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Abstract. We propose a definition of vorticity at inverse temperature β for Gibbs states in
quantum XY or Heisenberg spin systems on the lattice by testing exp[−βH ] on a complete
set of observables (“one-point functions”). Imposing a compression of Pauli matrices at the
boundary, which stands for the classical environment, we perform some numerical simulations
on finite lattices in case of XY model, which exhibit usual vortex patterns.

Introduction.

Consider the quantum XY or Heisenberg spin model for S = 1/2 on the 2-D lattice Z2, with
nearest neighbor interactions. Marmin-Wagner, and Hohenberg theorems tell us that Gibbs
states, for all inverse temperature β, are invariant under simultaneous rotation of spins (absence
of continuous symmetry breaking in two dimensions). In the classical case, we know a bit more :
although there is a unique Gibbs state, with rotational symmetry, which rules out the existence
of first order transitions, a particular form for phase transition exists, characterized by a change
of behavior in the correlation functions. For the 2-D rotator, it has been described by Berezin-
skii [3], and Kosterlitz-Thouless [11] in term of topological excitations, called vortices [9]. For
Heisenberg model, we observe higher order topological defects, called instantons [2].

In this Report, we make a first attempt to answer the natural question : How can we observe
vorticity in the quantum case?

Let us first consider a system in finite volume Λ ⊂ Z2. The Hamiltonians we are interested
in are of the form HΛ(Φ) = −

∑
X⊂Λ Φ(X), where Φ is an “interaction” between sites in Λ. For

nearest neighbor interaction, the contributing X are pairs 〈i, j〉, and the Hamiltonian reads

HΛ = −
1

2

∑

〈i,j〉⊂Λ

(σx
i ⊗ σx

j + σy
i ⊗ σy

j + uσz
i ⊗ σz

j ) (1)

where u is a coupling constant, u > 0 in the ferromagnetic case (u = 1 when isotropic), u < 0
in the anti-ferromagnetic case (u = −1 when isotropic), and u = 0 is the XY model. We could
also add an external magnetic field h

∑
i∈Λ σz

i to HΛ, and in case u = 0, allow for anisotropy
between x and y components.



Though vortices can merge spontenaously in infinite volume, there are external fields that
would certainly enhance vorticity. General external fields are defined within the notion of a
“state” [14], Sect.II.3.

Throughout we denote by Tr the ordinary trace, and by tr the normalized trace, as
tr(A) = 1

d
Tr(A), where d is the dimension. Recall from [14], Sect.II.1 the partial trace: if A is a

linear operator on K1⊗K2, the partial trace trK1
or simply tr1 is an operator L(K1⊗K2) → L(K1)

defined by the requirement :

trK1

(
B(tr1(A))

)
= trK1⊗K2

((B ⊗ 1)A), B ∈ L(K1) (2)

A quantum state ρ assigns to each finite X ⊂ Z2 an operator ρX with Tr(ρX) = 1 and
trHY

(ρX∪Y ) = ρX on HY = ⊗i∈Y C
2
i for all disjoint X,Y ⊂ Z2. (Instead of trHY

(A), we use also
the notation trY (A). ) Given a state and the finite interaction Φ(X), we define the Hamiltonian
on all of Z2

Hρ
Λ(Φ) = −

∑

X∩Λ 6=∅

TrX\Λ

[
(1⊗ ρX\Λ)Φ(X)

]
(3)

that couples Λ with the external field ρ through its nearest neighbors at the boundary. For A a
quasi-local observable on Z2, we define the expectation value

〈A〉ρβ,Λ =
TrΛ

(
exp

[
−βHρ

Λ(Φ)
]
A
)

TrΛ exp
[
−βHρ

Λ(Φ)
] (4)

and 〈A〉ρβ,Λ has a limit as |Λ| → ∞. Such a state has been constructed in [1] for the XY chain.

From a practical point of vue however, it is suitable to produce explicit “approximate states”
that will favour the existence of vortices in finite volume; we proceed in the following way. Let
Λ ⊂ Z2 be the “small system”, and ∂Λ ⊂ Z2 its “environment”, both finite. On ∂Λ, we “com-
press” the spin operators, so that the measure of observable “direction of spin” is deterministic
for j ∈ ∂Λ, and quantum for j ∈ Λ. The resulting Hamiltonian HΛ∪∂Λ(Φ) accounts for the
interaction with the approximate “external field” on ∂Λ, as in .

Now, in finite volume Λ ∪ ∂Λ, the only (normalized) Gibbs state is given by

A 7→ ωβ(A) =
tr(exp[−βHΛ∪∂Λ]A)

tr(exp[−βHΛ∪∂Λ]
(5)

and called the “canonical Gibbs state”. We shall actually define vorticity at inverse temperature
β by decomposing the linear form ωβ on a canonical (orthonormal) basis of observables.

1. Vorticity matrices
Gibbs state (1) for spin S = 1/2 systems, as a linear form on the C∗-algebra of observables

O = ⊗j∈Λ∪∂Λoj , oj = M2×2(C)

(“quasi-local observables” if we were to consider the thermodynamical limit, ) can be decom-
posed in a canonical basis. The simplest way is to restrict to “one-point functions”, i.e. the set
Õ ⊂ O of 2N × 2N , block-diagonal 2 × 2 matrices (Pauli matrices are spin representations of
SU(2) of dimension 2S + 1 = 2), supported on individual sites of Λ ∪ ∂Λ, N = |Λ ∪ ∂Λ|.

a) The XY model



We first consider the XY model, where we can restrict to real 2×2 matrices. The compression
of Pauli matrices on ∂Λ is given by the orthogonal projector

Π(θ) =

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
(6)

where θ parametrizes a point on the unit circle, accounting for the prescribed direction of “vor-
ticity” on ∂Λ. Let again ÕR ⊂ Õ be a real sub-algebra Õ, of real dimension 4N .

Example 1: ÕR is the “canonical” algebra, generated by real matrices (Di)i∈Λ∪∂Λ, whose all
non-diagonal 2× 2 blocks vanish, and all diagonal 2× 2 blocks vanish, except this supported on
site i that takes values in {δ1, δ2, δ3, δ4}, where

δ1 =

(
1 0
0 0

)
, δ2 =

(
0 1
0 0

)
, δ3 =

(
0 0
1 0

)
, δ4 =

(
0 0
0 1

)

So the family of block-diagonal 2N × 2N matrices with 2 × 2 entry δj , 1 ≤ j ≤ 4 at the i:th
place, 1 ≤ i ≤ N (

Di
j

)
i∈Λ∪∂Λ

=
(
0⊕ · · · ⊕ δj ⊕ · · · ⊕ 0

)
(7)

gives an orthonormal basis (ONB) of 1-point functions ÕR.

Example 2: ÕR is the (real) algebra generated by Pauli matrices (D̃i)i∈Λ∪∂Λ with diagonal block
supported on site i that takes values in {Id, iσx, iσy , iσz}.

We shall restrict to the canonical algebra, whose generators enjoy the nice property of being
real matrices. Let also oR ⊂ o be the algebra of 2 × 2 matrices with real coefficients, endowed
with the scalar product (A|B) = Tr(B∗A), which is isometric with R4. By extension, the basis

δ = {δ1, δ2, δ3, δ4} of oR will be called an “elementary basis” of ÕR, since N copies of δ, attached

to each site i, give a basis (Di
j)i∈Λ∪∂Λ,1≤j≤4 of ÕR. We say the same thing of any other ONB

b = {b1, b2, b3, b4} of oR, and of the corresponding basis (Bi
j)i∈Λ,1≤j≤4 of ÕR, where B

i
j is defined

as in (7), with bj instead of δj . Actually, the order of the elements of b matters, so we prefer to
think of b as an “array”, namely

b =

(
b1 b2
b3 b4

)
(8)

where bk is of the form

bk =

(
b1k b2k

b3k b4k

)
∈ M2×2(R)

which we identify with the vector bk = t
(
b1k, b2k, b3k, b4k

)
. We will not use the algebraic structure

of oR. With the notations above (partial traces), we see easily that :

tr1(b) =

(
trb1 trb2
trb3 trb4

)
(9)

which justifies the interpretation of b as a matrix (operator). So tr1 are the components, in
some matrix representation, of the usual trace (“tracial state”) on oR. For simplicity we set
T (b) = tr1(b) and call it the “matrix of traces”. An important rôle will be played with symmetric
basis.

Definition 1.1: We call the ONB b symmetric iff the corresponding matrix b in (9) is Hermi-
tian, i.e. b1 = b∗1, b4 = b∗4, and b3 = b∗2. We call it δ-symmetric if moreover b is real, and T (b)



has a degenerate eigenvalue, that is, is a multiple of identity.

Most of the basis are not symmetric, but occasionally we can make them symmetric, by
permuting or multiplying by −1 some elements. We can characterize δ-symmetric basis: namely,
if b is δ-symmetric, then modulo such transformations, there exists discrete or one-parameter
families Ps ∈ O(2;R) such that

b = bs =
tPsδPs (10)

(where the product is understood as if bj ’s were numbers).

So far we have constructed “one point functions”, i.e. a basis of ÕR. In the sequel we content
with Hamiltonians of type (1) which are of second order in the interactions; if we were to include

the linear term
∑

i∈Λ σz
i we would write it as

∑
〈i,j〉 1i ⊗ σz

j . Embed ÕR into ÕR ⊗ ÕR by the

usual coproduct ∆, and set x̃ = ∆(x) = 1
2(1 ⊗ x + x ⊗ 1) ∈ oR ⊗ oR, for x ∈ oR. So we

have “lifted” b̃ = ∆(b) as a family of ÕR ⊗ ÕR by (B̃i
j)i∈Λ,1≤j≤4, with B̃i

j = ∆(Bi
j). With the

notations of (8) and (9) we have

B̃i =

(
B̃i

1 B̃i
2

B̃i
3 B̃i

4

)
∈ M4N×4N (R), tr1(B̃

i) =

(
trB̃i

1 trB̃i
2

trB̃i
3 trB̃i

4

)
∈ M2×2(R) (11)

In the same way, we form e−βHB̃i
j, so we can map to each site i ∈ Λ ∪ ∂Λ a 2× 2 matrix :

tr1(e
−βHB̃i) = tr(e−βH)

(
ωβ(B̃

i
1) ωβ(B̃

i
2)

ωβ(B̃
i
3) ωβ(B̃

i
4)

)

Definition 1.2: We call vorticity matrix at site i, relative to the basis b, at inverse temperature
β, the matrix :

Ωi
β(b) =

tr1(e
−βHB̃i)

tr(e−βH)

The traceless matrix
Ω̂i
β(b) = Ωi

β(b)− tr
(
Ωi
β(b)

)
Id (12)

is called the reduced vorticity matrix at site i.

Example: Λ = {1, 2} is a lattice with 2 sites, ∂Λ = ∅, one has Ω̂1
β(δ) = Ω̂2

β(δ) = 0. This is

observed also numerically for all Λ, with ∂Λ = ∅, although vortices could merge sponteanously
in infinite volume. If b is a symmetric basis of oR, then Ωi

β(b) and Ω̂i
β(b) are Hermitean since H

is self-adjoint (real symmetric if moreover H has real coefficients), and

(
Ω̂i
β(b)

)2
= det Ω̂i

β(b)Id (13)

Thus Ω̂i
β(b) enjoys the nice property, to be diagonalizable with real (opposite) eigenvalues for

all sites i, and all inverse temperature β. Viewing these as a field of matrices over the lattice,
we can figure out the “vorticity” of the system, by simply looking at their principal directions.
We will see that it also gives a measure of vorticity, i.e. numbers (integers) that should be
independent of the choice of “elementary” basis b. Next we define vortices as the set of sites
where the reduced vorticity matrix is singular.

Definition 1.3: We say that ξ ∈ Λ is a vortex at inverse temperature β relative to the δ-

symmetric ONB b iff Ωξ
β(b) has a degenerate eigenvalue, i.e. Ω̂ξ

β(b) = 0. We call regular the



other points.

By construction, all sites are vortices when β = 0.

Now we turn to consistency of Definitions 1.2 and 1.3 relatively to the choice of b within
δ-symmetric basis. That b is a δ-symmetric basis is a natural requirement for computing the
degree of Ω̂i(b), see Sect.2. With b written as in (8), and P ∈ O(2;R), we set with the notations

of (10) a = tPbP . The same holds after taking the co-product ∆ of each term, i.e. ã = tP b̃P .
This defines conjugacy classes, which pass to the partial traces (9), i.e. T (a) = tPT (b)P , and

T (ã) = tP T (̃b)P . Moreover, if X ∈ L(R2), we have

(1⊗X)b =

(
Xb1 Xb2
Xb3 Xb4

)
= (1⊗X)Pa tP (14)

After lifting ã and b̃ to ÕR ⊗ ÕR, (11) becomes

Ãi = tP

(
B̃i

1 B̃i
2

B̃i
3 B̃i

4

)
P ∈ M4N×4N (R), tr1(Ã

i) = tP

(
trB̃i

1 trB̃i
2

trB̃i
3 trB̃i

4

)
P ∈ M2×2(R) (15)

and (14) also extends when taking X ∈ L(R4N ) and replacing a by Ãi, b by B̃i. Let now
X = e−βH , we obtain that conjugacy classes again pass to vorticity matrices, i.e.

Ωi
β(a) =

tPΩi
β(b)P, Ω̂i

β(a) =
tP Ω̂i

β(b)P (16)

and (10) eventually gives :

Proposition 1.4: Definitions 1.2 and 1.3 are consistent, i.e. vorticity matrices relative to all
δ-symmetric ONB b are related by (16) for some Ps ∈ O(2;R), and in particular ξ is a vortex
relative to δ iff this is a vortex relatively to any δ-symmetric b.

Moreover we have the numerical evidence that, among all δ-symmetric basis b, the canonical
basis δ is most “faithful”, in the sense that Ωi

β(δ) have on the boundary lattice ∂Λ the same

principal directions as the directions along which Pauli matrices are compressed (associated with
the eigenprojector Πj).

b) Heisenberg model

The algebra goes essentially along the same lines, except for the fact that the basis b cannot
be real. Again, this relies on the observation that the spin representation of SU(2) is 2-D, so
the “one-point functions” can be simply parametrized by 2× 2 matrices. Instead of 4× 4 array

b =

(
δ1 δ2
δ3 δ4

)
, we consider the 8× 8 array e =

(
e1 e2
e3 e4

)
=

(
e′1 e′2 + ie′′2

e′3 − ie′′3 e′4

)
with

e′1 =

(
δ1 0
0 0

)
, e′2 =

(
0 δ2
0 0

)
, e′3 = (e′2)

∗ (17)

e′4 =

(
0 0
0 δ4

)
, e′′2 =

(
δ2 0
0 0

)
, e′′3 = (e′′2)

∗ (18)

this choice being non-unique. Moreover the ej ’s have the right dimension for quadratic
interaction, so we don’t need to take co-product as in the case of XY model. Compression



of Pauli matrices on ∂Λ can be obtained by the orthogonal projector

Π(θ, ϕ) =

(
cos2 θ

2 e−iϕ sin θ
2 cos

θ
2

e−iϕ sin θ
2 cos

θ
2 sin2 θ

2

)
(19)

where (θ, ϕ) parametrizes a point on Bloch sphere, accounting for the prescribed direction of
“vorticity” on ∂Λ.

For both XY and Heisenberg model, we observe that (reduced) vorticity matrices belong to
su(2) = {M ∈ M2×2(C) : M∗ = M, trM = 0} which is the tangent Lie algebra of SU(2).

2. Topological degree and holonomy on SU(2)
The natural idea is to consider vorticity matrices as a map Λ∪∂Λ → su(2) and “integrate” it, so
to get some topologial invariant, such as the local degree. This assumes a thorough knowledge
of discrete analysis on the lattice, with values in su(2). For advanced results on Differential
Calculus on lattices in the scalar case, see [15]. The non-commutative discrete case has still
to be set up, so we pass here to an idealistic continuous limit, where vorticity matrices would
be defined as a smooth field on R2 (away from vortices), valued in the Lie algebra su(2). Our
purpose is to integrate such fields vanishing at some points, and define a “non-commutative
degree”.

We consider Heisenberg model (Hermitean vorticity matrices), the XY model (real symmetric
vorticity matrices) will be treated as a particular case. So let M : D ⊂ R2 → su(2), x 7→ M(x)
be a C1 map, M(x)2 = λ(x)Id, λ(x) ≥ 0, and consider ρ ∈ Λ1(R2; su(2)) the 1-form

ρ(x) =
1

2
(M−1(x)dM(x) − dM(x)M−1(x)) (20)

(anti-symmetrized Maurer-Cartan form). We have M−1(x)dM(x) + dM(x)M−1(x)) = dλ(x)
λ(x) .

Let M =

(
a b
c −a

)
, we compute

dρ = −λ−2(adb ∧ dc+ bdc ∧ da+ cda ∧ db)M (21)

(so dρ = 0 if M is symmetric). On the other hand, computing the structure coefficients for the
Lie algebra su(2), we find

dρ+ [ρ, ρ] = 0 (22)

Recall that if G is a Lie group, and G its Lie algebra, ω the canonical Maurer-Cartan form on
G, invariant by left translations, we define Darboux differential of the map f ∈ C1(D;G) by
πf = f∗ω. The fundamental existence theorem (“Poincaré lemma”), with a differential form
ρ ∈ Λ1(D;G) verifying (22), assigns (locally) a map f ∈ C1(D;G), whose Darboux differential is
precisely equal to ρ. Moreover this map is unique when prescribing its value at a point x0 ∈ D.
Applying this result to (20), gives local primitives of ρ, whenever λ(x) 6= 0, called a “logarithm”
of M , which belong to SU(2).

Remark: For these computations we can also use the isomorphism θ : (R3,∧) → (su(2), i
2 [·, ·]),

where ∧ is the usual wedge-product on R3.

For the XY model on R2 (“idealized” lattice Z2) we can define the square of the “local
degree” at an isolated singularity (vortex) ξ ∈ R2, by

s2ξ = det
1

2π

∫

γ

ρ(x) (23)



where γ encircles ξ, and similarly, when M elliptic at infinity |λ(x)| ≥ C > 0, |x| ≥ r0 the square
of the “total degree”

s2∞ = det
1

2π

∫

|x|=r

ρ(x), r > r0 (24)

Since the fundamental group of the universal covering of SU(2) is Z, we can conclude that
sξ, s∞ ∈ Z.

Example: For the symmetric matrices

Ma(x) =

(
a cos nθ sinnθ
sinnθ −a cosnθ

)

we have deg∞(M) = n. The 1-form ρ associated wih M0 is simply

(
0 n
−n 0

)
dθ.

This makes sense also for Heisenberg model on Riemann’s sphere S2, provided λ(x) > 0
everywhere, but we should speak of “instantons” rather than of “vortices”, see [2], [7].

Example: For Hermitean matrices

Ma(x) =

(
a cos θ eidϕ sin θ

e−idϕ sin θ −a cos θ

)
(25)

where x =

(
cos θ eiϕ sin θ

e−iϕ sin θ − cos θ

)
≈ (θ, ϕ) ∈ S2, we have deg∞(M) = d. The condition

M(0, ϕ) = −M(π, ϕ) reproduces the condition of [2] that all (classical) spins point upwards
at infinity (θ = 0) while they point downwards at 0 (θ = 0), so that the equilibrium state at
inverse temperature β is a spin wave, or “instanton”, of degree d (the number of coverings of
the sphere).

Other topological defects, such as “lines of vortices” occur in Heisenberg model on R3 (“ide-
alized” lattice Z3).

Among possible extensions, we mention: (1) the orbital compass model, which has reflection
posivity, but no rotation invariance [4]; (2) Hubbard model with continuous symmetry (hopping
and spin interaction) [10], with an application to the dynamics of Cooper pairs in a supraconduc-
tor bulk, or the dynamics of electron/hole pairs in SNS junctions. Vorticity can also defined for
maps R(2n+1)n → sp(2n;R) (Hamiltonian matrices) and as well in general gauge sigma models
[6].

3. Numerical tests for the XY model
Recall we have completed the lattice Λ with an environment ∂Λ ⊂ Z2 where Pauli matrices are
compressed in directions (θj)j∈∂Λ, i.e. we change σ by ΠθσΠθ, where Πθ as in (6). Thus

σx
i (θi) = (sin 2θi)Πθi , σy

i (θi) = 0

Hamiltonian (1) with nearest neighbor interaction has too large a kernel, to be suitable for
numerical simulations, even when modified by an external field. As in QFT we could try to
remove the “artificial” part of kerH by reducing the Hilbert space H = C4N to a “physical
space”, but H is not positive in the form sense. So a first attempt to lift the degeneracy of



the spectrum of the Hamiltonian, and enhance the effects of the external field on vorticity, is to
change (1) to the anisotropic XY model. So for n, k > 0, we consider

H(n,k)(σ|∂Λ) = − 1
2(n+k)

∑
〈i,j〉;i,j∈Λ(nσx

i ⊗ σx
j + k σy

i ⊗ σy
j ) (26)

− 1
2(n+k)

∑
〈i,j〉;(i,j)∈Λ×∂Λ n (σx

i ⊗ σx
j (θj) + σx

j (θj)⊗ σx
i )−

1
2(n+k)

∑
〈i,j〉;i,j∈∂Λ nσx

i (θi)⊗ σx
j (θj)

so H(n,k)(σ|∂Λ) is self-adjoint and real. For k 6= 1, we call H(1,k)(σ|∂Λ) the anisotropic XY
model. Only when ∂Λ = ∅, H(1,k) is unitarily equivalent to H(k,1). We consider rectangular
lattices of minimal sizes to exclude important volume effects, with sufficiently large ∂Λ to con-
strain the “quantum system” within Λ. We choose θj = dωj + φ where ωj is the polar angle
representing the vector j ∈ ∂Λ.

We study Gibbs state at inverse temperature β, with significant results provided β ranges
in some interval, for which however, there is no evidence (even in an approximate sense) of a
second order phase transition. Computing 1

2π

∫
γ
ρ as a discrete integral along a contour γ ∈ Λ,

not too far from ∂Λ (in practice, 2 or 3 layers), it turns out that the computed degree is close
to this we would obtain in (25). The main flaw affecting the computations is due to the fact

that eigenvalues of Ω̂i
β(b) are decaying exponentially when approaching the center of Λ. This

we partially compensate by considering the anisotropic model. To make our vorticity patterns
more demonstrative we consider the case of high anisotropy with k = 10. In Table 1 below
we give the results for degree, computed along a cycle γ ⊂ Λ consisting of the rectangle of the
first or the second neighbors to the boundary for different values of the anisotropy parameter
n = 1, k = 2; 10. Inverse temperature is β = 1.

Table 1. Table of calculated degree for different values of anisotropy factor k for the first and
the second neighbors to the boundary. Here the case of |Λ ∪ ∂Λ| = 23 × 33 with 2 boundary
layers is considered, and β = 1.

Given k = 2 k = 10 k = 2 k = 10
degree 1st neighbours 1st neighbours 2nd neighbours 2nd neighbours

1 1.05 1.09 0.89 1.05
2 1.98 2.03 1.70 1.78
3 2.76 2.75 2.01 2.50

Let us finally discuss the antiferromagnetic model. It is known that on Z2, the unitary
transformation U consisting in flipping the spins at sites i with i odd (i.e. indices i = (i1, i2)
such that |i| = |i1|+ |i2| is odd) intertwines the ferro with the antiferromagnetic models. More
precisely, −H = U∗HU . The reason is that Z2

e and Z2
o (the even and odd lattices) are swapped

into each other by symmetries on the lines x = n+ 1/2 or y = m+ 1/2 (called the “chessboard

symmetry”). There follows that tr exp[βH]A = tr exp[−βH]UAU∗, and if A = D̃i (the canonical
basis), we can check UAU∗ = A so the matrices of vorticity (for the Hamiltonian with free
boundary conditions) are the same. This equivalence holds also in the case of the torus, but
not on Λ ⊂ Z2 with an odd number of sites. Of course, when ∂Λ 6= ∅, H and −H are not so
simply related; nevertheless, we may observe (numerically) that the relation Ωi

β(δ) = Ωi
−β(δ)

holds with a very good accuracy.
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