω = C θ ω φ θ ω , then

λ θ ω = λ θ ω φ θ σω (v θ σω ) = φ θ σω (L θ ω v θ ω ) = ((L θ ω ) * φ θ σω )(v θ ω ) = C θ ω φ θ ω (v θ ω ) = C θ ω .

Limit theorems

In this section we establish the main results of our paper. To obtain the large deviation principle (Theorem A), we first link the asymptotic behaviour of moment generating (and characteristic) functions associated to Birkhoff sums with the Lyapunov exponents Λ(θ). Then, we combine the strict convexity of the map θ → Λ(θ) on a neighborhood of 0 ∈ R with the classical Gärtner-Ellis theorem. We establish the central limit theorem (Theorem B) by applying Levy's continuity theorem and using the C 2 -regularity of the map θ → Λ(θ) on a neighborhood of 0 ∈ C. Finally, we demonstrate the full power of our approach by proving for the first time random versions of the local central limit theorem, both under the so-called aperiodic and periodic assumptions (Theorems C and 4.15). In addition, we present several equivalent formulations of the aperiodicity condition.

Large deviations property

In this section we establish Theorem A. The main tool in establishing this large deviations property will be the following classical result.

Theorem 4.1. (Gärtner-Ellis [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]) For n ∈ N, let P n be a probability measure on a measurable space (Y, T ) and let E n denote the corresponding expectation operator. Furthermore, let S n be a real random variable on (Ω, T ) and assume that on some interval [-θ + , θ + ], θ + > 0, we have lim

n→∞ 1 n log E n (e θSn ) = ψ(θ), ( 57 
)
where ψ is a strictly convex continuously differentiable function satisfying ψ ′ (0) = 0. Then, there exists ǫ + > 0 such that the function c defined by

c(ǫ) = sup |θ|≤θ + {θǫ -ψ(θ)} (58) 
is nonnegative, continuous, strictly convex on [-ǫ + , ǫ + ], vanishing only at 0 and such that lim n→∞ 1 n log P n (S n > nǫ) = -c(ǫ), for every ǫ ∈ (0, ǫ + ).

We will also need the following results, linking the asymptotic behaviour of characteristic functions associated to Birkhoff sums with the numbers Λ(θ). Proof. Given f ∈ B, we may write (see (51

)) f = φ θ ω (f )v θ ω + h θ ω , where h θ ω ∈ H θ ω .
Using this decomposition and applying repeatedly (53), we get

L θ,(n) ω f = n-1 i=0 λ θ σ i ω φ θ ω (f )v θ σ n-1 ω + L θ,(n) ω h θ ω . (59) 
Theorem 2.3 ensures that lim

n→∞ 1 n log L θ,(n) ω | H θ ω < Λ(θ). ( 60 
)
Thus, the second term in (59) grows asymptotically with n at an exponential rate strictly slower than Λ(θ). By [START_REF] Morita | A generalized local limit theorem for Lasota-Yorke transformations[END_REF] and (59), we have that for P-a.e. ω ∈ Ω lim n→∞

1 n log e θSng(ω,x) f dm = lim n→∞ 1 n log L θ,(n) ω f dm = lim n→∞ 1 n n-1 i=0 log |λ θ σ i ω | + lim n→∞ 1 n log φ θ ω (f )v θ σ n-1 ω + L θ,(n) ω h θ ω n-1 i=0 |λ θ σ i ω | dm ,
whenever the RHS limits exist. The first limit in the previous line equals Λ(θ) by (55). The second limit is zero, because the choice of v θ σ n-1 ω ensures the integral of the first term in the square brackets is φ θ ω (f ) = 0 (by assumption), which is independent of n, and the second term in the square brackets goes to zero as n → ∞ by (60). The conclusion follows.

Lemma 4.3. For all complex θ in a neighborhood of 0, and P-a.e. ω ∈ Ω, we have that

lim n→∞ 1 n log e θSng(ω,x) dµ ω (x) = Λ(θ). Proof. Since lim n→∞ 1 n log e θSng(ω,x) dµ ω (x) = lim n→∞ 1 n log e θSn(ω,x) v 0 ω (x) dm(x) ,
by Lemma 4.2 it is sufficient to show that φ θ ω (v 0 ω ) = 0 for θ near 0. We know that φ 0 ω (v 0 ω ) = v 0 ω dm = 1. Hence, the differentiability of θ → φ θ at θ = 0, established in Appendix C, together with the uniform bound on v 0 ω B provided by [START_REF] Froyland | Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems[END_REF], ensure that for θ ∈ C sufficiently close to 0 and P-a.e. ω ∈ Ω, φ θ ω (v 0 ω ) = 0 as required. Proof of Theorem A. The proof follows directly from Theorem 4.1 when applied to the case when (Y, T ) = (X, B),

P n = µ ω S n = S n g(ω, •) and ψ(θ) = Λ(θ).
Indeed, we note that (57) holds by Lemma 4.3 (the absolute values are irrelevant when θ ∈ R). Furthermore, it follows from Corollary 3.14 that Λ is continuously differentiable on a neighborhood of 0 in R satisfying Λ ′ (0) = 0 and by Corollary 3.16, we have that Λ is strictly convex on a neighborhood of 0 in R. Finally, c does not depend on ω by (58).

Central limit theorem

The goal of section is to establish Theorem B. We start with the following lemma, which will be useful in the proofs of the both central limit theorem and local central limit theorem.

Lemma 4.4. There exist C > 0, 0 < r < 1 such that for every θ ∈ C sufficiently close to 0, every n ∈ N and P-a.e. ω ∈ Ω, we have

1 0 L θ,(n) ω (v 0 ω -φ θ ω (v 0 ω )v θ ω ) dm ≤ Cr n . ( 61 
)
Proof. The following argument generalises [26, Lemma III.9] to the random setting. For each θ near 0 and ω ∈ Ω, let

Q θ ω f := L θ ω (f -φ θ ω (f )v θ ω ).
Note that, in view of Lemma 3.2 and differentiability of θ → v θ and θ → φ θ (established in Lemma 3.5 (see [START_REF] Rey-Bellet | Large deviations in non-uniformly hyperbolic dynamical systems[END_REF]) and Appendix C, respectively), we get that there exists N > 1 such that Q θ ω < N for every ω ∈ Ω, provided θ is sufficiently close to 0.

In addition, since fφ θ ω (f )v θ ω is the projection of f onto H θ ω along the top Oseledets space Y θ ω , we get that, for every n ≥ 1,

Q θ,(n) ω f = L θ,(n) ω (f -φ θ ω (f )v θ ω ). Furthermore, since f -φ 0 ω (f )v 0 ω = f -( f dm)v 0 ω , condition ( 
C3) and Lemma 2.11(1) ensure that there exist K ′ , λ > 0 such that for every n ≥ 0 and P-a.e. ω ∈ Ω, Q 0,(n) ω ≤ K ′ e -λn . Let 1 > r > e -λ , and let n 0 ∈ N be such that K ′ e -λn 0 < r n 0 . Lemma 3.2 together with differentiability of θ → v θ and θ → φ θ ensure that θ → Q θ ω is continuous in the norm topology of B. In fact, the uniform control over ω ∈ Ω, guaranteed by the aforementioned differentiability conditions, along with Condition (C1), ensure that one can choose ǫ > 0 so that if |θ| < ǫ, then Q θ,(n 0 ) ω < r n 0 for every ω ∈ Ω. Writing n = kn 0 + ℓ, with 0 ≤ ℓ < n 0 , we get

Q θ,(n) ω ≤ k-1 j=0 Q θ,(n 0 ) σ jn 0 ω ( Q θ,(ℓ) σ kn 0 ω ) < r n (N/r) ℓ ≤ cr n , with c = N r n 0 . Thus, 1 0 L θ,(n) ω (v 0 ω -φ θ ω (v 0 ω )v θ ω ) dm ≤ L θ,(n) ω (v 0 ω -φ θ ω (v 0 ω )v θ ω ) 1 ≤ L θ,(n) ω (v 0 ω -φ θ ω (v 0 ω )v θ ω ) B = Q θ,(n) ω (v 0 ω ) B ≤ cr n v 0 ω B .
By [START_REF] Froyland | Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems[END_REF], there exists K > 0 such that v 0 ω B ≤ K for P-a.e. ω ∈ Ω, so the proof of the lemma is complete.

Proof of Theorem B. We recall that Σ 2 > 0 is given by (47). It follows from Levy's continuity theorem that it is sufficient to prove that, for every t ∈ R,

lim n→∞ e it Sng(ω,•) √ n dµ ω = e -t 2 Σ 2 2
, for P-a.e. ω ∈ Ω.

Assume n is sufficiently large so that dim

Y it √ n 1 = 1 and v it √ n
ω can be chosen as in [START_REF] Rey-Bellet | Large deviations in non-uniformly hyperbolic dynamical systems[END_REF]. In particular,

1 0 v it √ n ω dm = 1 and L it √ n ,(n) ω v it √ n ω = ( n-1 j=0 λ it √ n σ j ω )v it √ n
σ n ω , for P-a.e. ω ∈ Ω. Furthermore, using [START_REF] Morita | A generalized local limit theorem for Lasota-Yorke transformations[END_REF],

e it Sng(ω,•) √ n dµ ω = e it Sng(ω,•) √ n v 0 ω dm = L it √ n ,(n) ω v 0 ω dm = 1 0 L it √ n ,(n) ω φ it √ n ω (v 0 ω )v it √ n ω + (v 0 ω -φ it √ n ω (v 0 ω )v it √ n ω ) dm = φ it √ n ω (v 0 ω ) • n-1 j=0 λ it √ n σ j ω + 1 0 L it √ n ,(n) ω (v 0 ω -φ it √ n ω (v 0 ω )v it √ n ω ) dm.
Lemma 4.4 shows that the second term converges to 0 as n → ∞. Also, differentiability of

θ → φ θ , established in Appendix C, ensures that lim n→∞ φ it √ n ω (v 0 ω ) = φ 0 ω (v 0 ω ) = 1.
Thus, to conclude the proof of the theorem, we need to prove that

lim n→∞ n-1 j=0 λ it √ n σ j ω = e -t 2 Σ 2 2 , for P-a.e. ω ∈ Ω, ( 62 
)
which is equivalent to

lim n→∞ n-1 j=0 log λ it √ n σ j ω = - t 2 Σ 2 2
, for P-a.e. ω ∈ Ω.

Using the notation of Lemmas 3.4 and 3.5, we have that λ θ ω = H(θ, O(θ))(σω) and thus we need to prove that

lim n→∞ n-1 j=0 log H it √ n , O( it √ n ) (σ j+1 ω) = - t 2 Σ 2 2 for P-a.e. ω ∈ Ω. ( 63 
)
Let H be a map defined in a neighborhood of 0 in C with values in L ∞ (Ω) by H(θ) = log H(θ, O(θ)). It will be shown in Lemma 4.5 that H is of class C 2 , H(0)(ω) = 0, H′ (0)(ω) = 0 and H′′ (0

)(ω) = (g(σ -1 ω, •) 2 v 0 σ -1 ω + 2g(σ -1 ω, •)O ′ (0) σ -1 ω ) dm.
Developing H in a Taylor series around 0, we have that

H(θ)(ω) = log H(θ, O(θ))(ω) = H′′ (0)(ω) 2 θ 2 + R(θ)(ω),
where R denotes the remainder. Therefore,

log H it √ n , O( it √ n ) (σ j+1 ω) = - t 2 H′′ (0)(σ j+1 ω) 2n + R(it/ √ n)(σ j+1 ω), which implies that n-1 j=0 log H it √ n , O( it √ n ) (σ j+1 ω) = - t 2 2 • 1 n n-1 j=0 H′′ (0)(σ j+1 ω) + n-1 j=0 R(it/ √ n)(σ j+1 ω). ( 64 
)
The asymptotic behaviour of the first term is governed by Birkhoff's ergodic theorem, so using (49) second equality, and Lemma 3.15 fot the third one, we get:

lim n→∞ - t 2 2 1 n n-1 j=0 H′′ (0)(σ j+1 ω) = - t 2 2 H′′ (0)(ω) dP(ω) = - t 2 2 Λ ′′ (0) = - t 2 2 Σ 2 for P-a.e. ω ∈ Ω. ( 65 
)
Now we deal with the last term of (64). Writing R(θ) = θ 2 R(θ) with lim θ→0 R(θ) = 0, we conclude that for each ǫ > 0 and t ∈ R \ {0}, there exists δ > 0 such that R(θ) L ∞ ≤ ǫ t 2 for all |θ| ≤ δ. We note that there exists n 0 ∈ N such that |it/ √ n| ≤ δ for each n ≥ n 0 . Hence,

n-1 j=0 R(it/ √ n)(σ j+1 ω) ≤ t 2 n n-1 j=0 | R(it/ √ n)(σ j+1 ω)| ≤ t 2 n • nǫ t 2 = ǫ,
for every n ≥ n 0 , which implies that the second term on the right-hand side of (64) converges to 0 and thus (63) holds. The proof of the theorem is complete.

Lemma 4.5. The map

H(θ) = log H(θ, O(θ)) is of class C 2 .
Moreover, H(0)(ω) = 0, H′ (0)(ω) = 0 and

H′′ (0)(ω) = (g(σ -1 ω, •) 2 v 0 σ -1 ω + 2g(σ -1 ω, •)O ′ (0) σ -1 ω ) dm.
Proof. The regularity of T follows directly from the results in Appendices B.1 and B.2. Moreover, we have H(0

)(ω) = log H(0, O(0))(ω) = log 1 = 0. Furthermore, H′ (θ)(ω) = 1 H(θ, O(θ))(ω) [D 1 H(θ, O(θ))(ω) + (D 2 H(θ, O(θ))O ′ (θ))(ω)].
Taking into account formulas in Appendix B.1, ( 25) and ( 46), we have

H′ (0)(ω) = g(σ -1 ω, •)v 0 σ -1 ω dm + O ′ (0) σ -1 ω dm = 0.
Finally, taking into account that D 22 H = 0 (see Appendix B.2) we have

H′′ (θ)(ω) = -D 1 H(θ, O(θ))(ω) [H(θ, O(θ))(ω)] 2 [D 1 H(θ, O(θ))(ω) + (D 2 H(θ, O(θ))O ′ (θ))(ω)] + 1 H(θ, O(θ))(ω) [D 11 H(θ, O(θ))(ω) + (D 21 H(θ, O(θ))O ′ (θ))(ω)] + 1 H(θ, O(θ))(ω) [(D 12 H(θ, O(θ))O ′ (θ))(ω) + (D 2 H(θ, O(θ))O ′′ (θ))(ω)].
Using formulas in Appendices B.1 and B.2, we obtain the desired expression for H′′ (0).

Local central limit theorem

In order to obtain a local central limit theorem, we introduce an additional assumption related to aperiodicity, as follows.

(C5) For P-a.e. ω ∈ Ω and for every compact interval J ⊂ R \ {0} there exist C = C(ω) > 0 and ρ ∈ (0, 1) such that

L it,(n) ω B ≤ Cρ n , for t ∈ J and n ≥ 0. ( 66 
)
The proof of Theorem C is presented in Section 4.3.1. In Section 4.3.2, we show that (C5) can be phrased as a so-called aperiodicity condition, resembling a usual requirement for autonomous versions of the local CLT. Examples are presented in Section 4.3.3.

Proof of Theorem C

Using the density argument (see [START_REF] Morita | A generalized local limit theorem for Lasota-Yorke transformations[END_REF]), it is sufficient to show that

sup s∈R Σ √ n h(s + S n g(ω, •)) dµ ω - 1 √ 2π e -s 2 2nΣ 2 R h(u) du → 0, (67) 
when n → ∞ for every h ∈ L 1 (R) whose Fourier transform ĥ has compact support. Moreover, we recall the following inversion formula

h(x) = 1 2π R ĥ(t)e itx dt. (68) 
By ( 34), ( 68) and Fubini's theorem,

Σ √ n 1 0 h(s + S n g(ω, •)) dµ ω = Σ √ n 2π 1 0 R ĥ(t)e it(s+Sng(ω,•)) dt dµ ω = Σ √ n
2π R e its ĥ(t)

1 0 e itSng(ω,•) dµ ω dt = Σ √ n
2π R e its ĥ(t)

1 0 e itSng(ω,•) v 0 ω dm dt = Σ √ n
2π R e its ĥ(t)

1 0 L it,(n) ω v 0 ω dm dt = Σ 2π R e its √ n ĥ( t √ n ) 1 0 L it √ n ,(n) ω v 0 ω dm dt.
Considering the RHS of (67) and recalling that the Fourier transform of

f (x) = e -Σ 2 x 2 2 is given by f (t) = √ 2π Σ e -t 2 /2Σ 2 we have 1 √ 2π e -s 2 2nΣ 2 R h(u) du = ĥ(0) √ 2π e -s 2 2nΣ 2 = ĥ(0)Σ 2π f (-s/ √ n) = ĥ(0)Σ 2π R e its √ n • e -Σ 2 t 2 2 dt.
Hence, we need to prove that

sup s∈R Σ 2π R e its √ n ĥ( t √ n ) 1 0 L it √ n ,(n) ω v 0 ω dm dt - ĥ(0)Σ 2π R e its √ n • e -Σ 2 t 2 2 dt → 0, ( 69 
)
when n → ∞, for P-a.e. ω ∈ Ω. Choose δ > 0 such that the support of ĥ is contained in

[-δ, δ]. Recall that L θ,(n) ω v θ ω = ( n-1 j=0 λ θ σ j ω )v θ
σ n ω for P-a.e. ω ∈ Ω, and for all θ near 0. Then, for any δ ∈ (0, δ), we have,

Σ 2π R e its √ n ĥ( t √ n ) 1 0 L it √ n ,(n) ω v 0 ω dm dt - ĥ(0)Σ 2π R e its √ n • e -Σ 2 t 2 2 dt = Σ 2π |t|< δ√ n e its √ n ĥ( t √ n ) n-1 j=0 λ it √ n σ j ω -ĥ(0)e -Σ 2 t 2 2 dt + Σ 2π |t|< δ√ n e its √ n ĥ( t √ n ) 1 0 n-1 j=0 λ it √ n σ j ω φ it √ n ω (v 0 ω )v it √ n σ n ω -1 dm dt + Σ √ n
2π |t|< δ e its ĥ(t)

1 0 L it,(n) ω (v 0 ω -φ it ω (v 0 ω )v it ω ) dm dt + Σ √ n
2π δ≤|t|<δ e its ĥ(t)

1 0 L it,(n) ω v 0 ω dm dt - Σ 2π ĥ(0) |t|≥ δ√ n e its √ n • e -Σ 2 t 2 2 dt =: (I) + (II) + (III) + (IV ) + (V ).
The proof of the theorem will be complete once we show that each of the terms (I)-(V ) converges to zero as n → ∞.

Control of (I).

We claim that for P-a.e. ω ∈ Ω,

lim n→∞ sup s∈R |t|< δ√ n e its √ n ( ĥ( t √ n ) n-1 j=0 λ it √ n σ j ω -ĥ(0)e -Σ 2 t 2 2 ) dt = 0. Indeed, it is clear that sup s∈R |t|< δ√ n e its √ n ( ĥ( t √ n ) n-1 j=0 λ it √ n σ j ω -ĥ(0)e -Σ 2 t 2 2 ) dt ≤ |t|< δ√ n ĥ( t √ n ) n-1 j=0 λ it √ n σ j ω -ĥ(0)e -Σ 2 t 2 2 dt.
It follows from the continuity of ĥ and (62) that for P-a.e. ω ∈ Ω and every t,

ĥ( t √ n ) n-1 j=0 λ it √ n σ j ω -ĥ(0)e -Σ 2 t 2 2 → 0, when n → ∞. ( 70 
)
The desired conclusion will follow from the dominated convergence theorem once we establish the following lemma.

Lemma 4.6. For δ > 0 sufficiently small, there exists n 0 ∈ N such that for all n ≥ n 0 and t such that |t| < δ√ n,

n-1 j=0 λ it √ n σ j ω ≤ e -t 2 Σ 2 8 .
Proof. We use the same notation as in the proof of Lemma 4.5. As before, ℜ(z) denotes the real part of a complex number z. We note that

n-1 j=0 λ it √ n σ j ω = e -t 2 2 ℜ( 1 n n-1 j=0 H′′ (0)(σ j ω)) • e ℜ( n-1 j=0 R(it/ √ n)(σ j ω)) .
Since, by (65),

1 n n-1 j=0
H′′ (0)(σ j ω) → Σ 2 for P-a.e. ω ∈ Ω, we also have that

ℜ 1 n n-1 j=0 H′′ (0)(σ j ω) → Σ 2 , P-a.e. ω ∈ Ω
and therefore for P-a.e. ω ∈ Ω there exists

n 0 = n 0 (ω) ∈ N such that ℜ 1 n n-1 j=0 H′′ (0)(σ j ω) ≥ Σ 2 /2, for n ≥ n 0 .
Hence,

e -t 2 2 ℜ( 1 n n-1 j=0 H′′ (0)(σ j ω)) ≤ e -t 2 Σ 2 4
, for n ≥ n 0 and every t ∈ R. We now choose δ such that R(θ) L ∞ ≤ Σ 2 /8 whenever |θ| ≤ δ. Hence, for t such that |t| < δ√ n , we have

n-1 j=0 R(it/ √ n)(σ j ω)) ≤ t 2 n n-1 j=0 | R(it/ √ n)(σ j ω)| ≤ t 2 Σ 2 8
and therefore

e ℜ( n-1 j=0 R(it/ √ n)(σ j ω)) ≤ e -t 2 Σ 2 8
, which implies the statement of the lemma.

Control of (II). We recall that for θ sufficiently close to 0, v θ ω as defined in (41) satisfies 1 0 v θ ω dm = 1 for P-a.e. ω ∈ Ω. Thus, to control (II) we must show that for P-a.e. ω ∈ Ω lim

n→∞ sup s∈R Σ 2π |t|< δ√ n e its √ n ĥ( t √ n ) n-1 j=0 λ it √ n σ j ω (φ it √ n ω (v 0 ω ) -1) dt = 0. ( 71 
)
Using the fact that φ 0 ω (v 0 ω ) = 1 and the differentiability of θ → φ θ (see Appendix C), we conclude that there exists C > 0 such that |φ θ ω (v 0 ω ) -1| ≤ C|θ| for θ in a neighborhood of 0 in C. Taking into account Lemma 4.6, we conclude that

sup s∈R Σ 2π |t|< δ√ n e its √ n ĥ( t √ n ) n-1 i=0 λ it √ n σ i ω (φ it √ n ω (v 0 ω ) -1) dt ≤ 1 √ n C Σ 2π ĥ L ∞ |t|< δ√ n |t|e -Σ 2 t 2 8 dt,
which readily implies (71).

Control of (III). We must show that lim n→∞ sup s∈R Σ √ n 2π |t|< δ e its ĥ(t)

1 0 L it,(n) ω (v 0 ω -φ it ω (v 0 ω )v it ω ) dm dt = 0.
Lemma 4.4 shows that there exist C > 0 and 0 < r < 1 such that for every sufficiently small t, every n ∈ N and P-a.e. ω ∈ Ω,

1 0 L it,(n) ω (v 0 ω -φ it ω (v 0 ω )v it ω ) dm ≤ Cr n .
Hence, provided δ is sufficiently small, lim

n→∞ sup s∈R Σ √ n
2π |t|< δ e its ĥ(t)

1 0 L it,(n) ω (v 0 ω -φ it ω (v 0 ω )v it ω ) dm dt ≤ lim n→∞ Σ √ n 2π ĥ L ∞ Cr n = 0.
Control of (IV). By the aperiodicity condition (C5),

sup s∈R Σ √ n
2π δ≤|t|≤δ e its ĥ(t)

1 0 L it,(n) ω v 0 ω dm dt ≤ 2C(δ -δ) Σ √ n 2π ĥ L ∞ • ρ n • v 0 ∞ → 0,
when n → ∞ by ( 17) and the fact that ĥ is continuous.

Control of (V). It follows from the dominated convergence theorem and the integrability of the map t → e -Σ 2 t 2 2 that sup s∈R ĥ(0)Σ 2π

|t|≥ δ√ n e its √ n • e -Σ 2 t 2 2 dt ≤ | ĥ(0)|Σ 2π |t|≥ δ√ n e -Σ 2 t 2 2 dt → 0,
when n → ∞.

Equivalent versions of the aperiodicity condition

In this subsection we show the following equivalence result.

Lemma 4.7. Assume dim Y 0 = 1 and condition (C0) holds. Suppose, in addition, that Ω is compact and that the map L : Ω → L(B), ω → L ω , is continuous on each of finitely many pairwise disjoint open sets Ω 1 , . . . , Ω q whose union is Ω, up to a set of P measure 0. Furthermore, assume that for each 1 ≤ j ≤ q, L : Ω j → L(B) can be extended continuously to the closure Ωj . Then, each of the following conditions is equivalent to Condition (C5):

1. For every t ∈ R \ {0}, Λ(it) < 0.

2. For every t ∈ R, either (i) Λ(it) < 0 or (ii) the cocycle R it is quasicompact and the equation

e itg(ω,x) L 0 * ω ψ σω = γ it ω ψ ω , (72) 
where γ it ω ∈ S 1 and ψ ω ∈ B * only has a measurable non-zero solution ψ := {ψ ω } ω∈Ω when t = 0. Furthermore, in this case γ 0 ω = 1 and ψ ω (f ) = f dm (up to a scalar multiplicative factor).

Before proceeding with the proof, we present an auxiliary result for the cocycle R it . Lemma 4.8. Assume dim Y 0 = 1 and R it is quasi-compact for every t ∈ R for which

Λ(it) = 0. Then, for each t ∈ R, either Λ(it) < 0 or dim Y it = 1. Proof. Assume dim Y 0 = 1. It follows from the definition of L it ω that Λ(it) ≤ 0 for every t ∈ R. Indeed, for every v ∈ B, L it ω v 1 = L ω (e itg(ω,•) v) 1 ≤ e itg(ω,•) v 1 = v 1 . Hence, lim n→∞ 1 n log L it,(n) ω v 1 ≤ 0. Lemma 2.2 then implies that Λ(it) ≤ 0. Suppose Λ(it) = 0 for some t ∈ R. Let d = dim Y it .
Then d < ∞ by the quasicompactness assumption. Our proof proceeds in three steps:

(1) Let S 1 = {x ∈ B : x 1 = 1}. Then, for P-a.e. ω ∈ Ω and every

v ∈ Y it ω ∩ S 1 , L it ω v 1 = 1.
(

) Assume v ∈ Y it ω is such that v 1 = 1. Then |v| = v 0 ω . 2 
In words, the magnitude of v is given by v 0 ω , the generator of Y 0 ω .

(3) Assume u, v ∈ Y it ω are such that v 1 = u 1 = 1. Then, there exists a constant a ∈ R such that u = e ia v. In particular, d = dim Y it = 1.

The proof of step (1) involves some technical aspects of Lyapunov exponents and volume growth and it is deferred until Appendix A.2. Assuming this step has been established, we proceed to show the remaining two.

Proof of step (2). Let v ∈ Y it ω be such that v 1 = 1. Consider the polar decomposition of v, v(x) = e iφ(x) r(x),
where φ, r : X → R are functions such that r ≥ 0. Notice that the choice of r(x) is unique. The choice of φ(x) (mod 2π) is unique whenever r(x) = 0, and arbitrary otherwise. Because of step (1), for P-a.e. ω ∈ Ω and n ∈ N, we have

L it,(n) ω v 1 = 1. Also, L (n) 
ω |v| 1 = L (n) ω r 1 = 1, where we use |v| to denote the magnitude (radial component) of v. Notice that L (n) ω r(x) = T (n) ω y=x r(y) |(T (n) ω ) ′ (y)|
and by Lemma 3.3(1),

L it,(n) ω v(x) = T (n)
ω y=x e itSng(ω,y)+iφ(y) r(y)

|(T (n) ω ) ′ (y)| . (73) 
In particular, for each x ∈ X, we have

|L it,(n) ω v(x)| ≤ L (n) ω r(x). Since 1 = L it,(n) ω v 1 = |L it,(n) ω v(x)|dx and 1 = L (n) ω r 1 = L (n) ω r(x)dx, it must be that for a.e. x ∈ X, |L it,(n) ω v(x)| = L (n) ω r(x). (74) 
In view of the triangle inequality, equality in (73) holds if and only if for a.e. x ∈ X such that L

(n) ω r(x) = 0, the phases coincide on all preimages of x. That is, if and only if e itSng(ω,y)+iφ(y) = e itSng(ω,y ′ )+iφ(y ′ ) for all y, y ′ ∈ (T

(n) ω ) -1 (x) (if for some preimage y of x the modulus r(y) |(T (n) ω ) ′ (y)|
is zero, we may redefine φ(y) in such a way that it satisfies this requirement). Thus, there exists φ n : X → R such that e itSng(ω,y)+iφ(y) = e iφn•T (n) ω (y) , for every y such that L (n) ω r(y) = 0. Thus, for all such y, we have

L it,(n) ω v(y) = L (n)
ω (e itSng(ω,y)+iφ(y) r(y

)) = L (n) ω (e iφn•T (n) ω (y) r(y)) = e iφn(y) L (n) ω r(y). (75) 
Note that if

L (n) ω r(y) = 0, then L it,(n) ω
v(y) = 0 as well, so indeed equality between LHS and RHS of (75) holds for a.e. y ∈ X.

Notice that, by equivariance of

Y it ω , L it,(n) ω v ∈ Y it σ n ω ,

and the polar decomposition of L it,(n) ω

v is precisely given by the RHS of (75). Recall that for every n and P-a.e. ω ∈ Ω,

L it,(n) σ -n ω : Y it σ -n ω → Y it ω is a bijection. Let v -n ∈ Y it σ -n ω be such that L it,(n) σ -n ω v -n = v, and let r -n = |v -n |.
We recall that by step (1) of the proof, r -n 1 = 1. Also, [16, Lemma 20] implies that for every ǫ > 0 there exists

C ǫ > 0 such that v -n ≤ C ǫ e ǫn v . Hence, r -n ≤ v -n ≤ C ǫ e ǫn v
, where we have used the facts that var(|v|) ≤ var(v) and |v| 1 = v 1 for every v ∈ B. Notice that r -nv 0 σ -n ω dm = 0, as both r -n and v 0 σ -n ω are non-negative and normalized in L 1 . Thus, (74) applied to v -n and σ -n ω, together with (C3) yields

r -v 0 ω = |L it,(n) σ -n ω v -n | -v 0 ω = L (n) σ -n ω (r -n -v 0 σ -n ω ) ≤ K ′ e -λn ( r -n + v 0 σ -n ω ) ≤ K ′ e -λn (C ǫ e ǫn v + ess sup ω∈Ω v 0 ω ). (76) 
Let ǫ < λ. Then, the quantity on the RHS of (76) goes to zero as n → ∞ and therefore r = v 0 ω , as claimed.

Proof of step (3). Let u, v ∈ Y it ω be such that v 1 = u 1 = 1.
In view of step (2), there exist functions φ, ψ : X → R such that v = e iφ v 0 ω and u = e iψ v 0 ω . Since Y it ω is a vector space, we have u + v ∈ Y it ω , although u + v may not be normalized in L 1 . Hence, again using step (2), there exist ρ ∈ R and ξ :

X → R such that v + u = ρe iξ v 0 ω . Therefore, v + u = e iφ v 0 ω + e iψ v 0 ω = ρe iξ v 0 ω . Recalling that v 0
ω is bounded away from 0, we can divide by v 0 ω , and take magnitudes (norms) to get |e iφ + e iψ | = ρ.

Elementary plane geometry shows that this implies |φ -ψ| is essentially constant (modulo 2π). In particular, φ-ψ can take at most two values, say ±a. A similar argument, considering v and u ′ = e ia u shows that φψa can also take at most two values, say ±b. Putting this together, we have on the one hand that φψa ∈ {0, -2a}, and on the other hand that φψa ∈ {b, -b}. Thus, either (i) b = 0, and therefore v = e ia u, or (ii) b = 0 and then φψa = -2a, and therefore φ = ψa and v = e -ia u.

Proof of Lemma 4.7.

Equivalence between Assumption (66) and item [START_REF] Abdelkader | On the quenched central limit theorem for random dynamical systems[END_REF]. It is straightforward to check that (66) directly implies item (1). To show the converse, assume the hypotheses of Lemma 4.7 and item [START_REF] Abdelkader | On the quenched central limit theorem for random dynamical systems[END_REF]. An immediate consequence of upper semi-continuity of t → Λ(it), as established in Lemma A.3, is that if J ⊂ R is a compact interval not containing 0, then there exists r < 0 such that sup t∈J Λ(it) < r. Let ρ := e r . Then, for P-a.e. ω ∈ Ω and t ∈ J, there exists C ω,t > 0 such that for every for n ≥ 0,

L it,(n) ω ≤ C ω,t ρ n . (77) 
In order to show (66), we will in fact ensure the constant C ω,t can be chosen independently of (ω, t), provided (ω, t) ∈ Ω × J for some full P-measure subset Ω ⊂ Ω. We will establish this result for ω ∈ Ω := ∩ k∈Z σ k (∪ q l=1 Ω l ). Notice that Ω is σ-invariant and, since σ is a P-preserving homeomorphism of Ω, then P( Ω) = 1. For technical reasons regarding compactness, let us consider Ω := ∐ 1≤l≤q Ωl ; where ∐ denotes disjoint union, with the associated disjoint union topology (so Ω may be thought of as ∪ 1≤l≤q {l}× Ωl , with the finest topology such that each injection Ωl ֒→ {l} × Ωl ⊂ Ω is continuous). In this way, each {l} × Ωl ⊂ Ω is a clopen set and, since Ω is compact, so is Ω.

For notational convenience, but in a slight abuse of notation, we drop the '{l}' component, and identify elements of Ω with elements of Ω, although points on the boundaries between Ωl 's may appear with multiplicity in Ω. For each ω 0 ∈ Ωl ⊂ Ω, we denote L ω 0 the (unique) value making ω → L ω continuous on Ωl ⊂ Ω. This is possible by the assumptions of the lemma and the universal property of the disjoint union topology. In addition, notice that each element of Ω belongs to exactly one of Ω1 , . . . , Ωq and therefore it has a unique representative in Ω. Hence, there is no ambiguity in the definition of L ω for ω ∈ Ω ⊂ Ω.

Let 1 ≤ l ≤ q and note that for every (ω 0 , t 0 ) ∈ Ωl × J ⊂ Ω × J, there is an open neighborhood U (ω 0 ,t 0 ) ⊂ Ω × J (we emphasize that the topology of Ω is used here) and n = n(ω

0 , t 0 ) < ∞ such that if (ω, t) ∈ U (ω 0 ,t 0 ) then L it,(n) ω ≤ ρ n. Indeed, let n = n(ω 0 , t 0 ) be such that L it 0 ,(n) ω 0 ≤ ρ n/2. Recall that Lemma 3.2 ensures that t → M it ω := (f (•) → e itg(ω,•) f (•)
) is continuous in the norm topology of B, so that (ω, t) → L it ω can be extended continuously to Ωl × J for each 1 ≤ l ≤ q, and therefore to all Ω × J. Thus, one can choose an open neighborhood U (ω 0 ,t 0 ) ⊂ Ω × J so that if (ω, t) ∈ U (ω 0 ,t 0 ) , then L it,(n) ω ≤ ρ n, as claimed.

By compactness, there are finite collections (of cardinality, say, N l ) A l 1 , . . . , A l N l ⊂ Ωl × J and n l 1 , . . . , n l N l ∈ N such that ∪ N l j=1 A l j ⊃ ( Ω∩Ω l )×J and for every (ω, t) ∈ A l j ∩ ( Ω∩Ω l )×J , L it,(n l j ) ω ≤ ρ n l j .

Let n 0 := max 1≤l≤q max 1≤j≤N l n l j < ∞. For each ω ∈ Ω, let 1 ≤ l(ω) ≤ q be the index such that ω ∈ Ω l(ω) . Let (ω, t) ∈ Ω × J, and let 1 ≤ j(ω, t) ≤ N l(ω) be such that (ω, t) ∈ A l(ω) j(ω,t) . Let us recursively define two sequences {m k (ω, t)} k≥0 , {M k (ω, t)} k≥0 ⊂ N as follows:

M 0 (ω, t) = 0, m 0 (ω, t) = n l(ω) j(ω,t) , M k+1 (ω, t) = M k (ω, t) + m k (ω, t) and m k+1 (ω, t) = n l(σ M k (ω,t) ω) j(σ M k (ω,t) ω,t) .
Notice that for every (ω, t) ∈ Ω × J and k ∈ N, m k (ω, t) ≤ n 0 . Then, each n ∈ N can be decomposed as n = ñ-1 k=0 m k (ω, t) + ℓ, where ñ = ñ(ω, t, n) ≥ 0 is taken to be as large as possible while ensuring that 0 ≤ ℓ = ℓ(ω, t, n) < n 0 . Choosing M > 1 such that L it ω ≤ M for every (ω, t) ∈ Ω × J (possible by Lemma 3.2), we get

L it,(n) ω ≤ ñ-1 k=0 L it,(m k (ω,t)) σ M k (ω,t) ω ( L it,(ℓ) σ M ñ(ω,t) ω ) ≤ ρ n (M/ρ) ℓ ≤ Cρ n ,
for every (ω, t) ∈ Ω × J, where C = (M/ρ) n 0 , and (66) holds.

Equivalence of items (1) and (2). Assume item (1) holds, and suppose there exists t ∈ R \ {0} such that (72) has a non-zero, measurable solution. By iterating (72) n times, and recalling identity [START_REF] Morita | Correction to: "A generalized local limit theorem for Lasota-Yorke transformations[END_REF], we get

e itSng(ω,•) L 0 * (n) ω (ψ σ n ω ) = γ it,n ω ψ ω , (78) 
with [START_REF] Abdelkader | On the quenched central limit theorem for random dynamical systems[END_REF]. Hence, (72) only has solutions when t = 0. It is direct to check that the choice γ 0 ω = 1 and ψ 0 ω (f ) = f dm provide a solution. Since by hypothesis dim Y 0 = 1, no other solution may exist, except for constant scalar multiples of ψ 0 ω . Let us show item (2) implies item (1) by contradiction. Assume item (2) holds, and Λ(it) = 0 for some nonzero t ∈ R. Then, by assumption L it is quasi-compact and by Lemma 4.8, dim Y it = 1. An argument similar to that in Section 3.7 implies that there exist non-zero measurable solutions v to L it ω v ω = λit ω v σω and ψ to L it * ω ψ σω = λit ω ψ ω , chosen so that v ω 1 = 1 and ψ ω (v ω ) = 1 for P-a.e. ω ∈ Ω. Thus, log | λit ω |dP = Λ(it) = 0. Recalling that L it ω 1 ≤ 1, we get | λit ω | ≤ 1 for P-a.e. ω ∈ Ω. Combining the last two statements we get that | λit ω | = 1 for P-a.e. ω ∈ Ω. In view of Lemma 3.3(1), ψ yields a solution to (72). Hence, Condition (2) implies that t = 0.

γ it,n ω ∈ S 1 . Lemma 3.3 ensures L it * (n) ω (ψ) = e itSng(ω,•) L 0 * (n) ω (ψ), so (78) implies that L it * (n) ω ψ σ n ω B * = ψ ω B * . Thus, invoking again [15, Lemma 8.2], lim n→∞ 1 n log L it * (n) ω ψ B * = 0, contradicting item

Application to random Lasota-Yorke maps

Theorem 4.9 (Local central limit theorem for random Lasota-Yorke maps). Assume R = (Ω, F , P, σ, B, L) is an admissible random Lasota-Yorke map (see Section 2.3.1) such that there exists 1 ≤ q < ∞, essentially disjoint compact sets Ω 1 , . . . , Ω q ⊂ Ω with ∪ q j=1 Ω j = Ω, and maps {T j : I → I} 1≤j≤q such that T ω = T j for P a.e. ω ∈ Ω j . Let g : Ω × X → R be an observable satisfying the regularity and centering conditions [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF] and [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF]. Then one of the two following conditions holds:

1. R satisfies the local central limit theorem (Theorem C), or 2. The observable is periodic, that is, (72) has a measurable non-zero solution ψ := {ψ ω } ω∈Ω with ψ ω ∈ B * , for some t ∈ R \ {0}, γ it ω ∈ S 1 . (See Section 4.4 for further information in this setting.)

Proof. Lemma 3.3 ensures that for any n ∈ N and f ∈ B,

L it,(n) ω f = L (n)
ω (e itSng(ω,•) f ). In order to verify the quasicompactness condition for R it for t ∈ R, we adapt an argument of Morita [START_REF] Morita | A generalized local limit theorem for Lasota-Yorke transformations[END_REF][START_REF] Morita | Correction to: "A generalized local limit theorem for Lasota-Yorke transformations[END_REF]. First note that since the T ω take only finitely many values, then R has a uniform big-image property. That is, for every n ∈ N,

ess inf ω∈Ω min 1≤j≤b (n) ω m(T (n) ω (J (n) ω,j )) > 0,
where

J (n) ω,1 , . . . , J (n) ω,b (n) ω 
, are the regularity intervals of T (n)

ω . Indeed, the infimum is taken over a finite set. Then, the argument of [34, Proposition 1.2] (see also [START_REF] Morita | Correction to: "A generalized local limit theorem for Lasota-Yorke transformations[END_REF]), with straightforward changes to fit the random situation, ensures that var(L it,(n) ω (f )) = var(L (n) ω (e itSng(ω,•) f )) ≤ (2 + n var(e itg(ω,•) ))(δ -n var(f ) + I n (ω) f 1 ), (79) for some measurable function I n .

Let n 0 be sufficiently large so that a n 0 := (2 + n 0 var(e itg(ω,•) ))δ -n 0 < 1. Then,

L it,(n 0 ) ω (f ) B ≤ a n 0 f B + J n 0 (ω) f 1 ,
for some measurable function J n 0 . Lemma 2.1 implies that κ(it) ≤ log(a n 0 )/n 0 < 0 = Λ(it). Thus, the cocycle R it is quasicompact. The result now follows directly from Theorem C and Lemma 4.7, which is applicable since ω → L ω is essentially constant on each of the Ω j .

Local central limit theorem: periodic case

We now discuss the version of local central limit theorem for a certain class of observables for which the aperiodicity condition (C5) fails to hold. More precisely, we are interested in observables of the form g(ω, x) = η ω + k(ω, x), where η ω ∈ R and k(ω, •) takes integer values for P-a.e. ω ∈ Ω, (80) that cannot be written in the form

g(ω, •) = η ′ ω + h(ω, •) -h(σω, T ω (•)) + p ω k ′ (ω, •), (81) 
for η ′ ω ∈ R, p ω ∈ N \ {1} and k ′ (ω, x) ∈ Z. Furthermore, we will continue to assume that g satisfies assumptions [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF] and [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF]. We note that in this setting (72) holds with t = 2π, γ it ω = e itηω and ψ ω (f ) = f dm. Consequently, Lemma 4.7 implies that (C5) does not hold. Let G denote the set of all t ∈ R with the property that there exists a measurable function Ψ : Ω × X → S 1 and a collection of numbers γ ω ∈ S 1 , ω ∈ Ω such that:

1. Ψ ω ∈ B for P-a.e. ω ∈ Ω, where Ψ ω := Ψ(ω, •);

2. for P-a.e. ω ∈ Ω, e -itg(ω,•) Ψ σω • T ω = γ ω Ψ ω . (82) 
Lemma 4.10. G is a subgroup of (R, +).

Proof. Assume that t 1 , t 2 ∈ G and let Ψ j : Ω × X → S 1 , j = 1, 2 be measurable functions satisfying Ψ j ω ∈ B for P-a.e. ω ∈ Ω, j = 1, 2 and γ j ω ∈ S 1 , ω ∈ Ω, j = 1, 2 collections of numbers such that e -it j g(ω,•) Ψ j σω • T ω = γ j ω Ψ j ω for P-a.e. ω ∈ Ω and j = 1, 2.

By multiplying those two identities, we obtain that

e -i(t 1 +t 2 )g(ω,•) Ψ σω • T ω = γ ω Ψ ω P-a.e. ω ∈ Ω,
where Ψ(ω, x) = Ψ 1 (ω, x)Ψ 2 (ω, x) and γ ω = γ 1 ω • γ 2 ω for ω ∈ Ω and x ∈ X. Noting that Ψ takes values in S 1 , Ψ ω ∈ B for P-a.e. ω ∈ Ω and that γ ω ∈ S 1 for each ω ∈ Ω, we conclude that t 1 + t 2 ∈ G.

Assume now that t ∈ G and let Ψ : Ω × X → S 1 be a measurable function satisfying Ψ ω ∈ B for P-a.e. ω ∈ Ω and γ ω ∈ S 1 , ω ∈ Ω a collection of numbers such that (82) holds. Conjugating the identity (82), we obtain that e itg(ω,•) Ψ σω • T ω = γ ω Ψ ω P-a.e. ω ∈ Ω, which readily implies that -t ∈ G. Proof. Assume that Λ(it) = 0 for some t ∈ R. In Section 4.3.2, we have showed that in this case, dim Y it = 1 and if v ω ∈ B is a generator of Y it ω satisfying v ω 1 = 1, then, for P-a.e. ω ∈ Ω,

|v ω | = v 0 ω and L ω (e itg(ω,•) v ω ) = γ ω v σω , (83) 
for some

γ ω ∈ S 1 . For ω ∈ Ω, x ∈ X, set Ψ(ω, x) = v ω (x) v 0 ω (x)
.

Then, Ψ is S 1 -valued and Ψ ω ∈ B for P-a.e. ω ∈ Ω. Set

ϕ ω := γ ω e itg(ω,•) and Φ ω := ϕ ω Ψ σω • T ω , ω ∈ Ω.
Then, we have that

|Φ ω -Ψ ω | 2 dµ ω = (ϕ ω Ψ σω • T ω -Ψ ω )(ϕ ω Ψ σω • T ω -Ψ ω ) dµ ω = |ϕ ω | 2 • (|Ψ σω | 2 • T ω ) dµ ω + |Ψ ω | 2 dµ ω -ϕ ω Ψ ω (Ψ σω • T ω ) dµ ω -ϕ ω Ψ ω (Ψ σω • T ω ) dµ ω .
Since Ψ ω and ϕ ω take values in S 1 for each ω ∈ Ω, we obtain that

|ϕ ω | 2 • (|Ψ σω | 2 • T ω ) dµ ω = |Ψ ω | 2 dµ ω = 1.
On the other hand, by using (83) we have that

ϕ ω Ψ ω (Ψ σω • T ω ) dµ ω = ϕ ω v 0 ω Ψ ω (Ψ σω • T ω ) dm = ϕ ω v ω (Ψ σω • T ω ) dm = L ω (ϕ ω v ω (Ψ σω • T ω )) dm = Ψ σω L ω (ϕ ω v ω ) dm = Ψ σω v σω dm = |v σω | 2 v 0 σω dm = v 0 σω dm = 1.
Consequently, we also have that

ϕ ω Ψ ω (Ψ σω • T ω ) dµ ω = 1,
and thus

|Φ ω -Ψ ω | 2 dµ ω = 0.
Therefore, e -itg(ω,•) Ψ σω • T ω = γ ω Ψ ω P-a.e. ω ∈ Ω, which implies that t ∈ G.

We now establish the converse of Lemma 4.11.

Lemma 4.12. If t ∈ G, then Λ(it) = 0.

Proof. Assume that t ∈ G and let Ψ : Ω × X → S 1 be a measurable function satisfying Ψ ω ∈ B for P-a.e. ω ∈ Ω and γ ω ∈ S 1 , ω ∈ Ω a collection of numbers such that (82) holds. It follows from (82) that

v 0 ω (Ψ σω • T ω ) = γ ω e itg(ω,•) Ψ ω v 0 ω
for P-a.e. ω ∈ Ω, Theorem 4.15. Assume that g has the form (80). In addition, we assume that g cannot be written in the form (81). Then, for P-a.e. ω ∈ Ω and every bounded interval J ⊂ R, we have:

lim n→∞ sup s∈R Σ √ nµ ω (s + S n g(ω, •) ∈ J) - 1 √ 2π e -s 2 2nΣ 2 +∞ l=-∞ 1 J (η ω (n) + s + l) = 0,
where η ω (n) = n-1 i=0 η σ i ω . Proof. Using again the density argument (see [START_REF] Morita | A generalized local limit theorem for Lasota-Yorke transformations[END_REF]), it is sufficient to show that

sup s∈R Σ √ n h(s + S n g(ω, •)) dµ ω - 1 √ 2π e -s 2 2nΣ 2 +∞ l=-∞ h(η ω (n) + s + l) → 0.
when n → ∞ for every h ∈ L 1 (R) whose Fourier transform ĥ has compact support. As in the proof of Theorem C, we have that

Σ √ n 1 0 h(s + S n g(ω, •)) dµ ω = Σ √ n
2π R e its ĥ(t)

1 0 L it,(n) ω v 0 ω dm dt,
and therefore (using Lemma 3.3)

Σ √ n 1 0 h(s + S n g(ω, •)) dµ ω = Σ √ n 2π ∞ l=-∞ π+2lπ -π+2lπ
e its ĥ(t)e itη ω (n) 1 0

L (n) ω (e itSnk(ω,•) v 0 ω ) dm dt = Σ √ n 2π ∞ l=-∞ π -π ĥ(t + 2lπ)e i(t+2lπ)(η ω (n)+s) 1 0 L (n) ω (e itSnk(ω,•) v 0 ω ) dm dt = Σ √ n 2π π -π H s (t)e its 1 0 L it,(n) ω v 0 ω dm dt = Σ 2π π √ n -π √ n H s ( t √ n )e its √ n 1 0 L it √ n ,(n) ω v 0 ω dm dt, where 
H s (t) := +∞ l=-∞ ĥ(t + 2lπ)e i2lπ(η ω (n)+s)
Proceeding as in [42, p. 787], we have

1 √ 2π e -s 2 2nΣ 2 ∞ l=-∞ h(η ω (n) + s + l) = H s (0)Σ 2π R e its √ n • e -Σ 2 t 2 2
dt.

Hence, we need to prove that

sup s∈R Σ 2π π √ n -π √ n H s ( t √ n )e its √ n 1 0 L it √ n ,(n) ω v 0 ω dm dt - H s (0)Σ 2π R e its √ n • e -Σ 2 t 2 2 dt → 0,
when n → ∞. For δ > 0 sufficiently small, we have (as in the proof of Theorem C) that

Σ 2π π √ n -π √ n e its √ n H s ( t √ n ) 1 0 L it √ n ,(n) ω v 0 ω dm dt - H s (0)Σ 2π R e its √ n • e -Σ 2 t 2 2 dt = Σ 2π |t|< δ√ n e its √ n H s ( t √ n ) n-1 j=0 λ it √ n σ j ω -H s (0)e -Σ 2 t 2 2 dt + Σ 2π |t|< δ√ n e its √ n H s ( t √ n ) 1 0 n-1 j=0 λ it √ n σ j ω φ it √ n ω (v 0 ω )v it √ n σ n ω -1 dm dt + Σ √ n 2π |t|< δ e its H s (t) 1 0 L it,(n) ω (v 0 ω -φ it ω (v 0 ω )v it ω ) dm dt + Σ √ n 2π δ≤|t|≤π e its H s (t) 1 0 L it,(n) ω v 0 ω dm dt - Σ 2π H s (0) |t|≥ δ√ n e its √ n • e -Σ 2 t 2 2 dt =: (I) + (II) + (III) + (IV ) + (V ).
Now the arguments follow closely the proof of Theorem C with some appropriate modifications. In orter to illustrate those, let us restrict to dealing with the terms (I) and (IV). Regarding (I), we can control it as in the proof of Theorem C once we show the following lemma.

Lemma 4.16. For each t such that |t| < δ√ n, we have that H s ( t √ n ) → H s (0) uniformly over s.

Proof of the lemma. This follows from a simple observation, that since ĥ has a finite support, there exists K ⊂ Z finite such that

H s ( t √ n ) = l∈K ĥ(t/ √ n + 2lπ)e i2lπ(η ω (n)+s) , for each t such that |t| < δ√ n and s ∈ R. Hence, |H s ( t √ n ) -H s (0)| ≤ l∈K | ĥ(t/ √ n + 2lπ) -ĥ(2lπ)|.
The desired conclusion now follows from continuity of ĥ.

Finally, term (IV) can be treated as in the proof of Theorem C once we note that Lemmas 4.11 and 4.14 imply that Λ(it) < 0 for each t such that δ ≤ |t| ≤ π.

Proof. Since G is an affine map in the second variable W, we conclude that

(D 2 G(θ, W)H) ω = L θ σ -1 ω H σ -1 ω , for ω ∈ Ω and H ∈ S. (89) 
We now establish the continuity of D 2 G. Take an arbitrary (θ i , W i ) ∈ B C (0, 1)×S, i ∈ {1, 2}. We have

D 2 G(θ 1 , W 1 ) -D 2 G(θ 2 , W 2 ) = sup H ∞ ≤1 D 2 G(θ 1 , W 1 )(H) -D 2 G(θ 2 , W 2 )(H) ∞ = sup H ∞ ≤1 ess sup ω∈Ω L θ 1 σ -1 ω H σ -1 ω -L θ 2 σ -1 ω H σ -1 ω B .
Observe that

L θ 1 σ -1 ω H σ -1 ω -L θ 2 σ -1 ω H σ -1 ω B = L σ -1 ω ((e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )H σ -1 ω ) B ≤ K (e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )H σ -1 ω B = K var((e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )H σ -1 ω ) + K (e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )H σ -1 ω 1 .
Take an arbitrary x ∈ X. By applying the mean value theorem for the map z → e zg(σ -1 ω,x) and using [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF], we conclude that

|e θ 1 g(σ -1 ω,x) -e θ 2 g(σ -1 ω,x) | ≤ Me M |θ 1 -θ 2 | (90) 
and thus ess sup ω∈Ω (e θ 1 g(σ -1 ω,•)e θ 2 g(σ

-1 ω,•) )H σ -1 ω 1 ≤ Me M |θ 1 -θ 2 | ess sup ω∈Ω H σ -1 ω 1 ≤ Me M |θ 1 -θ 2 | ess sup ω∈Ω H σ -1 ω B ≤ Me M H ∞ • |θ 1 -θ 2 |. (91) 
Furthermore,

var((e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )H σ -1 ω ) ≤ var(e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) ) • H σ -1 ω L ∞ + e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) L ∞ • var(H σ -1 ω ),
which, using (90), implies that

var((e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )H σ -1 ω ) ≤ C var var(e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )+Me M |θ 1 -θ 2 | H ∞ . (92) It follows from Lemma B.2 that D 2 G(θ 1 , W 1 ) -D 2 G(θ 2 , W 2 ) ≤ (KC + 2KMe M )|θ 1 -θ 2 |, which implies (Lipschitz) continuity of D 2 G on B C (0, 1) × S.
and therefore

1 |h| H(θ + h, W) -H(θ, W) -L(θ, W)h L ∞ → 0, when h → 0.
We conclude that (94) holds. Furthermore,

(D 1 H(θ 1 , W 1 )h)(ω) -(D 1 H(θ 2 , W 2 )h)(ω) = hg(σ -1 ω, •)e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω ) dm -hg(σ -1 ω, •)e θ 2 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω ) dm = hg(σ -1 ω, •)e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω ) dm -hg(σ -1 ω, •)e θ 1 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω ) dm + hg(σ -1 ω, •)e θ 1 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω ) dm -hg(σ -1 ω, •)e θ 2 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω ) dm = hg(σ -1 ω, •)e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω -W 2 σ -1 ω ) dm + hg(σ -1 ω, •)(e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )(W 2 σ -1 ω + v 0 σ -1 ω ) dm. Note that ess sup ω∈Ω hg(σ -1 ω, •)e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω -W 2 σ -1 ω ) dm ≤ |h|Me M W 1 -W 2 ∞
and, using (90),

ess sup ω∈Ω hg(σ -1 ω, •)(e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )(W 2 σ -1 ω + v 0 σ -1 ω ) dm ≤ |h|M 2 e M |θ 1 -θ 2 |(R + v 0 ∞ ), if W 2 ∈ B S (0, R). Hence, D 1 H(θ 1 , W 1 ) -D 1 H(θ 2 , W 2 ) ≤ Me M W 1 -W 2 ∞ + M 2 e M |θ 1 -θ 2 |(R + v 0 ∞ ),
which implies the continuity of D 1 H.

Lemma B.6. D 1 G exists and is continuous on a neighborhood of (0, 0) ∈ C × S.

Proof. We claim that for ω ∈ Ω and h ∈ B C (0, 1),

(D 1 G(θ, W)h) ω = L σ -1 ω (hg(σ -1 ω, •)e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω )) =: (L(θ, W)h) ω . (96) 
Note that L(θ, W) : B C (0, 1) → S ′ is a bounded linear operator. We note that

(G(θ + h, W) -G(θ, W) -L(θ, W)h) ω = L σ -1 ω ((e (θ+h)g(σ -1 ω,•) -e θg(σ -1 ω,•) -hg(σ -1 ω, •)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω )),
and therefore

(G(θ + h, W) -G(θ, W) -L(θ, W)h) ω B ≤ K (e (θ+h)g(σ -1 ω,•) -e θg(σ -1 ω,•) -hg(σ -1 ω, •)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω ) B = K var((e (θ+h)g(σ -1 ω,•) -e θg(σ -1 ω,•) -hg(σ -1 ω, •)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω )) + K (e (θ+h)g(σ -1 ω,•) -e θg(σ -1 ω,•) -hg(σ -1 ω, •)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω ) 1 .
In the proof of Lemma B.5 we have showed that

e (θ+h)g(σ -1 ω,•) -e θg(σ -1 ω,•) -hg(σ -1 ω, •)e θg(σ -1 ω,•) L ∞ ≤ 1 2 M 2 e M |h| 2 .
Moreover, by applying (V9) for f = g(σ -1 ω, •) and h(z) = e (θ+h)ze θzhze θz , one can conclude that var((e (θ+h)g(σ -1 ω,•)e θg(σ

-1 ω,•) -hg(σ -1 ω, •)e θg(σ -1 ω,•) ) ≤ C|h| 2 . ( 97 
)
The last two inequalities combined with (V8) readily imply that

1 |h| G(θ + h, W) -G(θ, W) -L(θ, W)h ∞ → 0, when h → 0, which implies (96). Moreover, (D 1 G(θ 1 , W 1 )h -D 1 G(θ 2 , W 2 )h) ω = hL σ -1 ω (g(σ -1 ω, •)(e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )(W 1 σ -1 ω + v 0 σ -1 ω )) -hL σ -1 ω (g(σ -1 ω, •)e θ 2 g(σ -1 ω,•) (W 2 σ -1 ω -W 1 σ -1 ω )).
Proceeding as in the previous lemmas and using (90) and Lemma B.2 together with a simple observation that var(g(σ

-1 ω, •)(e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) )) ≤ M var(e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) ) + var(g(σ -1 ω, •)) e θ 1 g(σ -1 ω,•) -e θ 2 g(σ -1 ω,•) L ∞ ,
we easily obtain the continuity of D 1 G.

The following result is a direct consequence of the previous lemmas.

Proposition B.7. The map F defined by (38) is of class C 1 on a neighborhood (0, 0) ∈ C×S. Moreover,

(D 2 F (θ, W)H) ω = 1 H(θ, W)(ω) L θ σ -1 ω H σ -1 ω - L θ σ -1 ω H σ -1 ω dm [H(θ, W)(ω)] 2 G(θ, W) ω -H ω ,
for ω ∈ Ω and H ∈ S and

(D 1 F (θ, W)) ω = 1 H(θ, W)(ω) L σ -1 ω (g(σ -1 ω, •)e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω )) - g(σ -1 ω, •)e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω ) dm [H(θ, W)(ω)] 2 L θ σ -1 ω (W σ -1 ω + v 0 σ -1 ω ),
for ω ∈ Ω, where we have identified D 1 F (θ, W) with its value at 1, and G is as defined at the beginning of Section B.1.

B.2 Second order regularity of F

Lemma B.8. D 12 H and D 22 H exist and are continuous on a neighborhood of (0, 0) ∈ C×S.

Proof. We first note that it follows directly from (93) that D 22 H = 0. We claim that ((D 12 H(θ, W)h)H)(ω) = h g(σ -1 ω, •)e θg(σ -1 ω,•) H σ -1 ω dm, for ω ∈ Ω, H ∈ S and h ∈ C.

(98) Indeed, we note that ((D 2 H(θ + h, W) -D 2 H(θ, W))H)(ω) = (e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•) )H σ -1 ω dm.

Hence, using (95), ((D 2 H(θ + h, W) -D 2 H(θ, W))H)(ω)h g(σ -1 ω, •)e θg(σ -1 ω,•) H σ -1 ω dm = (e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )H σ -1 ω dm Proof. By identifying D 1 H(θ, W) with its value in 1, it follows from (94) that (D 1 H(θ, W))(ω) = g(σ -1 ω, •)e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω ) dm.

≤ 1 2 M 2 e M |h| 2 H σ -1 ω 1 ≤ 1 2 M 2 e M |h| 2 H σ -1 ω B .
We claim that (D 11 H(θ, W)h)(ω) = h g(σ -1 ω, •) 2 e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω ) dm, for ω ∈ Ω and h ∈ C.

(99) Indeed, observe that (D 1 H(θ + h, W))(ω) -(D 1 H(θ, W))(ω) = g(σ -1 ω, •)(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω ) dm.

Hence, using (95), we obtain that ess sup ω∈Ω (D 1 H(θ + h, W))(ω) -(D 1 H(θ, W))(ω)h g(σ -1 ω, •) 2 e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω ) dm = ess sup ω∈Ω g(σ -1 ω, •)(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•)

)(W σ -1 ω + v 0 σ -1 ω ) dm ≤ 1 2 M 3 e M |h| 2 ( W ∞ + v 0 ∞ ),
which readily implies that (99) holds. We now establish the continuity of g(σ -1 ω, •) 2 e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω ) dmg(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω ) dm ≤ |h| • g(σ -1 ω, •) 2 e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω ) dmg(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω ) dm

+ |h| • g(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω ) dm -g(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω ) dm ≤ |h| • M 3 e M |θ 1 -θ 2 |( W 1 ∞ + v 0 ∞ ) + M 2 e M W 1 -W 2 ∞ ,
for P-a.e. ω ∈ Ω, which implies the continuity of D 11 H. Furthermore, we note that D 1 H is affine in W, which implies that (D 21 H(θ, W)H)(ω) = g(σ -1 ω, •)e θg(σ -1 ω,•) H σ -1 ω dm.

Continuity of D 21 H follows easily from (90).

Lemma B.10. D 22 G and D 12 G exist and are continuous on a neighborhood of (0, 0) ∈ C×S.

Proof. It follows directly from (89) that D 22 G = 0. We claim that (D 12 G(θ, W)h(H)) ω = hL σ -1 ω (g(σ -1 ω, •)e θg(σ -1 ω,•) H σ -1 ω ) for ω ∈ Ω, H ∈ S and h ∈ C.

(100) Indeed, we first note that (D 2 G(θ + h, W) -D 2 G(θ, W))(H) ω = L σ -1 ω ((e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•) )H σ -1 ω ).

We have that L σ -1 ω ((e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )H σ -1 ω ) B ≤ K (e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )H σ -1 ω B = K var((e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )H σ -1 ω ) + K (e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )H σ -1 ω 1 ≤ K var(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) ) • H σ -1 ω L ∞ + K e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) L ∞ • var(H σ -1 ω ) + K e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) L ∞ • H σ -1 ω 1 It follows from ( 95) and (97) that 1 |h| sup

H ∞ ≤1
L σ -1 ω ((e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )H σ -1 ω ) B → 0, when h → 0, which establishes (100). It remains to establish the continuity of D 12 G. We have

(D 12 G(θ 1 , W 1 )h(H)) ω -(D 12 G(θ 2 , W 2 )h(H)) ω B
= |h| • L σ -1 ω (g(σ -1 ω, •)(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )H σ -1 ω ) B ≤ K|h| • g(σ -1 ω, •)(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )H σ -1 ω B = K|h| • var(g(σ -1 ω, •)(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )H σ -1 ω ) + K|h| • g(σ -1 ω, •)(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )H σ -1 ω 1

≤ K|h| • var(g(σ -1 ω, •)(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )) • H σ -1 ω 1

+ KM|h| • e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) L ∞ • var(H σ -1 ω ) + KM|h| • e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) L ∞ • H σ -1 ω 1 .

Moreover, var(g(σ -1 ω, •)(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )) ≤ M var(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )

+ var(g(σ -1 ω, •)) • e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) L ∞ , which together with (90) and Lemma B. Proof. By identifying D 1 G(θ, W) with its value in 1, it follows from (96) that

D 1 G(θ, W) ω = L σ -1 ω (g(σ -1 ω, •)e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω )), ω ∈ Ω.
We claim that (D 11 G(θ, W)h) ω = hL σ -1 ω (g(σ -1 ω, •) 2 e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω )).

(101) Indeed, we have D 1 G(θ + h, W) ω -D 1 G(θ, W) ω -hL σ -1 ω (g(σ -1 ω, •) 2 e θg(σ -1 ω,•) (W σ -1 ω + v 0 σ -1 ω )) B = L σ -1 ω (g(σ -1 ω, •)(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω )) B ≤ K g(σ -1 ω, •)(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω ) B = var(g(σ -1 ω, •)(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω )) + g(σ -1 ω, •)(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )(W σ -1 ω + v 0 σ -1 ω ) 1 ≤ var(g(σ -1 ω, •)(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )) • W σ -1 ω + v 0 σ -1 ω L ∞ + g(σ -1 ω, •)(e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) ) L ∞ • var(W σ -1 ω + v 0 σ -1 ω ) + M e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•)

L ∞ • W σ -1 ω + v 0 σ -1 ω 1 ,
and therefore (101) follows directly from (95) and (97). We now establish the continuity of = |h| • L σ -1 ω (g(σ -1 ω, •) 2 e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω )g(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω )) B ≤ K|h| • g(σ -1 ω, •) 2 e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω )g(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω ) B ≤ K|h| • g(σ -1 ω, •) 2 e θ 1 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω )g(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω ) B + K|h| • g(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 1 σ -1 ω + v 0 σ -1 ω )g(σ -1 ω, •) 2 e θ 2 g(σ -1 ω,•) (W 2 σ -1 ω + v 0 σ -1 ω ) B .

The continuity of D 11 G now follows easily from (90) and Lemma B.2. Finally, we note that D 1 G is an affine map in W and therefore (D 21 G(θ, W)H) ω = L σ -1 ω (g(σ -1 ω, •)e θg(σ -1 ω,•) H σ -1 ω ), which can be showed to be continuous by using (90) and Lemma B.2 again.

The following result is a direct consequence of the previous lemmas.

Proposition B.12. The function F defined by [START_REF] Nándori | A central limit theorem for time-dependent dynamical systems[END_REF] is of class C 2 on a neighborhood (0, 0) ∈ C × S.

C Differentiability of φ θ , the top space for adjoint twisted cocycle R θ *

We begin with some auxiliary results. Proof. For any f ∈ B we have that •) fe θ 2 g(ω,•) f ) B ≤ K (e θ 1 g(ω,•)e θ 2 g(ω,•) )f B = K var((e θ 1 g(ω,•)e θ 2 g(ω,•) )f ) + K (e θ 1 g(ω,•)e θ 2 g(ω,•) )f 1

L θ 1 ω f -L θ 2 ω f B = L ω (e θ 1 g(ω,
The claim of the lemma now follows directly from (88) and (90).

Lemma C.2. The following statements hold: Using the differentiability of θ → v θ , we observe that there exists a neighborhood U ′ ⊂ U of 0 ∈ C such that Ψ(θ) is well-defined and differentiable for θ ∈ U ′ . Furthermore, we note that Ψ(θ) ω (v θ ω ) = 1. Finally, it follows from (109) and ( 111) that

(L θ ω ) * Ψ(θ) σω = C θ ω Ψ(θ) ω ,
for some scalar C θ ω . The arguments in Subsection 3.7 imply that φ θ ω = Ψ(θ) ω . Therefore, we have established the differentiability of θ → φ θ .

Lemma 3 . 5 .

 35 Let D = {θ ∈ C : |θ| < ǫ} × B S (0, R) be as in Lemma 3.4. Then, F : D → S is C 1 and the equation F (θ, W) = 0 (39)has a unique solution O(θ) ∈ S, for every θ in a neighborhood of 0. Furthermore, O(θ) is a C 2 function of θ.

  1 for a.e. ω ∈ Ω. It remains to show that O(θ)(ω, •) + v 0 ω (•) ≥ 0 for P-a.e. ω ∈ Ω. Since the map θ → O(θ) is continuous, there exists δ > 0 such that for all θ ∈ (-δ, δ), O(θ) belongs to a ball of radius c/(4C var ) centered at 0 in S. In particular, ess sup ω∈Ω O(θ)(ω, •) B < c/(4C var ) and therefore, ess sup ω∈Ω O(θ)(ω, •) L ∞ < c/4.

Lemma 4 . 2 .

 42 Let θ ∈ C be sufficiently close to 0, so that the results of Section 3.7 apply. Let f ∈ B be such that f / ∈ H θ ω . That is, φ θ ω (f ) = 0. Then, lim n→∞ 1 n log e θSng(ω,x) f dm = Λ(θ).

Lemma 4 . 11 .

 411 If Λ(it) = 0 for t ∈ R, then t ∈ G.

1 2 M 2 e

 122 ω∈Ω ((D 2 H(θ + h, W) -D 2 H(θ, W))H)(ω)h g(σ -1 ω, •)e θg(σ -1 ω,•) H σ -1 ω dm ≤ M |h| 2 H ∞ ,which readily implies (98). We now establish the continuity of D 12 H. By (90), we have that|((D 12 H(θ 1 , W 1 )h)H)(ω) -((D 12 H(θ 2 , W 2 )h)H)(ω)| = |h| g(σ -1 ω, •)(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )H σ -1 ω dm ≤ |h|M 2 e M |θ 1θ 2 | • H σ -1 ω B .Thus,D 12 H(θ 1 , W 1 ) -D 12 H(θ 2 , W 2 ) ≤ M 2 e M |θ 1θ 2 |,which implies the continuity of D 12 H.Lemma B.9. D 11 H and D 21 H exist and are continuous on a neighborhood of (0, 0) ∈ C×S.

  D 11 H. It follows from (90) that|(D 11 H(θ 1 , W 1 )h)(ω) -(D 11 H(θ 2 , W 2 )h)(ω)| = |h| •

  2 gives the continuity of D 12 G. Lemma B.11. D 11 G and D 21 G exist and are continuous on a neighborhood of (0, 0) ∈ C×S.

D 11 G

 11 . Observe that (D 11 G(θ 1 , W 1 )h) ω -(D 11 G(θ 2 , W 2 )h) ω B

Lemma C. 1 . 1 ω -L θ 2 ω≤

 112 There exists C > 0 such thatL θ C|θ 1θ 2 |, for θ 1 , θ 2 ∈ B C (0, 1) and ω ∈ Ω.(102)

1 . 2 .

 12 There exists K ′′ > 0 such thatL * ,(n) ω φ B * ≤ K ′′ e -λn φ B * for φ ∈ B * such that φ(v 0 ω ) = 0 and ω ∈ Ω, (103)with λ > 0 as in (C3); Let φ 0 ω ∈ B * be as in (56). Then,ess sup ω∈Ω φ 0 ω B * < ∞. (104)It follows from Proposition C.7, Lemma C.8 and the implicit function theorem that there exists a neighborhood U of 0 ∈ C and a smooth function F : U → N such that F (0) = 0 and G(θ, F (θ)) = 0, for θ ∈ U.(111)Finally, setΨ(θ) ω = F (θ) ω + φ 0 ω (F (θ) ω + φ 0 ω )(v θ ω ), for ω ∈ Ω and θ ∈ U.

The transfer operator satisfiesX f • g • T dµ = X Lf • g dµ for f ∈ L 1 (µ), g ∈ L ∞ (µ).
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and thus

L ω (v 0 ω (Ψ σω • T ω )) = γ ω L it ω (Ψ ω v 0 ω ) for P-a.e. ω ∈ Ω. Consequently, Ψ σω v 0 σω = γ ω L it ω (Ψ ω v 0 ω ) for P-a.e. ω ∈ Ω.

(84)

Setting v ω := Ψ ω v 0 ω , ω ∈ Ω, we have that v ω ∈ B, v σω = γ ω L it ω (v ω ) and v ω 1 = 1, P-a.e. ω ∈ Ω.

Hence, (84) implies that L it ω v ω 1 = 1, for P-a.e. ω ∈ Ω. Therefore,

v ω 1 = 0 for P-a.e. ω ∈ Ω, and thus it follows from Lemma 2.2 that Λ(it) = 0.

It follows directly from (80) that 2π ∈ G since in this case (82) holds with Ψ(ω, x) = 1 and γ ω = e i2πηω ∈ S 1 . Furthermore, we will show that our additional assumption that g cannot be written in a form (81) implies that G is generated by 2π. We begin by proving that G is discrete. Lemma 4.13. There exists a > 0 such that

Proof. Assume that G is not of the form (85) for any a > 0 . Since G is non-trivial (recall that 2π ∈ G), we conclude that G is dense. On the other hand, it follows easily from Corollary 3.14 and Lemma 3.15 that Λ(it) < 0 for all t = 0, t sufficiently close to 0. This yields a contradiction with Lemma 4.12.

Lemma 4.14. G is of the form (85) with a = 2π.

Proof. Assume that the group G is not generated by 2π and denote its generator by t ∈ (0, 2π). In particular, 2π t ∈ N \ {1}. Since t ∈ G, there exists a measurable function Ψ : Ω × X → S 1 and a collection of numbers γ ω ∈ S 1 , ω ∈ Ω such that (82) holds. Writing γ ω = e irω , r ω ∈ R and Ψ(ω, x) = e iH(ω,x) for some measurable H : Ω × X → R, it follows from (82) that -tg(ω, x) = r ω + H(ω, x) -H(σω, T ω x) + 2πk ′ (ω, x) for ω ∈ Ω and x ∈ X,

where k ′ : Ω×X → Z. This implies that g is of the form (81) which yields a contradiction.

We are now in a position to establish the periodic version of local central limit theorem.

A Technical results involving notions of volume growth

In this section we recall some notions of volume growth under linear transformations on Banach spaces, borrowed from [START_REF] González-Tokman | A concise proof of the multiplicative ergodic theorem on banach spaces[END_REF][START_REF]A volume-based approach to the multiplicative ergodic theorem on Banach spaces[END_REF]. We then state and prove a result on upper semicontinuity of Lyapunov exponents (Lemma A.3). We then prove Corollary 2.5 and Step [START_REF] Abdelkader | On the quenched central limit theorem for random dynamical systems[END_REF] in the proof of Lemma 4.8.

Definition A.1. Let (B, • ) be a Banach space and A ∈ L(B). For each k ∈ N, let us define: ) , where m E denotes the normalised Haar measure on the linear subspace E ⊂ B, so that the unit ball in B E (0, 1) ⊂ E has measure (volume) given by the volume of the Euclidean unit ball in R k , and S ⊂ E is any non-zero, finite m E volume set: the choice of S does not affect the quotient m AE (AS) m E (S) .

, where lin(X) denotes the linear span of the finite collection X of elements of B, lin(∅) = {0}, and d(v, W ) is the distance from the vector v to the subspace W ⊂ B.

We note that each of V k (A), D k (A) and Π k j=1 F j (A) has the interpretation of growth of k-dimensional volumes spanned by {Av j } 1≤j≤k , where the v j ∈ B are unit length vectors.

Given functions F, G : L(B) → R, we use the notation F (A) ≈ G(A) to mean that there is a constant c > 1 independent of A ∈ L(B) (but possibly depending on k if F and/or G do), such that c -1 F (A) ≤ G(A) ≤ cF (A). The symbols and will denote the corresponding one-sided relations. We start with the following technical lemma.

Lemma A.2. For each k ≥ 1, the following hold:

Proof. The first part is established in [START_REF]A volume-based approach to the multiplicative ergodic theorem on Banach spaces[END_REF] and [START_REF] González-Tokman | A concise proof of the multiplicative ergodic theorem on banach spaces[END_REF], for V and D, respectively. Next we show the last claim. Assume S ⊂ E is a parallelogram,

That is, there is a constant c > 1 independent of E and (w 1 , . . . , w k ), but possibly depending on k, such that c -1 m E (S) ≤ k i=1 d(w i , lin({w j : j < i})) ≤ cm E (S). By a lemma of Gohberg and Klein [27, Chapter 4, Lemma 2.3], it is possible to choose unit length v 1 , . . . , v k ∈ E such that d(v i , lin({v j : j < i})) = 1 for every 1 ≤ i ≤ k. Then, letting

we get that m E (S) ≈ 1 and m AE (AS)

On the other hand, for each collection of unit length vectors w 1 , . . . , w k ∈ E, we have that S := P [w 1 , . . . , w k ] ⊂ kB E (0, 1). Hence, m E (S) ≤ k and m AE (AS) Corollary 6].

Lemma A.3 (Upper semi-continuity of Lyapunov exponents). Let R θ = (Ω, F , P, σ, B, L θ ) be a quasi-compact cocycle for every θ in a neighborhood U of θ 0 ∈ C. Suppose that the family of functions {ω → log + L θ ω } θ∈U are dominated by an integrable function, and that for each ω ∈ Ω, θ → L θ ω is continuous in the norm topology of B, for θ ∈ U. Assume that (C1) holds, and (C0) holds (with L = L θ ) for every θ ∈ U.

Let

Proof. The strategy of proof follows that of the finite-dimensional situation, using the kdimensional volume growth rate interpretation of

Recall that (C0) (Pcontinuity) implies the uniform measurability condition of [START_REF]A volume-based approach to the multiplicative ergodic theorem on Banach spaces[END_REF]; see [START_REF]A volume-based approach to the multiplicative ergodic theorem on Banach spaces[END_REF]Remark 1.4]. Hence, [8, Corollary 3.1 & Lemma 3.2], together with Kingman's sub-additive ergodic theorem applied to the submultiplicative, measurable function

)dP is upper semi-continuous at θ 0 for every n. From now on, assume θ ∈ U. In view of the continuity hypothesis on θ → L θ ω , it follows from continuity of the composition operation (L 1 , L 2 ) → L 1 • L 2 with respect to the norm topology on B and [START_REF]A volume-based approach to the multiplicative ergodic theorem on Banach spaces[END_REF]Lemma 2.20]

) is continuous for every n ≥ 1 and P-a.e. ω ∈ Ω. Also, log

When θ ∈ U, the last expression is dominated by an integrable function with respect to P, by the domination hypothesis and P-invariance of σ. Thus, the (reverse) Fatou lemma yields log V k (L

)dP, as required.

A.1 Proof of Corollary 2.5

We first note that the quasicompactness of R * and condition (C0) follow from Remark 2.4. Thus, Theorem 2.3 ensures the existence of a unique measurable equivariant Oseledets splitting for R * . Recall that, in the context of Corollary 2.5, Lemma A.2 shows that V k , D k : L(B) → R are equivalent up to a constant multiplicative factor. Thus, [19, Lemma 3] ensures that V k (A) and V k (A * ) are equivalent up to a multiplicative factor, independent of A, and the claim on Lyapunov exponents and multiplicities follows from [8, Theorem 1.3].

A.2 Proof of Lemma 4.8, Step (1)

We recall that for every v ∈ S 1 := {y ∈ B :

We will use the notation of Definition A.1, with the dependence on the Banach space B made explicit, so that

For shorthand, in the rest of the section we will denote

, with similar conventions for V j . By Kingman's sub-additive ergodic theorem and the relations

| Y it ω ) exists for P-a.e. ω ∈ Ω, is independent of ω and in fact it coincides with the sum of the top d Lyapunov exponents of the cocycles (Ω,

), respectively. Thus, these limits agree by Lemma 2.2 (see [START_REF] Froyland | Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems[END_REF]Theorem 3.3] for an alternative argument) and are hence equal to 0, because of the assumption that Λ(it) = 0. That is, for P-a.e. ω ∈ Ω,

where C > 0 is such that for every A :

, as guaranteed by Lemma A.2. Thus, all inequalities in (87) must be equalities and therefore P(A ǫ ) = 0 for every ǫ > 0, which means that (

B Regularity of F

In this section, we establish regularity properties of the map F defined in [START_REF] Nándori | A central limit theorem for time-dependent dynamical systems[END_REF].

B.1 First order regularity of F

Let S ′ be the Banach space of all functions V : Ω × X → C such that V ω := V(ω, •) ∈ B and ess sup ω∈Ω V ω B < ∞. Note that S, defined in [START_REF] Nagaev | Some limit theorems for stationary markov chains[END_REF], consists of those V ∈ S ′ such that

V ω dm = 0 for P-a.e. ω ∈ Ω. We define G : B C (0, 1)×S → S ′ and H :

where v 0 ω is defined in [START_REF] Froyland | Coherent structures and isolated spectrum for Perron-Frobenius cocycles[END_REF]. It follows easily from Lemmas 2.11 and 3.2 (together with (29) which implies sup |θ|<1 K(θ) < ∞) that G and H are well-defined. We are interested in showing that G and H are differentiable on a neighborhood of (0, 0). Lemma B.1. We have that var(e θg(σ -1 ω,•) ) ≤ |θ|e |θ|M var(g(σ -1 ω, •)), for ω ∈ Ω.

Proof. The desired claim follows directly from condition (V9) of Section 2.2 applied to f = g(σ -1 ω, •) and h(z) = e θz .

Lemma B.2. There exists

Proof. We note that it follows from (V8) that var(e

Moreover, observe that it follows from ( 24) that e θ 2 g(σ -1 ω,•) L ∞ ≤ e |θ 2 |M . On the other hand, by applying (V9) for f = g(σ -1 ω, •) and h(z) = e (θ 1 -θ 2 )z -1, we obtain

Finally, we want to estimate e (θ 1 -θ 2 )g(σ -1 ω,•) -1 L ∞ . By applying the mean value theorem for the map z → e (θ 1 -θ 2 )z , we have that for each x ∈ [0, 1],

and consequently

The conclusion of the lemma follows directly from the above estimates together with [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d'anosov[END_REF] and Lemma B.1.

Lemma B.3. D 2 G exists and is continuous on B C (0, 1) × S.

Lemma B.4. D 2 H exists and is continuous on a neighborhood of (0, 0) ∈ C × S.

Proof. We first note that H is also an affine map in the variable W which implies that

Moreover, using (90) we have that

for every (θ 1 , W 1 ), (θ 2 , W 2 ) that belong to a sufficiently small neighborhood of (0, 0) on which H is defined. We conclude that D 2 H is continuous.

Lemma B.5. D 1 H exists and is continuous on a neighborhood of (0, 0) ∈ C × S.

Proof. We first note that

We claim that for ω ∈ Ω and h ∈ B C (0, 1),

Note that L(θ, W) : B C (0, 1) → L ∞ (Ω) is a bounded linear operator. We first note that for each ω ∈ Ω,

For each ω ∈ Ω and x ∈ X, it follows from Taylor's remainder theorem applied to the function z → e zg(σ -1 ω,x) that for |θ|, |h| ≤ 1 2 ,

Hence,

Proof. Let Π ω denote the projection on B onto the subspace B 0 of functions of zero mean along the subspace spanned by v 0 ω . Furthermore, set

As in Lemma 1 in [START_REF] Dragičević | Hölder continuity of Oseledets splittings for semiinvertible operator cocycles. Ergodic Theory and Dynamical Systems[END_REF] we have that Π ω ≤ 2 γ(ω) . Take now arbitrary

Writing g = λv 0 ω with |λ| = 1/ v 0 ω B , it follows from (17) that

where K = ess sup ω∈Ω v 0 ω B < ∞, in view of [START_REF] Froyland | Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems[END_REF]. By (C3) and (105),

Then, we can choose n, independently of ω, such that

which implies that γ(ω) ≥ ǫ and thus

Therefore, for φ that belongs to annihilator of v 0 ω , using (C3) and (106) we have

for every n ≥ 0. We conclude that (103) holds. with K ′′ = 2K ′ /ǫ. Finally, (104) is follows directly from the straightforward fact that for P-a.e. ω ∈ Ω, φ 0 ω (f ) = f dm.

Next, we consider B * with the norm topology, and associated Borel σ-algebra. Let N = Φ : Ω → B * : Φ is measurable, ess sup ω∈Ω Φ ω B * < ∞, Φ ω (v 0 ω ) = 0 for P-a.e. ω ∈ Ω and

where Φ ω := Φ(ω). We note that N and N ′ are Banach spaces with respect to the norm

We define

It follows readily from ( 27) and ( 104) that G 1 is well-defined. Furthermore, we define

Again, it follows from ( 17), ( 27) and ( 104) that G 2 is well-defined.

Lemma C.3. D 2 G 1 exists and is continuous on B C (0, 1) × N .

Proof. We first note that G 1 is an affine map in the variable Φ which implies that

Moreover, using (102) we have

Lemma C.4. D 1 G 1 exists and is continuous on a neighborhood of (0, 0) ∈ C × N .

Proof. We claim that

for f ∈ B, ω ∈ Ω and h ∈ C. Denote the operator on the right hand side of (107) by L(θ, Φ). We note that

Therefore, it follows from (C1) that

By (95) and (97), we conclude that

and thus (107) holds. Moreover,

which in view of (C1), ( 24), ( 88) and (90) easily implies that D 1 G 1 is continuous.

Lemma C.5. D 2 G 2 exists and is continuous on a neighborhood of (0, 0) ∈ C × N .

Proof. We note that G 2 is affine map in the variable Φ and hence

It follows from (102) that

and thus (in a view of ( 17)) we conclude that D 2 G 2 is continuous.

Lemma C.6. D 1 G 2 exists and is continuous on a neighborhood of (0, 0) ∈ C × N .

Proof. We claim that

Let us denote the operator on the right hand side of (108) by R(θ, Φ). We have that (G 2 (θ + h, Φ) -G 2 (θ, Φ) -hR(θ, Φ))(ω) = (Φ σω + φ 0 σω )(L ω ((e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )v 0 ω )).

Therefore, it follows from (C1) that G 2 (θ + h, Φ) -G 2 (θ, Φ) -hR(θ, Φ) L ∞ = ess sup ω∈Ω |(Φ σω + φ 0 σω )(L ω ((e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )v 0 ω ))| ≤ K( Φ ∞ + φ 0 ∞ ) ess sup ω∈Ω (e (θ+h)g(σ -1 ω,•)e θg(σ -1 ω,•)hg(σ -1 ω, •)e θg(σ -1 ω,•) )v 0 ω B .

By ( 17), ( 95) and (97), we conclude that lim

Thus, (108) holds. Moreover,

= (Φ 1 σω -Φ 2 σω )(L ω (hg(σ -1 ω, •)e θ 1 g(σ -1 ω,•) v 0 ω )) + (Φ 2 σω + φ 0 σω )(L ω (hg(σ -1 ω, •)(e θ 1 g(σ -1 ω,•)e θ 2 g(σ -1 ω,•) )v 0 ω )), which in view of (C1), ( 24), ( 88) and (90) easily implies that D 1 G 2 (θ 1 , Φ 1 ) → D 1 G 2 (θ 2 , Φ 2 ) when (θ 1 , Φ 1 ) → (θ 2 , Φ 2 ). Hence, D 1 G 2 is continuous.