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Convergence analysis of upwind type schemes for the aggregation

equation with pointy potential

F. Delarue∗, F. Lagoutière†, N. Vauchelet‡

August 29, 2018

Abstract

A numerical analysis of upwind type schemes for the nonlinear nonlocal aggregation equation
is provided. In this approach, the aggregation equation is interpreted as a conservative transport
equation driven by a nonlocal nonlinear velocity field with low regularity. In particular, we allow
the interacting potential to be pointy, in which case the velocity field may have discontinuities.
Based on recent results of existence and uniqueness of a Filippov flow for this type of equations,
we study an upwind finite volume numerical scheme and we prove that it is convergent at order
1/2 in Wasserstein distance. The paper is illustrated by numerical simulations that indicate that
this convergence order should be optimal.

Keywords: Aggregation equation, upwind finite volume scheme, convergence order, measure-
valued solution.
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1 Introduction

This paper is devoted to the numerical approximation of measure valued solutions to the so-called
aggregation equation in space dimension d. This equation reads

∂tρ = div
(
(∇xW ∗ ρ)ρ

)
, t > 0, x ∈ Rd, (1.1)

with the initial condition ρ(0, ·) = ρini. Here, W plays the role of an interaction potential whose
gradient ∇xW (x− y) measures the relative force exerted by a unit mass localized at a point y onto
a unit mass located at a point x.

This system appears in many applications in physics and population dynamics. In the framework
of granular media, equation (1.1) is used to describe the large time dynamics of inhomogeneous
kinetic models, see [3, 16, 51]. Models of crowd motion with a nonlinear term of the form ∇xW ∗ ρ
are also addressed in [17, 19]. In population dynamics, (1.1) provides a biologically meaningful
description of aggregative phenomena. For instance, the description of the collective migration
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of cells by swarming leads to such a kind of PDEs with non-local interaction, see e.g. [43, 44, 50].
Another example is the modelling of bacterial chemotaxis. In this framework, the quantity S = W ∗ρ
is the chemoattractant concentration, which is a substance emitted by bacteria allowing them to
interact with one another. The dynamics can be macroscopically modelled by the Patlak-Keller-Segel
system [37, 45]. In the kinetic framework, the most frequently used model is the Othmer-Dunbar-Alt
system, the hydrodynamic limit of which leads to the aggregation equation (1.1), see [24, 25, 34]. In
many of these examples, the potential W is usually mildly singular, i.e. W has a weak singularity
at the origin. Because of this low regularity, smooth solutions of such systems may blow-up in finite
time, see e.g. [40, 8, 5, 14]. In the latter case, finite time concentration may be regarded as a very
simple mathematical way to account for aggregation of individuals, as opposed to diffusion.

Since finite time blow-up of smooth solutions may occur and since equation (1.1) conserves mass,
a natural framework to study the existence of global in time solutions is to work in the space of
probability measures. In this regard, two strategies have been proposed in the literature. In [14],
the aggregation equation is seen as a gradient flow taking values in the Wasserstein space and
minimizing the interaction energy. In [34, 35, 15, 39], this system is considered as a conservative
transport equation with velocity field ∇xW ∗ ρ. Then a unique flow, say Z = (Z(t, ·))t≥0, can be
constructed, hence allowing to define the solution as a pushforward measure by the flow, namely
ρ = (ρ(t) = Z(t, ·)#ρ

ini)t≥0. When the singularity of the potential is stronger than the mild form
described above, such a construction has been achieved in the radially symmetric case in [4], but
uniqueness is then lacking. Actually, the assumptions on the potential W that are needed to ensure
the well-posedness of the equation in the space of measure valued solutions require a certain convexity
property of the potential that allows only for a mild singularity at the origin. More precisely, we
assume that the interaction potential W : Rd → R satisfies the following properties:

(A0) W (x) = W (−x) and W (0) = 0;

(A1) W is λ-convex for some λ ∈ R, i.e. W (x)− λ
2 |x|

2 is convex;

(A2) W ∈ C1(Rd \ {0});

(A3) W is Lipschitz-continuous.

Such a potential will be referred to as a pointy potential. Typical examples are fully attractive
potentials W (x) = 1 − e−|x|, which is −1-convex, and W (x) = |x|, which is 0-convex. Notice that
the Lipschitz-continuity of the potential allows to bound the velocity field: there exists a nonnegative
constant w∞ such that for all x 6= 0,

|∇W (x)| ≤ w∞. (1.2)

Observe also that (A3) forces λ in (A1) to be non-positive, as otherwise W would be at least of
quadratic growth, whilst (A3) forces it to be at most of linear growth. However, we shall sometimes
discard (A3), when the initial datum is compactly supported. In this case, as W −λ|x|2/2 is convex,
it is locally Lipschitz-continuous, so that W is locally Lipschitz-continuous, what will be sufficient
for compactly supported initial data. In that case it perfectly makes sense to assume λ > 0 in (A1).
For numerical analysis, we will assume in this case that the potential is radial, that is to say that
W is a function of the sole scalar |x|, W (x) =W(|x|).

Although very accurate numerical schemes have been developped to study the blow-up profile
for smooth solutions, see [32, 33], very few numerical schemes have been proposed to simulate
the behavior of solutions to the aggregation equation after blow-up. The so-called sticky particles
method was shown to be convergent in [14] and used to obtain qualitative properties of the solutions
such as the time of total collapse. However, this method is not so practical to catch the behavior
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of the solutions after blow-up in dimension d larger than one. In dimension d = 1, this question
has been addressed in [34]. In higher dimension, particle methods have been recently proposed and
studied in [18, 12], but only the convergence of smooth solutions, before the blowup time, has been
proved. Finite volume schemes have also been developed. In [36], the authors propose a finite volume
scheme to approximate the behavior of the solution to the aggregation equation (1.1) after blow-up
and prove that it is convergent. A finite volume method for a large class of PDEs including in
particular (1.1) has been also proposed in [13], but no convergence result has been given. Finally, a
finite volume scheme of Lax-Friedrichs type for general measures as initial data has been introduced
and investigated in [15]. Numerical simulations of solutions in dimension greater than one have been
obtained, allowing to observe the behavior after blow-up. Moreover, convergence towards measure
valued solutions has been proved. However, no estimate on the order of convergence has been
established so far. In the current work, we provide a precise estimate of the order of convergence
in Wasserstein distance for an upwind type scheme. This scheme is based on an idea introduced in
[34] and used later on in [36, 15]. It consists in discretizing properly the macroscopic velocity so
that its product with the measure solution ρ is well-defined. In this paper, we introduce an upwind
scheme for which this product is treated accurately, and we prove its convergence at order 1/2 in
Wasserstein distance (the definition of which is recalled below).

For a given velocity field, the study of the order of convergence for the finite volume upwind
scheme for the transport equation has received a lot of attention. This scheme is known to be first
order convergent in L∞ norm for any smooth initial data in C2(Rd) and for well-suited meshes, pro-
vided a standard stability condition (Courant-Friedrichs-Lewy condition) holds, see [10]. However,
this order of convergence falls down to 1/2 in Lp norm when considering non-smooth initial data or
more general meshes. This result has been first proved in the Cartesian framework by Kuznetsov
in [38]. In [22], a 1/2 order estimate in the L∞([0, T ], L2(Rd)) norm for H2(Rd) initial data has
been established. Finally in [42, 20], a 1/2 order estimate in L1 has been proved for initial data in
L1(Rd) ∩ BV (Rd), whilst, for Lipschitz-continuous initial data, an estimate of order 1/2− ε in L∞

for any ε > 0 has been obtained in [41, 20]. We emphasize that the techniques used in [41, 42] and
[20] are totally different. In the former, the strategy of proof is based on entropy estimates, whereas
in the latter, the proof relies on the construction and the analysis of stochastic characteristics for the
numerical scheme. Finally, when the velocity field is only L∞ and one-sided Lipschtiz-continuous,
solutions of the conservative transport equation are defined only in the sense of measures. In this
regard, Poupaud and Rascle [46] have proved that solutions of the conservative transport equation
could be defined as the pushforward of the initial condition by a flow of characteristics. A stability
estimate for such solutions has been stated later in [6]. In dimension d = 1, these solutions, as intro-
duced in [46], are equivalent to duality solutions, as defined in [11]. Numerical investigations may be
found in [28]. In such a framework with a low regularity, numerical analysis requires to work with a
sufficiently weak topology, which is precisely what has been done in [21]. Therein, the convergence
at order 1/2 of a finite volume upwind scheme has been shown in Wasserstein distance by means of
a stochastic characteristic method, as done in [20]. Observe also that, recently, such an approach
has been successfully used in [49] for the numerical analysis of the upwind scheme for the transport
equation with rough coefficients. In the current work, we adapt the strategy initiated in [21] to
prove the convergence at order 1/2 of an upwind scheme for the aggregation equation for which the
velocity field depends on the solution in a nonlinear way. We will strongly use the fact that, as
mentioned above, measure valued solutions of (1.1) are constructed by pushing forward the initial
condition by an Rd-valued flow. Noticeably, we entirely reformulate the stochastic approach used in
[21] by means of analytical tools. In the end, our proof is completely deterministic. Although using
analytical instead of probabilistic arguments do not change the final result (neither nor the general
philosophy of the proof), it certainly makes the whole more accessible for the reader. As we pointed
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out, the key fact in [21] is to represent the scheme through a Markov chain; here, the main idea is
to use the sole transition kernel of the latter Markov chain to couple the measure-valued numerical
solution at two consecutive times (and hence to bypass any use of the Markov chain itself). We refer
to Remark 4.2 below for more details.

The outline of the paper is the following. In the next section, we introduce the notations and
recall the theory for the existence of a measure solution to (1.1). Then we present the upwind scheme
and state the main result: the scheme is convergent at order 1/2. In case when the potential W is
strictly convex and radially symmetric and the initial condition has a bounded support, the rate is
claimed to be uniform in time. Section 3 is devoted to the properties of the scheme. The proof of
the main result for a Cartesian grid mesh is presented in Section 4. In Section 5, we explain briefly
how to extend our result to simplicial meshes. Finally, numerical illustrations are given in Section
6. In particular, we show that the order of convergence is optimal and we provide several numerical
simulations in which we recover the behavior of the solutions after blow-up time.

2 Notations and main results

2.1 Notations

Throughout the paper, we will make use of the following notations. We denote by C0(Rd) the space
of continuous functions from Rd to R that tend to 0 at∞. We denote byMb(Rd) the space of Borel
signed measures whose total variation is finite. For ρ ∈ Mb(Rd), we call |ρ|(Rd) its total variation.
The space Mb(Rd) is equipped with the weak topology σ(Mb(Rd), C0(Rd)). For T > 0, we let
SM := C([0, T ];Mb(Rd) − σ(Mb(Rd), C0(Rd))). For ρ a measure in Mb(Rd) and Z a measurable
map, we denote Z#ρ the pushforward measure of ρ by Z; it satisfies, for any continuous function φ,∫

Rd

φ(x)Z#ρ(dx) =

∫
Rd

φ(Z(x)) ρ(dx).

We call P(Rd) the subset of Mb(Rd) of probability measures. We define the space of probability
measures with finite second order moment by

P2(Rd) :=

{
µ ∈ P(Rd),

∫
Rd

|x|2µ(dx) <∞
}
.

Here and in the following, | · |2 stands for the square Euclidean norm, and 〈·, ·〉 for the Euclidean
inner product. The space P2(Rd) is equipped with the Wasserstein distance dW defined by (see e.g.
[2, 52, 53, 48])

dW (µ, ν) := inf
γ∈Γ(µ,ν)

{∫
Rd×Rd

|y − x|2 γ(dx, dy)

}1/2

(2.3)

where Γ(µ, ν) is the set of measures on Rd × Rd with marginals µ and ν, i.e.

Γ(µ, ν) =
{
γ ∈ P2(Rd × Rd); ∀ ξ ∈ C0(Rd),

∫
ξ(y1)γ(dy1, dy2) =

∫
ξ(y1)µ(dy1),∫

ξ(y2)γ(dy1, dy2) =

∫
ξ(y2)ν(dy2)

}
.

By a minimization argument, we know that the infimum in the definition of dW is actually a mini-
mum. A measure that realizes the minimum in the definition (2.3) of dW is called an optimal plan,
the set of which is denoted by Γ0(µ, ν). Then, for all γ0 ∈ Γ0(µ, ν), we have

dW (µ, ν)2 =

∫
Rd×Rd

|y − x|2 γ0(dx, dy).
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We will make use of the following properties of the Wasserstein distance. Given µ ∈ P2(Rd) and
two µ-square integrable Borel measurable maps X,Y : Rd → Rd, we have the inequality

dW (X#µ, Y#µ) ≤ ‖X − Y ‖L2(µ).

It holds because π = (X,Y )#µ ∈ Γ(X#µ, Y#µ) and
∫
Rd×Rd |x− y|2 π(dx, dy) = ‖X − Y ‖2L2(µ).

2.2 Existence of a unique flow

In this section, we recall the existence and uniqueness result for the aggregation equation (1.1)
obtained in [15] (and extend it a bit for non-globally Lipschitz-continuous potentials). For ρ ∈
C([0, T ];P2(Rd)), we define the velocity field âρ by

âρ(t, x) := −
∫
Rd

∇̂W (x− y)ρ(t, dy) , (2.4)

where we have used the notation

∇̂W (x) :=

{
∇W (x), for x 6= 0,
0, for x = 0.

Due to the λ-convexity of W , see (A2), we deduce that, for all x, y in Rd \ {0},

〈∇W (x)−∇W (y), x− y〉 ≥ λ|x− y|2. (2.5)

Moreover, since W is even, ∇W is odd and by taking y = −x in (2.5), we deduce that inequality

(2.5) still holds for ∇̂W , even when x or y vanishes:

∀x, y ∈ Rd, 〈∇̂W (x)− ∇̂W (y), x− y〉 ≥ λ|x− y|2. (2.6)

This latter inequality provides a one-sided Lipschitz-continuity (OSL) estimate for the velocity field
âρ defined in (2.4), i.e. we have

∀x, y ∈ Rd, t ≥ 0,
〈
âρ(t, x)− âρ(t, y), x− y

〉
≤ −λ|x− y|2.

We recall that, for a velocity field b ∈ L∞([0,+∞);L∞(Rd))d satisfying an OSL estimate, i.e.

∀x, y ∈ Rd, t ≥ 0, 〈b(t, x)− b(t, y), x− y〉 ≤ α(t)|x− y|2,

for α ∈ L1
loc([0,+∞)), it has been established in [26] that a Filippov characteristic flow could be

defined. For s ≥ 0 and x ∈ Rd, a Filippov characteristic starting from x at time s is defined as a
continuous function Z(·; s, x) ∈ C([s,+∞);Rd) such that ∂

∂tZ(t; s, x) exists for a.e. t ∈ [s,+∞) and
satisfies Z(s; s, x) = x together with the differential inclusion

∂

∂t
Z(t; s, x) ∈

{
Convess

(
âρ
)
(t, ·)

}
(Z(t; s, x)), for a.e. t ≥ s.

In this definition, {Convess(âρ)(t, ·)}(x) denotes the essential convex hull of the vector field âρ(t, ·)
at x. We remind briefly the definition for the sake of completeness (see [26, 1] for more details).
We denote by Conv(E) the classical convex hull of a set E ⊂ Rd, i.e., the smallest closed convex set
containing E. Given the vector field âρ(t, ·) : Rd → Rd, its essential convex hull at point x is defined
as {

Convess
(
âρ
)
(t, ·)

}
(x) :=

⋂
r>0

⋂
N∈N0

Conv
[
âρ
(
t, B(x, r) \N

)]
,
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where N0 is the set of zero Lebesgue measure sets.
Moreover, we have the semi-group property: for any t, τ, s ∈ [0,+∞) such that t ≥ τ ≥ s and

x ∈ Rd,

Z(t; s, x) = Z(τ ; s, x) +

∫ t

τ
âρ
(
σ, Z(σ; s, x)

)
dσ. (2.7)

From now on, we will make use of the notation Z(t, x) = Z(t; 0, x). Using this characteristic, it has
been established in [46] that solutions to the conservative transport equation with a given bounded
and one-sided Lipschitz-continuous velocity field could be defined as the pushforward of the initial
condition by the Filippov characteristic flow. Based on this approach, existence and uniqueness
of solutions to (1.1) defined by a Filippov flow has been established in [15]. More precisely the
statement reads:

Theorem 2.1 [15, Theorem 2.5 and 2.9] (i) Let W satisfy assumptions (A0)–(A3) and let ρini

be given in P2(Rd). Then, there exists a unique solution ρ ∈ C([0,+∞);P2(Rd)) satisfying, in the
sense of distributions, the aggregation equation

∂tρ+ div
(
âρρ
)

= 0, ρ(0, ·) = ρini, (2.8)

where âρ is defined by (2.4).
This solution may be represented as the family of pushforward measures (ρ(t) := Zρ(t, ·)#ρ

ini)t≥0

where (Zρ(t, ·))t≥0 is the unique Filippov characteristic flow associated to the velocity field âρ.
Moreover, the flow Zρ is Lipschitz-continuous and we have

sup
x,y∈Rd, x 6=y

|Zρ(t, x)− Zρ(t, y)|
|x− y|

≤ e|λ|t, t ≥ 0.

At last, if ρ and ρ′ are the respective solutions of (2.8) with ρini and ρini,′ as initial conditions
in P2(Rd), then

dW (ρ(t), ρ′(t)) ≤ e|λ|tdW (ρini, ρini,′), t ≥ 0.

(ii) Let W satisfy (A0)–(A2) and be radial, λ be (strictly) positive and let ρini be given in P2(Rd)
with compact support included in B∞(M1, R), where M1 is the first moment of ρini (i.e. its center
of mass) and B∞(M1, R) the closed ball for the infinite norm on Rd centered at M1 with radius R.
Then, there exists a unique solution ρ ∈ C([0,+∞);P2(Rd)) with support included in B∞(M1, R)
satisfying, in the sense of distributions, the aggregation equation (2.8) where âρ is defined by (2.4).

Moreover, the flow Zρ is Lipschitz-continuous and we have

sup
x,y∈Rd, x 6=y

|Zρ(t, x)− Zρ(t, y)|
|x− y|

≤ e−λt, t ≥ 0. (2.9)

At last, if ρini and ρini,′ have a bounded support, then,

dW (ρ(t), ρ′(t)) ≤ dW (ρini, ρini,′), t ≥ 0.

The stability estimates that are present in this result are Dobrushin type estimates in the
quadratic Wasserstein distance, in the case where the kernel is not Lipschitz-continuous but only
one-sided Lipschitz-continuous. See [23] and [27].

We mention that the solution, which is here represented by the Filippov characteristic flow, may
be also constructed as a gradient flow solution in the Wasserstein space P2(Rd), see [14]. Here it is
also important to remark that (2.9) is true under the sole assumptions (A0)–(A2) whenever λ > 0
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(which is a mere consequence of (2.11) and (2.12) below). In that case, it ensures that B2(M1, R)
(the closed Euclidean ball) is preserved by the flow without the assumption that W is radial. As
a result, it may be tempting to address the analysis below without requiring the potential to be
radial. Nevertheless, the problem is that the numerical scheme does not satisfy a similar property.
Indeed, the Euclidean ball B2(M1, R) is not convex from a numerical point of view, that is to say,
if we regard the mesh underpinning the scheme, then the union of the square cells whose center is
included in B2(M1, R) is not convex. Due to this drawback, the flow associated to the scheme does
not preserve the ball B2(M1, R). This is in contrast with Lemma 3.3 below, which shows that, in
the radial setting, the ball B∞(M1, R + ∆x) is kept stable by the scheme, where ∆x is the step of
the spatial mesh. This latter fact is the reason why we here assume that the potential is radial.

Proof. For the first two statements of the Theorem, existence of a unique solution and Lipschitz-
continuity of the flow, we refer to [15]. These statements remain true whenever the sole (A0)–(A2)
hold true, W is radial, λ is (strictly) positive and the support of ρini is bounded, provided that the
notion of solution is limited to collections (ρ(t, ·))t≥0 that have a compact support, uniformly in t in
compact subsets. Indeed, if we denote by M1(t) the center of mass of the solution at time t, namely
M1(t) :=

∫
Rd ρ(t, dx), then this center of mass is known to be preserved: M1(t) = M1(0) =: M1 (see

[15] or Lemma 3.2 below for the discrete counterpart). Now, if λ ≥ 0 and if W is radial, ∇W (x− y)
is positively proportional to x− y, so that −∇W (x− y) is parallel to x− y and directed from x to y.
Thus, if ρ(t) is zero outside the ball B∞(M1, R), then, for any x ∈ ∂B∞(M1, R), the velocity âρ(t, x)
is directed toward the interior of B∞(M1, R). This shows that B∞(M1, R) is preserved by the flow
and guarantees that ρ(t) has its support included in B∞(M1, R) for any time t ≥ 0, if it is the case
for t = 0. Given the fact that the support of ρ(t) remains bounded in B∞(M1, R), everything works
as if W was globally Lipschitz-continuous. Existence and uniqueness of a solution to the aggregation
equation can thus be proved by a straightforward localization argument. Indeed, observe that from
the very definition of the velocity a, the Lipschitz-continuity constant of W that is involved in the
existence and uniqueness theory is the local one of W on the compact subset B∞(M1, R), provided
that the support of ρini is included in B∞(M1, R).

Now it only remains to prove the two inequalities regarding the Wasserstein distance between
solutions starting from different data. Under assumptions (A0)–(A3) on the potential, it was
proven in [15], but with a constant 2|λ| instead of |λ| in the exponential (as in [23] and [27], where
the convolution operator is however replaced with a slightly more general integral operator), thus
we here provide a proof of the present better estimate.

We consider the two Filippov flows (Zρ(t, ·))t≥0 and (Zρ′(t, ·))t≥0 as defined in the statement of
Theorem 2.1. We recall that

Zρ(t, ·)#ρ
ini = ρ(t, ·), Zρ′(t, ·)#ρ

ini,′ = ρ′(t, ·), t ≥ 0. (2.10)

To simplify, we just write Z(t, ·) = Zρ(t, ·) and Z ′(t, ·) = Zρ′(t, ·). Then, for any x, y ∈ Rd and t ≥ 0,

d

dt
|Z(t, x)− Z ′(t, y)|2

= −2
〈
Z(t, x)− Z ′(t, y),∫
Rd

∇̂W
(
Z(t, x)− Z(t, x′)

)
ρini(dx′)−

∫
Rd

∇̂W
(
Z ′(t, y)− Z ′(t, y′)

)
ρini,′(dy′)

〉
.
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Call π ∈ Γ0(ρini, ρini,′) an optimal plan between ρini and ρini,′. Then,

d

dt
|Z(t, x)− Z ′(t, y)|2

= −2
〈
Z(t, x)− Z ′(t, y),

∫
R2d

[
∇̂W

(
Z(t, x)− Z(t, x′)

)
− ∇̂W

(
Z ′(t, y)− Z ′(t, y′)

)]
π(dx′, dy′)

〉
.

Integrating in (x, y) with respect to π, we get

d

dt

∫
R2d

|Z(t, x)− Z ′(t, y)|2π(dx, dy)

= −2

∫
R2d

∫
R2d

〈
Z(t, x)− Z ′(t, y),[
∇̂W

(
Z(t, x)− Z(t, x′)

)
− ∇̂W

(
Z ′(t, y)− Z ′(t, y′)

)]〉
π(dx, dy)π(dx′, dy′).

Thanks to the fact that ∇̂W is odd, see (A0), we can write, by a symmetry argument,

d

dt

∫
R2d

|Z(t, x)− Z ′(t, y)|2π(dx, dy)

= −
∫
R2d

∫
R2d

〈
Z(t, x)− Z ′(t, y)−

(
Z(t, x′)− Z ′(t, y′)

)
,[

∇̂W
(
Z(t, x)− Z(t, x′)

)
− ∇̂W

(
Z ′(t, y)− Z ′(t, y′)

)]〉
π(dx, dy)π(dx′, dy′).

Using (2.6), we obtain

d

dt

∫
R2d

|Z(t, x)− Z ′(t, y)|2π(dx, dy)

≤ −λ
∫
R2d

∫
R2d

∣∣Z(t, x)− Z ′(t, y)−
(
Z(t, x′)− Z ′(t, y′)

)∣∣2 π(dx, dy)π(dx′, dy′).

(2.11)

Observe that the above right-hand side is equal to∫
R2d

∫
R2d

∣∣Z(t, x)− Z ′(t, y)−
(
Z(t, x′)− Z ′(t, y′)

)∣∣2 π(dx, dy)π(dx′, dy′)

= 2

∫
R2d

∣∣Z(t, x)− Z ′(t, y)
∣∣2 π(dx, dy)− 2

∣∣∣∣∫
R2d

(
Z(t, x)− Z ′(t, y)

)
π(dx, dy)

∣∣∣∣2. (2.12)

1st case. If λ ≤ 0, we deduce from (2.11) and (2.12) that

d

dt

∫
R2d

|Z(t, x)− Z ′(t, y)|2π(dx, dy) ≤ 2|λ|
∫
R2d

∣∣Z(t, x)− Z ′(t, y)
∣∣2 π(dx, dy),

which suffices to complete the proof of the first claim by noting that∫
R2d

|Z(0, x)− Z ′(0, y)|2π(dx, dy) =

∫
R2d

|x− y|2π(dx, dy) = dW (ρini, ρini,′)2,

and ∫
R2d

|Z(t, x)− Z ′(t, y)|2π(dx, dy) ≥ dW (ρ(t), ρ(t)′)2,

see (2.10).

2nd case. If λ ≥ 0, we just use the fact that the right-hand side in (2.11) is non-positive.
Proceeding as above, this permits to complete the proof of the second claim.
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2.3 Main result

The aim of this paper is to prove the convergence at order 1/2 of an upwind type scheme in distance
dW for the aggregation equation. The numerical scheme is defined as follows. We denote by ∆t the
time step and consider a Cartesian grid with step ∆xi in the ith direction, i = 1, . . . , d; we then let
∆x := maxi ∆xi. We also introduce the following notations. For a multi-index J = (J1, . . . , Jd) ∈ Zd,
we call CJ := [(J1− 1

2)∆x1, (J1+ 1
2)∆x1)×. . . [(Jd− 1

2)∆xd, (Jd+
1
2)∆xd) the corresponding elementary

cell. The center of the cell is denoted by xJ := (J1∆x1, . . . , Jd∆xd). Also, we let ei := (0, . . . , 1, . . . , 0)
be the ith vector of the canonical basis, for i ∈ {1, . . . , d}, and we expand the velocity field in the
canonical basis under the form a = (a1, . . . , ad).

For a given nonnegative measure ρini ∈ P2(Rd), we put, for any J ∈ Zd,

ρ0
J :=

∫
CJ

ρini(dx) ≥ 0. (2.13)

Since ρini is a probability measure, the total mass of the system is
∑

J∈Zd ρ0
J = 1. We then construct

iteratively the collection ((ρnJ)J∈Zd)n∈N, each ρnJ being intended to provide an approximation of the
value ρ(tn, xJ), for J ∈ Zd. Assuming that the approximating sequence (ρnJ)J∈Zd is already given at
time tn := n∆t, we compute the approximation at time tn+1 by:

ρn+1
J := ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J)+ρnJ − (ai

n
J+ei)

−ρnJ+ei − (ai
n
J−ei)

+ρnJ−ei + (ai
n
J)−ρnJ

)
. (2.14)

The notation (a)+ = max{0, a} stands for the positive part of the real a and respectively (a)− =
max{0,−a} for the negative part. The macroscopic velocity is defined by

ai
n
J := −

∑
K∈Zd

ρnK DiW
K
J , where DiW

K
J := ∂̂xiW

(
xJ − xK

)
. (2.15)

Since W is even, we also have:
DiW

K
J = −DiW

J
K . (2.16)

The main result of this paper is the proof of the convergence at order 1/2 of the above upwind
scheme. More precisely the statement reads:

Theorem 2.2 (i) Assume that W satisfies hypotheses (A0)–(A3) and that the so-called strict 1
2 -

CFL condition holds:

w∞

d∑
i=1

∆t

∆xi
<

1

2
, (2.17)

with w∞ as in (1.2).
For ρini ∈ P2(Rd), let ρ = (ρ(t))t≥0 be the unique measure solution to the aggregation equation

with initial data ρini, as given by Theorem 2.1. Define ((ρnJ)J∈Zd)n∈N as in (2.13)–(2.14)–(2.15) and
let

ρn∆x :=
∑
J∈Zd

ρnJδxJ , n ∈ N.

Then, there exists a nonnegative constant C, only depending on λ, w∞ and d, such that, for all
n ∈ N∗,

dW (ρ(tn), ρn∆x) ≤ C e|λ|(1+∆t)tn
(√
tn∆x+ ∆x

)
. (2.18)

9



(ii) Assume that W is radial and satisfies hypotheses (A0)–(A2) with λ (strictly) positive, that
ρini is compactly supported in B∞(M1, R) where M1 is the center of mass of ρini, and that the CFL
condition (2.17) holds, with w∞ defined as

w∞ = sup
x∈B∞(0,2R+2∆x)\{0}

|∇W (x)|, (2.19)

Assume also that ∆t ≤ 1/2 and 2λ∆t < 1. Then, there exists a nonnegative constant C, only
depending on λ, w∞, d and R such that, for all n ∈ N∗, (2.18) is valid, as well as

dW (ρ(tn), ρn∆x) ≤ C
(√

∆x+ ∆x
)
, (2.20)

which proves that the error can be uniformly controlled in time.

We stress the fact that, under the setting defined in (ii), (2.18) is valid. In small time, it provides
a better estimate than (2.20). As indicated in the statement, the constant C in (2.20) may depend
on the value of R in the assumption Supp(ρini) ⊂ B∞(M1, R).

We also point out that, although the computations below are performed for the sole upwind
scheme, the first part of the statement, which holds true under the full set of hypotheses (A0)–
(A3), can be straightforwardly adapted to other diffusive schemes, see for instance our previous
article [21]. As for (ii), the statement remains true provided that the supports of the approximating
measures (ρn)n≥0 remain bounded as n grows up. It must be stressed that there are some schemes
for which the latter property fails (e.g. Lax-Friedrichs’ scheme).

Moreover, as already mentioned in Introduction, the convergence rate is optimal; this latter fact
will be illustrated by numerical examples in Section 6.

Example 2.3 In one dimension, the scheme (2.14) reads

ρn+1
i = ρni −

∆t

∆x

(
(ani )+ρni − (ani+1)−ρni+1 − (ani−1)+ρni−1 + (ani )−ρni

)
,

where i is just taken in Z. The scheme has then the following interpretation. Given ρn∆x =∑
j∈Z ρ

n
j δxj , we construct the approximation at time tn+1 by implementing the following two steps:

• The Delta mass ρni located at position xi moves with velocity ani to the position xi + ani ∆t.
Under the CFL condition w∞∆t ≤ ∆x (which is obviously weaker than what we require in
(2.17)), the point xi + ani ∆t belongs to the interval [xi, xi+1] if ani ≥ 0, and to the interval
[xi−1, xi] if ani ≤ 0.

• Then the mass ρni is split into two parts; if ani ≥ 0, a fraction ani ∆t/∆x of it is transported
to the cell i + 1, while the remaining fraction is left in cell i; if ani ≤ 0, the same fraction
|ani |∆t/∆x of the mass is not transported to the cell i+ 1 but to the cell i− 1. This procedure
may be regarded as a linear interpolation of the mass ρni between the points xi and xi+1 if
ani ≥ 0 and between the points xi and xi−1 if ani ≤ 0.

This interpretation holds only in the one dimensional case. However thanks to this interpretation, we
can define a forward semi-Lagrangian scheme in any dimension on (unstructured) simplicial meshes,
which is then different from (2.14). Such a scheme is introduced in Section 5.

Finally, we emphasize that this scheme differs from the standard finite volume upwind scheme in
which the velocity is computed at the interface ani+1/2. This subtlety is due to the particular structure

of the equation, as the latter requires the product âρρ to be defined properly. A convenient way to
make it proper is to compute, in the discretization, the velocity and the density at the same grid
points. This fact has already been noticed in [36, 30] and is also illustrated numerically in Section
6.

10



3 Numerical approximation

3.1 Properties of the scheme

The following lemma explains why we called CFL the condition on the ratios (∆t/∆xi)i=1,··· ,d that
we formulated in the statement of Theorem 2.2.

Lemma 3.1 Assume that W satisfies hypotheses (A0)–(A3) and that the condition (2.17) is in
force. For ρini ∈ P2(Rd), define (ρ0

J)J∈Zd by (2.13). Then the sequences (ρnJ)n∈N,J∈Zd and (ai
n
J)n∈N,J∈Zd,

i = 1, . . . , d, given by the scheme defined in (2.14)–(2.15), satisfy, for all J ∈ Zd and n ∈ N,

ρnJ ≥ 0, |ainJ | ≤ w∞, i = 1, . . . , d,

and, for all n ∈ N, ∑
J∈Zd

ρnJ = 1.

Proof. The total initial mass of the system is
∑

J ρ
0
J = 1. By summing equation (2.14) over J , we

can show that the mass is conservative, namely, for all n ∈ N∗,
∑

J ρ
n
J =

∑
J ρ

0
J = 1.

Also, we can rewrite equation (2.14) as

ρn+1
J = ρnJ

[
1−

d∑
i=1

∆t

∆xi
|ainJ |

]
+

d∑
i=1

ρnJ+ei

∆t

∆xi
(ai

n
J+ei)

− +
d∑
i=1

ρnJ−ei
∆t

∆xi
(ai

n
J−ei)

+. (3.21)

We prove by induction on n that ρnJ ≥ 0 for all J ∈ Zd and for all n ∈ N. Indeed, if, for some
n ∈ N, it holds ρnJ ≥ 0 for all J ∈ Zd, then, by definition (2.15) and assumption (1.2), we clearly
have

|ainJ | ≤ w∞
∑
K∈Zd

ρnK = w∞, i = 1, . . . , d.

Then, assuming that the condition (2.17) holds, we deduce that, in the relationship (3.21), all the
coefficients in front of ρnJ , ρnJ−ei and ρnJ+ei

, i = 1, . . . , d, are nonnegative. Thus, using the induction

assumption, we deduce that ρn+1
J ≥ 0 for all J ∈ Zd.

In the following lemma, we collect two additional properties of the scheme: the conservation of
the center of mass and the finiteness of the second order moment.

Lemma 3.2 Let W satisfy (A0)–(A3) and condition (2.17) be in force. For ρini ∈ P2(Rd), de-
fine (ρ0

J)J∈Zd by (2.13). Then, the sequence (ρnJ)J∈Zd given by the numerical scheme (2.14)–(2.15)
satisfies:

(i) Conservation of the center of mass. For all n ∈ N∗,∑
J∈Zd

xJρ
n
J =

∑
J∈Zd

xJρ
0
J .

We will denote the right-hand side (and thus the left-hand side as well) by M1,∆x.
(ii) Bound on the second moment. There exists a constant C > 0, independent of the parameters

of the mesh, such that, for all n ∈ N∗,

Mn
2,∆x :=

∑
J∈Zd

|xJ |2ρnJ ≤ eCt
n(
M0

2,∆x + C
)
,

where we recall that tn = n∆t.
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Proof. We recall from Lemma 3.1 that, for all n ∈ N, the sequence (ρnJ)J∈Zd is nonnegative and
that its sum is equal to 1.

(i) Using (2.14) together with a discrete integration by parts, we have:

∑
J∈Zd

xJρ
n+1
J =

∑
J∈Zd

xJρ
n
J −

d∑
i=1

∆t

∆xi

∑
J∈Zd

(
(ai

n
J)+ ρnJ

(
xJ − xJ+ei

)
− (ai

n
J)− ρnJ

(
xJ−ei − xJ

))
.

By definition of xJ , we deduce∑
J∈Zd

xJρ
n+1
J =

∑
J∈Zd

xJρ
n
J + ∆t

d∑
i=1

∑
J∈Zd

ai
n
J ρ

n
J .

By definition of the macroscopic velocity (2.15) and by (2.16), we also have∑
J∈Zd

ai
n
J ρ

n
J = −

∑
J∈Zd

∑
K∈Zd

DiW
K
J ρnK ρ

n
J =

∑
J∈Zd

∑
K∈Zd

DiW
J
K ρ

n
K ρ

n
J

=
∑
J∈Zd

∑
K∈Zd

DiW
K
J ρnK ρ

n
J ,

where we exchanged the role of J and K in the latter sum. We deduce that it vanishes. Thus,∑
J∈Zd

xJρ
n+1
J =

∑
J∈Zd

xJρ
n
J .

(ii) For the second moment, still using (2.14) and a similar discrete integration by parts, we get∑
J∈Zd

|xJ |2ρn+1
J =

∑
J∈Zd

|xJ |2ρnJ

−
d∑
i=1

∆t

∆xi

∑
J∈Zd

[
(ai

n
J)+ ρnJ

(
|xJ |2 − |xJ+ei |2

)
− (ai

n
J)− ρnJ

(
|xJ−ei |2 − |xJ |2

)]
.

By definition of xJ , |xJ |2 − |xJ+ei |2 = −2Ji ∆x2
i − ∆x2

i and |xJ−ei |2 − |xJ |2 = −2Ji ∆x2
i + ∆x2

i .
Therefore, we get∑

J∈Zd

|xJ |2ρn+1
J =

∑
J∈Zd

|xJ |2ρnJ + 2∆t

d∑
i=1

∑
J∈Zd

Ji∆xi ai
n
J ρ

n
J + ∆t

d∑
i=1

∆xi
∑
J∈Zd

ρnJ |ainJ |.

As a consequence of Lemma 3.1, we have |ainJ | ≤ w∞. Using moreover the mass conservation, we

deduce that the last term is bounded by w∞∆t
∑d

i=1 ∆xi. Moreover, applying Young’s inequality
and using the mass conservation again, we get∣∣∣ ∑

J∈Zd

ai
n
J ρ

n
J Ji∆xi

∣∣∣ ≤ 1

2

(
w2
∞ +

∑
J∈Zd

|Ji∆xi|2 ρnJ
)
≤ 1

2

(
w2
∞ +

∑
J∈Zd

ρnJ |xnJ |2
)
.

We deduce then that there exists a nonnegative constant C only depending on d and w∞ such that∑
J∈Zd

|xJ |2ρn+1
J ≤

(
1 + C∆t

) ∑
J∈Zd

|xJ |2ρnJ + C∆t

(
d∑
i=1

∆xi + 1

)
.

We conclude the proof using a discrete version of Gronwall’s lemma.

In case when W is radial and satisfies (A0)–(A2), λ is (strictly) positive and ρini has a bounded
support, Lemmas 3.1 and 3.2 become:
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Lemma 3.3 Assume that W is radial and satisfies (A0)–(A2), λ is (strictly positive) and ρini has
a bounded support, then the conclusions of Lemmas 3.1 and 3.2 remain true provided that w∞ is
defined as in (2.19).

Moreover, for any R ≥ 0 such that Supp(ρini) ⊂ B∞(M1, R), it holds, for any n ∈ N,

Supp(ρn∆x) ⊂ B∞(M1,∆x, R+ ∆x),

that is
∀J ∈ Zd, xJ 6∈ B∞(M1,∆x, R+ ∆x)⇒ ρnJ = 0.

The meaning of Lemma 3.3 is pretty clear. For R as in the statement, the mass, as defined by
the numerical scheme, cannot leave the ball B∞(M1,∆x, R+ ∆x). We here recover the same idea as
in Theorem 2.1.

Proof. As long as we can prove that the mass, as defined by the numerical scheme, cannot leave
the ball B∞(M1,∆x, R + ∆x), the proof is similar to that of Lemmas 3.1 and 3.2. So, we focus on
the second part of the statement.

We first recall that ρ0
J =

∫
CJ
ρini(dx), for J ∈ Zd. Hence, if xJ 6∈ B∞(M1,∆x, R + ∆x), we have

xJ 6∈ B∞(M1, R + ∆x/2) and then CJ ∩ B∞(M1, R) = ∅ and thus ρ0
J = 0. Below, we prove by

induction that the same holds true for any n ∈ N. To do so, we assume that there exists an integer
n ∈ N such that, for all J ∈ Zd, ρnJ = 0 if

xJ 6∈ B∞(M1,∆x, R+ ∆x). (3.22)

The goal is then to prove that, for any J satisfying (3.22), ρn+1
J = 0. By (3.21), it suffices to prove

that, for any coordinate i ∈ {1, · · · , d} and any J as in (3.22),

ρnJ+ei

(
ai
n
J+ei

)−
= 0, and ρnJ−ei

(
ai
n
J−ei

)+
= 0. (3.23)

Without any loss of generality, we can assume that there exists a coordinate i0 ∈ {1, · · · , d} such
that (xJ)i0 > R+∆x+(M1,∆x)i0 (otherwise (xJ)i0 < −R−∆x+(M1,∆x)i0 and the argument below
is the same). Hence, (xJ+ei0

)i0 > R+ ∆x+ (M1,∆x)i0 and, by the induction hypothesis, ρnJ+ei0
= 0,

which proves the first equality in (3.23) when i = i0. In order to prove the second equality when
i = i0, we notice from (2.15) that

ai0
n
J−ei0

= −
∑
K∈Zd

ρnK ∂̂xi0W
(
xJ−ei0 − xK

)
= −

∑
K∈Zd:(xK)i0≤R+∆x+(M1,∆x)i0

ρnK ∂̂xi0W
(
xJ−ei0 − xK

)
= −

∑
K∈Zd:(xK)i0<(xJ )i0

ρnK ∂̂xi0W
(
xJ−ei0 − xK

)
= −

∑
K∈Zd:(xK)i0≤(xJ−ei0

)i0

ρnK ∂̂xi0W
(
xJ−ei0 − xK

)
.

As W is radial and λ > 0, ∇W (x−y) is positively proportional to x−y. Hence, ∂̂xi0W (xJ−ei0−xK) ≥
0 when (xK)i0 ≤ (xJ−ei0 )i0 . Therefore, (ai0

n
J−ei0

)+ = 0, which proves the second equality in (3.23).

It remains to prove (3.23) for i 6= i0. Obviously, (xnJ−ei)i0 = (xnJ+ei
)i0 = (xnJ)i0 > R + ∆x +

(M1,∆x)i0 . By the induction hypothesis, ρnJ−ei = ρnJ+ei
= 0, which completes the proof.
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Remark 3.4 Lemma 3.3 is the main rationale for requiring W to be radial. Indeed, the counter-
example below shows that the growth of the support of ρini can be hardly controlled whenever λ > 0
and W is just assumed to satisfy (A0)–(A2). Consider for instance the following potential in
dimension d = 2:

W (x1, x2) =
1

2

(
x1 − qx2

)2
+
q2

2
x2

2, (x1, x2) ∈ R2,

where q is a free integer whose value will be fixed later on. It is well checked that

∂x1W (x1, x2) = x1 − qx2, ∂x2W (x1, x2) = q(qx2 − x1) + q2x2.

Standard computations show that the smallest eigenvalue of the Hessian matrix (which is independent
of (x1, x2)) is

(1 + 2q2)− 2q2
√

1 + 1/(4q4)

2
∼q→∞

1

2
,

so that W is λ-convex with λ converging to 1/2 as q tends to ∞.
Take now a centered probability measure ρ and compute the first coordinate of the velocity field

âρ. By centering, (
âρ
)

1
(x1, x2) = qx2 − x1.

In particular, if x2 = 1, then (âρ)1(x1, 1) = q − x1, which is non-negative as long as x1 < q.
Therefore, if the numerical scheme is initialized with some centered ρ0

∆x supported by the unit square
[−1, 1]2, it holds

(âρ0
∆x

)1(1, 1) > 0,

if q > 1. Hence, provided that condition (2.17) holds true, ρ1
∆x charges the point (1 + ∆x, 1). Since

the numerical scheme preserves the centering, we also have

(âρ1
∆x

)1(1 + ∆x, 1) > 0,

if q > 1 + ∆x, and then ρ2
∆x also charges the point (1 + 2∆x, 1), and so on up until (∆xbq/∆xc, 1).

This says that there is no way to control the growth of the support of the numerical solution in terms
of the sole lower bound of the Hessian matrix. Somehow, the growth of ∇W plays a key role. This
is in stark contrast with the support of the real solution, which may be bounded independently of q,
as emphasized in the proof of Theorem 2.1.

A possible way to overcome the fact that the numerical scheme does not preserve any ball con-
taining the initial support in the general case when W is not radial would be to truncate the scheme.
We feel more reasonable not to address this question in this paper, as it would require to revisit in
deep the arguments used to tackle the case λ ≤ 0.

3.2 Comparison with a potential non-increasing scheme

It must be stressed that the scheme could be defined differently in order to force the potential (or
total energy:

∫∫
Rd×Rd W (x−y) ρ(dx) ρ(dy)) to be non-increasing. Basically, this requires the velocity

a to be defined as a discrete derivative.
For simplicity, we provide the construction of the scheme in dimension 1 only. For a probability

measure % ∈ P(Z) and a cell I ∈ Z, we consider the following two discrete convolutions of finite
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differences:

1

∆x

∑
J∈Z

[(
W
(
∆x(I + 1− J)

)
−W

(
∆x(I − J)

))
%J

]
=

[∫
Rd

W (x+ ∆x− y)−W (x− y)

∆x
%∆x(dy)

]
|x=I∆x

and
1

∆x

∑
J∈Z

[(
W
(
∆x(I − 1− J)

)
−W

(
∆x(I − J)

))
%J

]
=

[∫
Rd

W (x−∆x− y)−W (x− y)

∆x
%∆x(dy)

]
|x=I∆x

,

where, as before, %∆x is obtained by pushing forward % by the mapping y 7→ ∆x y. The two terms
above define velocities at the interfaces of the cell I. Namely, we call the first term −a

I+
1
2

and

the second one a
I−1

2
. Of course, the sign − in the former term guarantees the consistency of the

notation, that is a
(I+1)−1

2
is equal to a

I+
1
2
.

Following (2.14), the scheme is defined by:

ρn+1
J := ρnJ −

∆t

∆x

((
an
J+

1
2

)+
ρnJ −

(
an
J+

1
2

)−
ρnJ+1 +

(
an
J−1

2

)−
ρnJ −

(
an
J−1

2

)+
ρnJ−1

)
, (3.24)

for n ∈ N and J ∈ Z. It is shown in [13] that the potential is non-increasing for the semi-discretized
version of this scheme, which is to say that, up to a remainder of order 2 in ∆t (the value of ∆x
being fixed), the potential of the fully discretized scheme does not increase from one step to another.
The proof of the latter claim follows from a direct expansion of the quantity

1

2

∫
Rd

∫
Rd

W (x− y)ρn+1
∆x (dx)ρn+1

∆x (dy)

by using the updating rule for ρn+1
J in terms of ρnJ , ρnJ−1 and ρnJ+1.

The numerical scheme investigated in this paper does not satisfy the same property. Indeed,
we provide a counter example, which shows that the potential may increase when W is convex, as
a consequence of the numerical diffusion. However, the same example, but in dimension 1, shows
that the scheme (3.24) may not be convergent for certain forms of potential for which Theorem 2.2
applies, see Subsection 6.3.

Proposition 3.5 Choose d = 2, W (x) = |x| and take ∆x1 = ∆x2 = 1. Let the initial condition of
the scheme, which we just denote by ρ0, charge the points 0 = (0, 0), e1 = (1, 0) and e2 = (0, 1) with
1− p, p/2 and p/2 as respective weights, where p ∈ (0, 1).

Then, denoting by ρ1 the distribution at time 1 obtained by implementing the upwind scheme, it
holds that:∫

R2

∫
R2

|x− y|ρ1(dx)ρ1(dy) =

∫
R2

∫
R2

|x− y|ρ0(dx)ρ0(dy) +
(√

2− 1
)
p2(2p− 1)∆t+O(∆t2), (3.25)

where the Landau symbol O(·) may depend upon p.

Choosing p > 1/2 in (3.25), we see that the potential may increase at the same rate as the time
step.
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Proof. We first compute the potential at time 0. To do so, we compute
∫
R2 |x − y|ρ0(dy), for

x ∈ {0, e1, e2}:∫
R2

|y|ρ0(dy) = p,

∫
R2

|e1 − y|ρ0(dy) =

∫
R2

|e2 − y|ρ0(dy) = (1− p) +
p√
2
,

so that ∫
R2

∫
R2

|x− y|ρ0(dx)ρ0(dy) = 2(1− p)p+
p2

√
2
.

In order to compute the potential at time 1, we compute the velocity at each of the above points.
Observing that the velocity at point x is given by the formula:

ai
0
x =

∫
R2

yi − xi
|y − x|

ρ0(dy), i = 1, 2, with the convention
0

0
= 0,

we get:

a1
0
(0,0) =

p

2
, a2

0
(0,0) =

p

2
,

a1
0
(1,0) = −(1− p)− p

2
√

2
, a2

0
(1,0) =

p

2
√

2
,

a1
0
(0,1) =

p

2
√

2
, a2

0
(0,1) = −(1− p)− p

2
√

2
.

We then compute the new masses at time 1. There is one additional point which is charged:
e1 + e2 = (1, 1). We have:

ρ1(0) = (1− p) +
p2

2
√

2
∆t,

ρ1(e1) = ρ1(e2) =
p

2
− p2

2
√

2
∆t,

ρ1(e1 + e2) =
p2

2
√

2
∆t.

We now have all the required data to compute the potential at time 1.∫
R2

|y|ρ1(dy) = p− p2

√
2

∆t+
p2

2
∆t,∫

R2

|e1 − y|ρ1(dy) =

∫
R2

|e2 − y|ρ1(dy) = (1− p) +
p√
2

+
p2

√
2

∆t− p2

2
∆t,∫

R2

|e1 + e2 − y|ρ1(dy) = (1− p)
√

2 + p+
p2

2
∆t− p2

√
2

∆t.

Finally, the potential at time 1 is given by:∫
R2

∫
R2

|x− y|ρ1(dx)ρ1(dy) =
(

(1− p) +
p2

2
√

2
∆t
)(
p− p2

√
2

∆t+
p2

2
∆t
)

+
(
p− p2

√
2

∆t
)(

(1− p) +
p√
2

+
p2

√
2

∆t− p2

2
∆t
)

+
p2

2
√

2
∆t
(

(1− p)
√

2 + p+
p2

2
∆t− p2

√
2

∆t
)
.
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We expand the above right-hand side in powers of ∆t. The zero-order term is exactly equal to∫
R2

∫
R2 |x− y|ρ0(dx)ρ0(dy). So, we just compute the terms in ∆t. It is equal to

(1−
√

2)(1− p)p2 + (
√

2− 1)p3 = (
√

2− 1)p2(2p− 1),

which completes the proof.

4 Order of convergence

This section is devoted to the proof of Theorem 2.2.

4.1 Preliminaries

Before presenting the proof, we introduce some notations and establish some useful properties. We
first define the following interpolation weights: for J ∈ Zd and y ∈ Rd, we let

αJ(y) =



1−
d∑
i=1

|〈y − xJ , ei〉|
∆xi

when y ∈ CJ ,

1

∆xi

(
〈y − xJ−ei , ei〉

)+
when y ∈ CJ−ei , for i = 1, . . . , d,

1

∆xi

(
〈y − xJ+ei , ei〉

)−
when y ∈ CJ+ei , for i = 1, . . . , d,

0 otherwise.

(4.26)

The terminology interpolation weights is justified by the following straightforward observation. Given
a collection of reals (hJ)J∈Zd indexed by the cells of the mesh, which we may regard as a real-
valued function h : xJ 7→ hJ defined at the nodes of the mesh, we may define an interpolation of
h = (hJ)J∈Zd by letting

I(h)(y) =
∑
J∈Zd

hJαJ(y), y ∈ Rd. (4.27)

Obviously, the sum in the right-hand side makes sense since only a finite number of weights are non-
zero for a given value of y. Clearly, the functional I is an interpolation operator. As explained below,
I makes the connection between the analysis we perform in this paper and the one we performed in
our previous work [21].

Several crucial facts must be noticed. The first one is that, contrary to what one could guess
at first sight, the weights are not necessarily non-negative. For a given J ∈ Zd, take for instance
y = (yi = (Ji − 1

2)∆xi)i=1,...,d ∈ CJ . Then αJ(y) = 1 − d
2 , which is obviously negative if d ≥ 3.

However, the second point is that, for useful values of y, the weights are indeed non-negative provided
that the CFL condition (2.17) is in force. For a given J ∈ Zd, call indeed UJ the subset of CJ of
so-called useful values that are in CJ , as given by

UJ =
{
y ∈ Rd :

∣∣〈y − xJ , ei〉∣∣ ≤ w∞∆t, i = 1, . . . , d
}
.

Then, for any J, L ∈ Zd and any y ∈ UL, αJ(y) is non-negative, which is a direct consequence of the
CFL condition (2.17). In fact, the CFL condition (2.17) says more, and this is the rationale for the
additional factor 1

2 in (2.17): UJ is included in CJ . Of course, the consequence is that, under the
CFL condition (2.17), we have, for any J ∈ Zd, xJ+anJ∆t ∈ CJ , where anJ is the d-dimensional vector
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with entries (ai
n
J)i=1,··· ,d (indeed |ainJ |∆t ≤ w∞∆t < ∆xi/2). Another key fact is that the definition

of αJ(y) in (4.26) is closely related to the definition of the numerical scheme (2.14). Indeed, we have
the following formula, for any J, L ∈ Zd,

αJ
(
xL + ∆tanL

)
=



1−
d∑
i=1

|ainJ |
∆t

∆xi
when L = J,

∆t

∆xi

(
ai
n
J−ei

)+
when L = J − ei, for i = 1, . . . , d,

∆t

∆xi

(
ai
n
J+ei

)−
when L = J + ei, for i = 1, . . . , d,

0 otherwise.

(4.28)

In particular, we may rewrite (2.14) as

∀ J ∈ Zd, ρn+1
J =

∑
L∈Zd

ρnLαJ
(
xL + ∆tanL

)
, (4.29)

which is the core of our analysis below. In this regard, The following lemma gathers some useful
properties.

Lemma 4.1 Let (αL(y))L∈Zd,y∈Rd be defined as in (4.26). Then, for any y ∈ Rd, we have∑
L∈Zd

αL(y) = 1 and
∑
L∈Zd

xLαL(y) = y.

Proof. There exists a unique J ∈ Zd such that y ∈ CJ . Then, we compute

∑
L∈Zd

αL(y) = αJ(y) +

d∑
i=1

(
αJ+ei(y) + αJ−ei(y)

)
= 1−

d∑
i=1

|〈y − xL, ei〉|
∆xi

+
1

∆xi

d∑
i=1

(
〈y − xJ , ei〉

)+
+
(
〈y − xJ , ei〉

)−
= 1

Then, using the fact that xJ+ei − xJ = ∆xiei, for i = 1, . . . , d, we have

∑
L∈Zd

xLαL(y) = xJαJ(y) +

d∑
i=1

(
xJ+eiαJ+ei(y) + xJ−eiαJ−ei(y)

)
= xJ +

d∑
i=1

( 1

∆xi

(
〈y − xJ , ei〉

)+
∆xiei −

1

∆xi

(
〈y − xJ , ei

〉
)−∆xiei

)
= xJ +

d∑
i=1

〈y − xJ , ei〉ei = y,

which completes the proof.

Remark 4.2 Lemma 4.1 prompts us to draw a comparison with our previous paper [21]. For a given
y ∈ Rd in the set of useful values U := ∪J∈ZdUJ , namely y ∈ UJ for some J ∈ Zd, the collection of
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weights (αL(y))L∈Zd forms a probability measure, as the weights are non-negative and their sum is
1! In particular, I(h)(y) in (4.27), for y ∈ U , may be interpreted as an expectation.

Using the same terminology as in [21] (which is in fact the terminology of the theory of Markov
chains), those weights should be regarded as transition probabilities: For a given y in the set of useful
values, αL(y) reads as the probability of jumping from a certain state depending on the sole value of
y to the node xL. Of course, the interpretation of the so-called certain state depending on the sole
value of y is better understood from (4.28). In (4.28), if we fix a cell L ∈ Zd (or equivalently a node
xL), then αJ(xL + ∆tanL) should read as the probability of passing from the node xL to the node xJ
(or from the cell L to the cell J) at the nth step of a (time inhomogeneous) Markov chain having the
collection of nodes (or of cells) as state space. In this regard, (4.29) is nothing but the Kolmogorov
equation for the corresponding Markov chain, as (ρnJ)J∈Zd can be interpreted as the law at time n of
the Markov chain driven by the latter transition probabilities. The reader can easily check that the
so-called stochastic characteristic used in [21] is in fact this Markov chain.

Below, we do not make use of the Markov chain explicitly. Still, we use the weights (αJ(y))J∈Zd,y∈Rd

to construct a coupling between the two measures ρn∆x and ρn+1
∆x , that is to construct a specific element

of Γ(ρn∆x, ρ
n+1
∆x ). In [21], this coupling does not explicitly show up but it is in fact implicitly used, as

it coincides with the joint law of two consecutive states of the aforementioned Markov chain.
In a nutshell, the reader can reformulate the whole analysis below in a probabilistic fashion. The

only (conceptual) difficulty to do so is that, in contrast with [21], the Markov chain is here nonlinear:
as an in (2.15) depends on ρn, the transition probabilities of the Markov do depend upon the marginal
law of the Markov chain itself, which fact gives rise to a so-called nonlinear Markov chain!

4.2 Proof of Theorem 2.2

1st step. We first consider the case where the initial datum is given by ρini := ρ0
∆x =

∑
J∈Zd ρ0

JδxJ ,
where we recall that ρ0

J is defined in (2.13). For n ∈ N∗, let us define

Dn := dW
(
ρ(tn), ρn∆x

)
.

Clearly, with our choice of initial datum, we have D0 = 0.
Let γ be an optimal plan in Γ0(ρ(tn), ρn∆x), we have

Dn =

(∫∫
Rd×Rd

|x− y|2γ(dx, dy)

)1/2

.

Let us introduce an∆x, the piecewise affine in each direction reconstruction of the velocity such
that for all J ∈ Zd, an∆x(xJ) = anJ Denote also by Z := Zρ the flow given by Theorem 2.1, when
ρini is prescribed as above. Recalling the definition of αJ(y) from (4.26), we then consider a new
measure γ′, defined as the image of γ by the kernel K that associates with a point (x, y) ∈ Rd × Rd
the point (Z(tn+1; tn, x), xL) with measure αL(y + ∆tan∆x(y)), namely, for any two Borel subsets A
and B of Rd,

K
(
(x, y), A×B

)
= 1A

(
Z(tn+1; tn, x)

) ∑
L∈Zd

αL
(
y + ∆tan∆x(y)

)
1B(xL)

=

∫∫
Rd×Rd

1A×B(x′, y′)

[
δZ(tn+1;tn,x) ⊗

(∑
L∈Zd

αL
(
y + ∆tan∆x(y)

)
δxL

)]
(dx′, dy′),

where δz denotes the Dirac mass at point z, and then

γ′(A×B) =

∫∫
Rd×Rd

K
(
(x, y), A×B

)
γ(dx, dy).
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Equivalently, for any bounded Borel-measurable function θ : Rd × Rd → R,∫∫
Rd×Rd

θ(x, y)γ′(dx, dy) =

∫∫
Rd×Rd

[∑
L∈Zd

θ
(
Z(tn+1; tn, x), xL

)
αL
(
y + ∆tan∆x(y)

)]
γ(dx, dy).

(4.30)
Then we have γ′ ∈ Γ(ρ(tn+1), ρn+1

∆ ). Indeed, for any bounded Borel-measurable function θ1 : Rd →
R, we have, from (4.30) and Lemma 4.1,∫∫

Rd×Rd

θ1(x)γ′(dx, dy) =

∫∫
Rd×Rd

[∑
L∈Zd

θ1

(
Z(tn+1; tn, x)

)
αL
(
y + ∆tan∆x(y)

)]
γ(dx, dy)

=

∫∫
Rd×Rd

θ1

(
Z(tn+1; tn, x)

)
γ(dx, dy)

=

∫
Rd

θ1

(
Z(tn+1; tn, x)

)
ρ(tn, dx) =

∫
Rd

θ1(x)ρ(tn+1, dx),

where we used Theorem 2.1 and where ρ(tn, dx) is a shorter notation for ρ(tn)(dx) and similarly for
ρ(tn+1, dx). Similarly, for any bounded Borel-measurable function θ2 : Rd → R,∫∫

Rd×Rd

θ2(y)γ′(dx, dy) =

∫∫
Rd×Rd

[∑
L∈Zd

θ2(xL)αL
(
y + ∆tan∆x(y)

)]
γ(dx, dy)

=
∑
J∈Zd

∑
L∈Zd

θ2(xL)αL
(
xJ + ∆tanJ

)
ρnJ

=
∑
L∈Zd

θ2(xL)ρn+1
L =

∫
Rd

θ2(y)ρn+1
∆x (dy),

where we used (4.29). In particular, we deduce

D2
n+1 ≤

∫∫
Rd×Rd

|x− y|2γ′(dx, dy).

Using the definition of γ′ given in (4.30), we get

D2
n+1 ≤

∫∫
Rd×Rd

∑
L∈Zd

∣∣Z(tn+1; tn, x)− xL
∣∣2αL(y + ∆tan∆x(y)

)
γ(dx, dy). (4.31)

Using both equalities of Lemma 4.1, we compute1∑
L∈Zd

∣∣Z(tn+1; tn, x)− xL
∣∣2αL(y + ∆tan∆x(y)

)
=
∑
L∈Zd

∣∣∣(Z(tn+1; tn, x)−
(
y + ∆tan∆x(y)

))
−
(
xL −

(
y + ∆tan∆x(y)

))∣∣∣2αL(y + ∆tan∆x(y)
)

=
∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)

∣∣2 +
∑
L∈Zd

∣∣xL − y −∆tan∆x(y)
∣∣2αL(y + ∆tan∆x(y)

)
− 2

〈
Z(tn+1; tn, x)− y −∆tan∆x(y),

∑
L∈Zd

(
xL − y −∆tan∆x(y)

)
αL
(
y + ∆tan∆x(y)

〉
. (4.32)

1The probabilistic reader will easily recognize the standard computation of the L2 norm of a random variable in
terms of its variance and its expectation, which indeed plays, but under a conditional form, a key role in [21].
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Now, as a consequence of Lemma 4.1, we observe that∑
L∈Zd

(
xL − y −∆tan∆x(y)

)
αL
(
y + ∆tan∆x(y)

)
= 0.

Thus, equation (4.32) rewrites∑
L∈Zd

∣∣Z(tn+1; tn, x)− xL
∣∣2αL(y + ∆tan∆x(y)

)
=
∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)

∣∣2
+
∑
L∈Zd

∣∣xL − y −∆tan∆x(y)
∣∣2αL(y + ∆tan∆x(y)

)
.

Injecting into (4.31), we deduce

D2
n+1 ≤

∫∫
Rd×Rd

∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)
∣∣2γ(dx, dy)

+

∫
Rd

∑
L∈Zd

∣∣xL − y −∆tan∆x(y)
∣∣2αL(y + ∆tan∆x(y)

)
ρn∆x(dy), (4.33)

where we used the fact that ρn∆x is the second marginal of γ. By definition, ρn∆x(y) =
∑

J∈Zd ρnJδJ(y),
so that ∑

L∈Zd

∫
Rd

∣∣xL − y −∆tan∆x(y)
∣∣2αL(y + ∆tan∆x(y)

)
ρn∆x(dy)

=
∑
J∈Zd

∑
L∈Zd

∣∣xL − xJ −∆tanJ
∣∣2αL(xJ + ∆tanJ

)
ρnJ .

Moreover using the definition of αL in (4.26), we compute∑
L∈Zd

∣∣xL − xJ −∆tanJ
∣∣2αL(xJ + ∆tanJ

)
= ∆t2|anJ |2

(
1−

d∑
i=1

∆t

∆xi
|ainJ |

)
+

d∑
i=1

(∣∣∆xiei −∆tanJ
∣∣2 ∆t

∆xi
(ai

n
J)+ +

∣∣∆xiei + ∆tanJ
∣∣2 ∆t

∆xi
(ai

n
J)−
)

≤ C∆t(∆t+ ∆x),

where we used, for the last inequality, the CFL condition (2.17) and the fact that the velocity (anJ)J
is uniformly bounded (see Lemma 3.1 or Lemma 3.3). Then, (4.33) gives

D2
n+1 ≤

∫∫
Rd×Rd

∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)
∣∣2γ(dx, dy) + C∆t(∆t+ ∆x). (4.34)

2nd step. We have to estimate the error between the exact characteristic Z(tn+1; tn, x) and the
forward Euler discretization y + ∆tan∆x(y). By definition of the characteristics (2.7), we have

Z(tn+1; tn, x) = x+

∫ tn+1

tn
âρ
(
s, Z(s; tn, x)

)
ds

= x−
∫ tn+1

tn

∫
Rd

∇̂W
(
Z(s; tn, x)− Z(s; tn, ξ)

)
ρ(tn, dξ)ds.
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We recall also that, by definition (2.15), the approximating velocity is given by

anL = −
∑
J∈Zd

ρnJ∇̂W (xL − xJ),

so that for y, a node of the mesh,

y + ∆tan∆x(y) = y −∆t

∫
Rd

∇̂W (y − ζ)ρn∆x(dζ
)
.

Thus, by a straightforward expansion and still for y a node of the mesh,∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)
∣∣2 ≤ |x− y|2

− 2

∫ tn+1

tn

∫∫
Rd×Rd

〈
x− y, ∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

〉
ρ(tn, dξ)ρn∆x(dζ) + C∆t2.

By definition of the optimal plan γ ∈ Γ0(ρ(tn), ρn∆x), we also have∫∫
Rd×Rd

〈
x− y, ∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

〉
ρ(tn, dξ)ρn∆x(dζ)

=

∫∫
Rd×Rd

〈
x− y, ∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

〉
γ(dξ, dζ)

Injecting into (4.34), we get

D2
n+1 ≤ D2

n + C∆t(∆t+ ∆x)

− 2

∫ tn+1

tn

∫∫
Rd×Rd

∫∫
Rd×Rd

〈
x− y, ∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

〉
γ(dξ, dζ)γ(dx, dy).

Decomposing x − y = x − Z(s; tn, x) + Z(s; tn, x) − y and using the fact that |Z(s; tn, x) − x| ≤
w∞|s− tn|, we get

D2
n+1 ≤ D2

n + C∆t(∆t+ ∆x)

− 2

∫ tn+1

tn

∫∫
Rd×Rd

∫∫
Rd×Rd

〈
Z(s; tn, x)− y, ∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

〉
γ(dξ, dζ)γ(dx, dy).

Then, we may use the symmetry of the potential W in assumption (A0) for the last term to deduce

D2
n+1 ≤ D2

n + C∆t(∆t+ ∆x)

−
∫ tn+1

tn

∫∫
Rd×Rd

∫∫
Rd×Rd

〈
Z(s; tn, x)− Z(s; tn, ξ)− y + ζ,

∇̂W
(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

〉
γ(dξ, dζ)γ(dx, dy).

Moreover, from the λ-convexity of W (2.6), we obtain

D2
n+1 ≤D2

n + C∆t(∆t+ ∆x)

− λ
∫ tn+1

tn

∫∫
Rd×Rd

∫∫
Rd×Rd

∣∣Z(s; tn, x)− y − Z(s; tn, ξ) + ζ
∣∣2 γ(dξ, dζ)γ(dx, dy).
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Expanding the last term, we deduce

D2
n+1 ≤ D2

n + C∆t(∆t+ ∆x)− 2λ

∫ tn+1

tn

∫∫
Rd×Rd

∣∣Z(s; tn, x)− y
∣∣2 γ(dx, dy)

+ 2λ

∫ tn+1

tn

∣∣∣∣∫∫
Rd×Rd

(
Z(s; tn, x)− y

)
γ(dx, dy)

∣∣∣∣2. (4.35)

3rd step. Now we distinguish between the two cases λ ≤ 0 and λ > 0.
(i) Starting with the case λ ≤ 0, we have that the last term in (4.35) is nonpositive. Using

Young’s inequality and the estimate |x− Z(s; tn, x)| ≤ w∞(s− tn), we get, for any ε > 0,∣∣Z(s; tn, x)− y
∣∣2 ≤ (1 + ε)|x− y|2 + (1 +

1

ε
)w2
∞|s− tn|2.

Hence, injecting into (4.35), we deduce

D2
n+1 ≤

(
1 + 2(1 + ε)|λ|∆t

)
D2
n + C∆t

(
∆x+ ∆t(1 +

∆t

ε
)
)
.

Applying a discrete Gronwall inequality, we obtain

D2
n ≤ e2(1+ε)|λ|tn

(
D2

0 + Ctn
(

∆x+ ∆t(1 +
∆t

ε
)
))

.

We recall that our choice of initial data implies D0 = 0. Finally, taking ε = ∆t, we conclude

dW
(
ρ(tn), ρn∆

)
≤ Ce(1+∆t)|λ|tn√tn(∆x+ ∆t).

It allows to conclude the proof of Theorem 2.2 (i) in the case ρini = ρ0
∆x.

(ii) Considering now the case λ > 0, we have∫∫
Rd×Rd

(
Z(s; tn, x)− y

)
γ(dx, dy) =

∫
Rd

(
Z(s; tn, x)− x

)
ρ(tn, dx) +

∫
Rd

xρ(tn, dx)−
∑
J∈Zd

xJρ
n
J .

By conservation of the center of mass, see Lemma 3.2 (i), we deduce that∫
Rd

xρ(tn, dx)−
∑
J∈Zd

xJρ
n
J =

∫
Rd

xρini(dx)−
∑
J∈Zd

xJρ
0
J = 0,

since we have chosen the initial data such that ρini = ρ0
∆x. Using also the bound |Z(s; tn, x)− x| ≤

w∞(s − tn), we may bound the last term of (4.35) by w2
∞∆t2. Moreover, using again Young’s

inequality and the estimate |Z(s; tn, x)− x| ≤ w∞(s− tn), we have, for any ε > 0,

|x− y|2 ≤ (1 + ε)
∣∣Z(s; tn, x)− y

∣∣2 + (1 +
1

ε
)w2
∞|s− tn|2.

It implies, for any ε ∈ (0, 1),

−
∣∣Z(s; tn, x)− y

∣∣2 ≤ − 1

1 + ε
|x− y|2 +

1

ε
w2
∞|s− tn|2

≤ −(1− ε)|x− y|2 +
1

ε
w2
∞|s− tn|2.
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Thus we deduce that

−2λ

∫ tn+1

tn

∫∫
Rd×Rd

∣∣Z(s; tn, x)− y
∣∣2γ(dx, dy) ≤ −2λ(1− ε)∆tDn +

2

3

λ

ε
w2
∞∆t3.

Injecting this latter inequality into (4.35) and taking ε = ∆t, we deduce

D2
n+1 ≤

(
1− 2λ(1−∆t)∆t

)
D2
n + C∆t(∆t+ ∆x)

Hence, since 2λ(1−∆t)∆t < 1, we have by induction, recalling that D0 = 0,

D2
n ≤ C∆t(∆t+ ∆x)

n−1∑
k=0

(
1− 2λ(1−∆t)∆t

)k ≤ C

2(1−∆t)λ
(∆t+ ∆x).

Using the assumption ∆t ≤ 1/2, we conclude the proof of Theorem 2.2 (ii) in the case ρini = ρ0
∆x.

4th step. We are left with the case ρini 6= ρ0
∆x. Let us define ρ′(t) = Z ′(t)#ρ

0
∆x, the exact

solution with initial data ρ0
∆x. From the triangle inequality, we have

dW
(
ρ(tn), ρn∆x

)
≤ dW

(
ρ(tn), ρ′(tn)

)
+ dW

(
ρ′(tn), ρn∆x

)
.

The last term in the right hand side may be estimated thanks to the above computations. For the
first term in the right hand side, we use the estimates in Theorem 2.1 (we apply (i) if λ ≤ 0 and (ii)
if λ > 0):

dW
(
ρ(tn), ρ′(tn)

)
≤ e(λ)−tndW

(
ρini, ρ0

∆x

)
,

where (λ)− = max(−λ, 0) is the negative part of λ.
Let us define τ : [0, 1] × Rd → Rd by τ(σ, x) = σxJ + (1 − σ)x, for x ∈ CJ . We have that

τ(0, ·) = id and τ(1, ·)#ρ
ini = ρ0

∆x. Then

dW
(
ρini, ρ0

∆x

)2 ≤ ∫
Rd×Rd

|x− y|2
[
(id× τ(1, ·))#ρ

ini
]
(dx, dy)

≤
∑
J∈Zd

ρ0
J

∫
CJ

|x− xJ |2 ρini(dx).
(4.36)

We deduce dW (ρini, ρ0
∆x) ≤ ∆x. Then, we get

dW
(
ρ(tn), ρ′(tn)

)
≤ e(λ)−tn∆x.

5 Unstructured mesh

We can extend our convergence result to more general meshes. For the sake of simplicity of the
notation, we present the case of a triangular mesh in two dimensions. This approach can be easily
extended to meshes made of simplices, in any dimension.

5.1 Forward semi-Lagrangian scheme

Let us consider a triangular mesh T = (Tk)k∈Z with nodes (xi)i∈Z. We assume this mesh to be
conformal: A summit cannot belong to an open edge of the grid. The triangles (Tk)k∈Z are assumed
to satisfy

⋃
k∈Z Tk = R2 and Tk ∩ Tl = ∅ if k 6= l (in particular, the cells are here not assumed

to be closed nor open). For any triangle T with summits x, y, z, we will use also the notation
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(x, y, z) = T . We denote by V(T ) = V(x, y, z) the area of this triangle, and h(T ) its height (defined
as the minimum of the three heights of the triangle T ). We make the assumption that the mesh
satisfies ~ := infk∈Z h(Tk) > 0.

For any node xi, i ∈ Z, we denote by K(i) the set of indices indexing triangles that have xi
as a summit, and we denote by Ti the set of all triangles of T that have xi as a summit: thus
Ti = {Tk; k ∈ K(i)}.

For any triangle Tk, k ∈ Z, we denote by

I(k) = {I1(k), I2(k), I3(k)}

the set of indices indexing the summits of Tk (for some arbitrary order, whose choice has no impor-
tance for the sequel).

We consider the following scheme, which may be seen as a forward semi-Lagrangian scheme on
the triangular mesh.

• For an initial distribution ρini of the PDE (1.1), define the probability weights (ρ0
i )i∈Z through

the following procedure: Consider the one-to-one mapping ι : Z 3 k 7→ ι(k) ∈ Z such that, for
each k ∈ Z, xι(k) is a node of the triangle Tk; ι is thus a way to associate a node with a cell;
then, for all i ∈ Z, let ρ0

i =
∑

k:ι(k)=i ρ
ini(Tk). Observe from (4.36) that ρ0

∆x =
∑

j∈Z ρ
0
jδxj is

an approximation of ρini.

• Assume that, for a given n ∈ N, we already have probability weights (ρni )i∈Z such that ρn∆x =∑
j∈Z ρ

n
j δxj is an approximation of ρ(tn, ·), where ρ is the solution to (1.1) with ρini as initial

condition. For i ∈ Z, we let

ani := −
∫
Rd

∇̂W (xi − y) ρn∆x(dy), and yni := xi + ani ∆t.

Under the CFL-like condition
w∞∆t ≤ ~, (5.37)

yni belongs to one (and only one) of the elements of Ti. We denote by kni the index of this
triangle, namely yni ∈ Tkni .

• We use a linear splitting rule between the summits of the triangle Tkni : the mass ρni is sent to
the three points xI1(kni ), xI2(kni ), xI3(kni ) according to the barycentric coordinates of yni in the
triangle.

xi = xI1(kni ) xI2(kni )

xI3(kni )

yni
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Let us make more precise the latter point. Let T = (x, y, z) ∈ T , and ξ ∈ T . We define the
barycentric coordinates of ξ with respect to x, y and z, λTx , λTy and λTz :

λTx (ξ) =
V(ξ, y, z)

V(T )
, λTy (ξ) =

V(ξ, x, z)

V(T )
, λTz (ξ) =

V(ξ, x, y)

V(T )
, (5.38)

and then have ξ = λTx (ξ)x+ λTy (ξ)y+ λTz (ξ)z. Note also that λTx (ξ) + λTy (ξ) + λTz (ξ) = 1. Therefore,
we have the following fundamental property, which will be used in the sequel:

λTx (ξ)(x− ζ) + λTy (ξ)(y − ζ) + λTz (ξ)(z − ζ) = ξ − ζ, (5.39)

for any ζ ∈ R2.
In the same spirit as in Section 4, we here define the interpolation weights by: For j ∈ Z, and

y ∈ R2,

αj(y) :=

{
λTxj (y), when y ∈ T,

0, otherwise.
(5.40)

Then, the numerical scheme reads

ρn+1
j =

∑
i∈Z

ρni αj(xi + ani ∆t), j ∈ Z, n ∈ N. (5.41)

We easily verify from (5.38) and (5.39) that the interpolation weights satisfy:

Lemma 5.1 Let (αj(y))j∈Z,y∈R2 be defined as in (5.40). Then, for any j ∈ Z and y ∈ R2, αj(y) ≥ 0.
Moreover, for any y ∈ R2, ∑

j∈Z
αj(y) = 1,

∑
j∈Z

xjαj(y) = y.

5.2 Convergence result

By the same token as in Section 4, we can use Lemma 5.1 and Theorem 2.1 to prove that the
numerical scheme (5.41) is of order 1/2:

Theorem 5.2 Assume that W satisfies hypotheses (A0)–(A3). For ρini ∈ P2(Rd), let (ρ(t))t≥0 be
the unique measure solution to the aggregation equation with initial data ρini, as given by Theorem
2.1. Let us also consider a triangular conformal mesh (Tk)k∈Z with nodes (xj)j∈Z such that ~ =
infk∈Z h(Tk) > 0 and the CFL condition (5.37) holds true. We denote by ∆x the longest edge in the
mesh.

Define ((ρnj )j∈Z)n∈N as in (5.41) and let

ρn∆x :=
∑
j∈Z

ρnj δxj , n ∈ N.

Then, there exists a nonnegative constant C, independent of the discretization parameters, such that,
for all n ∈ N∗,

dW (ρ(tn), ρn∆x) ≤ Ce|λ|(1+∆t)tn
(√
tn∆x+ ∆x

)
.

Importantly, we do not claim that (ii) in the statement of Theorem 2.2 remains true in the
framework of Theorem 5.2. Indeed, it would require to prove that the support of the numerical
solution remains included in a ball when the support of the initial condition is bounded. As made
clear by the proof of Lemma 3.3, this latter fact depends on the geometry of the mesh.
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6 Numerical illustrations

We now address several numerical examples. In Subsection 6.2, we show that the rate of convergence
established in Theorem 2.2 is optimal in a one-dimensional example. This prompts us to start with
a short reminder on the Wasserstein distance in dimension d = 1. In Subsection 6.3, we provide
several numerical examples in dimension d = 1 for the Newtonian potential, whilst examples in
dimension d = 2 are handled in Subsection 6.4.

6.1 Wasserstein distance in one dimension

The numerical computation of the Wasserstein distance between two probablity measures in any
dimension is generally quite difficult. However, in dimension d = 1, there is an explicit expression
of the Wasserstein distance and this allows for direct computations, including numerical purposes,
as shown in the pioneering work [29]. Indeed, any probability measure µ on the real line R can
be described thanks to its cumulative distribution function F (x) = µ((−∞, x]), which is a right-
continuous and non-decreasing function with F (−∞) = 0 and F (+∞) = 1. Then we can define
the generalized inverse Qµ of F (or monotone rearrangement of µ) by Qµ(z) = F−1(z) := inf{x ∈
R : F (x) > z}; it is a right-continuous and non-decreasing function, defined on [0, 1). For every
non-negative Borel-measurable map ξ : R→ R, we have∫

R
ξ(x)µ(dx) =

∫ 1

0
ξ(Qµ(z)) dz.

In particular, µ ∈ P2(R) if and only if Qµ ∈ L2((0, 1)). Moreover, in the one-dimensional setting,
there exists a unique optimal transport plan realizing the minimum in (2.3). More precisely, if µ and
ν belong to Pp(R), with monotone rearrangements Qµ and Qν , then Γ0(µ, ν) = {(Qµ, Qν)#L(0,1)}
where L(0,1) is the restriction to (0, 1) of the Lebesgue measure. Then we have the explicit expression
of the Wasserstein distance (see [47, 53])

dW (µ, ν) =

(∫ 1

0
|Qµ(z)−Qν(z)|2 dz

)1/2

, (6.42)

and the map µ 7→ Qµ is an isometry between P2(R) and the convex subset of (essentially) non-
decreasing functions of L2([0, 1)).

We will take advantage of this expression (6.42) of the Wasserstein distance in dimension 1 in
our numerical simulations to estimate the numerical error of the upwind scheme (2.14). This scheme
in dimension 1 on a Cartesian mesh reads, with time step ∆t and cell size ∆x:

ρn+1
j = ρnj −

∆t

∆x

(
(anj )+ρnj − (anj+1)−ρnj+1 − (anj−1)+ρnj−1 + (anj )−ρnj

)
. (6.43)

With this scheme, we define the probability measure ρn∆x =
∑

j∈Z ρ
n
j δxj . Then the generalized

inverse of ρn∆x, denoted by Qn∆x, is given by

Qn∆x(z) = xj+1, for z ∈
[∑
k≤j

ρnk ,
∑
k≤j+1

ρnk

)
. (6.44)

6.2 Optimality of the order of convergence

Thanks to formula (6.42) in dimension d = 1, we can verify numerically the optimality of our result.
Let us consider the potential W (x) = 2x2 for |x| ≤ 1 and W (x) = 4|x|−2 for |x| > 1; such a potential
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verifies our assumptions (A0)–(A3) with λ = 0. We choose the initial datum ρini = 1
2δ−x0 + 1

2δx0

with x0 = 0.25. Then the solution to the aggregation equation (1.1) is given by

ρ(t) =
1

2
δ−x0(t) +

1

2
δx0(t), x0(t) =

1

4
e−4t, t ≥ 0.

The generalized inverse Qρ(t, ·) = Qρ(t) of ρ(t) is given, for z ∈ [0, 1), by Qρ(t, z) = −x0(t) if
z ∈ [0, 1/2), and Qρ(t, z) = x0(t) if z ∈ [1/2, 1). Therefore, letting unj :=

∑
k≤j ρ

n
k for j ∈ Z, we can

easily compute the error at time tn = n∆t by means of the two formulas (6.42)–(6.44):

en := dW
(
ρ(tn), ρn∆x

)
=
∑
k∈Z

∫ unk

unk−1

|xk −Qρ(tn, z)|dz.

We then define the numerical error as e := maxn≤T/∆t en. We display in Figure 1 the numerical error
with respect to the number of nodes in logarithmic scale, as computed with the above procedure
(the time steps being chosen in a such a way that the ratio (2.17) in the CFL condition is kept
constant). We observe that the computed numerical error is of order 1/2.

5 5.5 6 6.5 7 7.5 8 8.5
−5.5

−5

−4.5

−4

−3.5

−3

 

 
error d

W

slope 1/2

Figure 1: Numerical error with respect to the number of nodes in logarithmic scale for the upwind
scheme in Wasserstein distance for the potential W defined by W (x) = 2x2 for |x| ≤ 1 and W (x) =
4|x| − 2 for |x| > 1, and an initial datum given by the sum of two Dirac deltas.

6.3 Newtonian potential in one dimension

An interesting and illustrative example is the Newtonian potential in dimension d = 1. Let us indeed
consider the case W (x) = |x| and an initial datum given by the sum of two masses located at points
xi1 and xi2 of the grid mesh, namely ρini = 1

2δxi1 + 1
2δxi2 , with say xi1 < xi2 . The solution of the

aggregation equation in Theorem 2.1 is given by ρ(t) = 1
2δx1(t) + 1

2δx2(t), where

x1(t) = xi1 +
t

2
, x2(t) = xi2 −

t

2
, for t < xi2 − xi1 .
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Indeed, recalling definition (2.4), we have, for t < xi2 − xi1 :

âρ(t, x) =



1, if x < x1(t),
1
2 , if x = x1(t),

0, if x1(t) < x < x2(t),

−1
2 , if x = x2(t),

−1, if x > x2(t).

At t = xi2 − xi1 , the two particles collapse, then for t ≥ xi2 − xi1 , we have ρ(t) = δ 1
2

(xi1+xi2 ).

Standard finite volume upwind scheme. This simple example explains why we have chosen
the scheme (6.43) instead of the standard finite volume upwind scheme introduced in Subsection
3.2. In dimension d = 1 and on a Cartesian grid, this latter one reads

ρn+1
i = ρni −

∆t

∆x

(
(ani+1/2)+ρni − (ani+1/2)−ρni+1 − (ani−1/2)+ρni−1 + (ani−1/2)−ρni

)
, (6.45)

where ani+1/2 = −
∑

k∈Z ρ
n
k sign(xi+1/2 − xk).

Assume indeed that, at time tn, for some n ∈ N, we have obtained the approximation ρni = 0 for
i ∈ Z \ {i1, i2}, and ρni1 = ρni2 = 1/2. We then compute

ani+1/2 =


1, for i < i1
0, for i1 ≤ i < i2
−1, for i ≥ i2.

So, when applying the upwind scheme for i ∈ {i1 − 1, i1, i1 + 1}, we get

ρn+1
i1−1 = ρni1−1 −

∆t

∆x

(
ρni1−1 − ρni1−2

)
= 0,

ρn+1
i1

= ρni1 +
∆t

∆x
ρni1−1 = ρni1 ,

ρn+1
i1+1 = ρni1+1 = 0.

Doing the same computation for i ∈ {i2 − 1, i2, i2 + 1}, we deduce that ρn+1 = ρn. Thus the above
upwind scheme may be not able to capture the correct dynamics of Dirac deltas. The above compu-
tation is illustrated by the numerical results in Figure 2, where a comparison between the numerical
results obtained with (6.45) (left) and with (6.43) (right) is displayed. We observe that the Dirac
deltas are stationary when using the scheme (6.45), whereas the scheme (6.43) permits to catch the
right dynamics. Another interesting numerical illustration of this phenomenon is provided by Figure
3. In this example, we choose the potential W (x) = 1 − e−2|x|, which is −4-convex, and a smooth
initial datum given by the sum of two Gaussian functions: ρini(x) = 1

M (e−20(x−0.5)2
+ e−20(x+0.5)2

),
where M = ‖ρini‖L1 is a normalization coefficient. With this choice, we observe that the solution
blows-up quickly. Dirac deltas appear in finite time and, as observed above, the scheme (6.45)
(Fig. 3-left) does not allow to capture the dynamics after blow-up time, whilst the scheme (6.43)
(Fig. 3-right) succeeds to do so. For these numerical simulations, the numerical spatial domain is
[−1.25, 1.25]; it is discretized with a uniform Cartesian grid of 800 nodes, and the ratio in the CFL
condition (2.17) is 1/2.

Comparison with Burgers-Hopf equation. Considering the potential W (x) = 1
2 |x|, it has

been proved in [35] (see also [9]) that the following equivalence holds true: ρ is the solution in
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Figure 2: Numerical result for the one dimensional aggregation equation with W (x) = |x| and an
initial datum given by two Dirac deltas. Left: Result obtained with the standard upwind scheme
(6.45) with a velocity computed at the interfaces of the mesh. Right: Result with the scheme (6.43).
As already emphasized in Example 2.3, this shows once again that a great care must be paid to the
choice of the scheme in order to recover the correct dynamics of Dirac deltas.
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Figure 3: Numerical result for the one dimensional aggregation equation with W (x) = 1 − e−2|x|

and an initial datum given by the sum of two Gaussian functions. Left: Result obtained with the
standard upwind scheme (6.45) with a velocity computed at the interfaces of the mesh. Right:
Result with the scheme (6.43). As in Fig. 2, the upwind scheme (6.45) does not capture the right
dynamics of the Dirac deltas after blow-up time.

Theorem 2.1 if and only if u = −W ′ ∗ ρ is the entropy solution of the Burgers-Hopf equation
∂tu+ 1

2∂xu
2 = 0.

Let (ρni )i∈Z,n∈N be given by the scheme (2.14)–(2.15). By conservation of the total mass, see
Lemma 3.2, we have

∑
k∈Z ρ

n
k = 1. Introducing

uni :=
1

2
−
∑
k≤i

ρnk , i ∈ Z, n ∈ N,
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we deduce, by summing (2.14) and by using the fact that ρni = −(uni − uni−1), that the family
(uni )i∈Z,n∈N satisfies:

un+1
i = uni −

∆t

∆x

(
(ani )+(uni − uni−1)− (ani+1)−(uni+1 − uni )

)
, (6.46)

where, with (2.15), we have

ani = −1

2

∑
k 6=i

ρnksign (xi − xk).

Then

ani = −1

2

(∑
k<i

ρnk −
∑
k>i

ρnk

)
= −1

2

(∑
k<i

ρnk − 1 +
∑
k≤i

ρnk

)
=

1

2
(uni−1 + uni ).

Moreover, as ρni remains nonnegative under the CFL condition (see Lemma 3.1), uni −uni−1 = −ρni ≤
0, so that

(ani )+(uni − uni−1) = −
(
ani (uni − uni−1)

)−
= −1

2

(
(uni )2 − (uni−1)2

)−
.

Similarly, we get

(ani+1)−(uni+1 − uni ) = −
(
ani+1(uni+1 − uni )

)+
= −1

2

(
(uni+1)2 − (uni )2

)+
,

so that the scheme (6.46) for u finally rewrites

un+1
i = uni −

∆t

2∆x

(
((uni+1)2 − (uni )2)− − ((uni )2 − (uni−1)2)+

)
. (6.47)

Then we may apply the main result of this paper and deduce the convergence at order 1/2 of
the above scheme:

Lemma 6.1 Let uini be given in BV (R) such that ∂xu
ini ≤ 0 and TV (uini) = 1. Define the

family (uni )i∈Z,n∈N by means of (6.47), with the initial data u0
i := 1

2 + ∂xu
ini(−∞, xi+ 1

2
), and let

un∆x :=
∑

i∈Z u
n
i 1[xi,xi+1). Let u be the entropy solution to the Burgers equation ∂tu+ 1

2∂xu
2 = 0 with

uini as initial condition. Then, there exists C ≥ 0, independent of the discretization parameters,
such that if the CFL condition ∆t < ∆x is satisfied, one has

‖u(tn)− un∆x‖L1 ≤ C
(√
tn∆x+ ∆x

)
.

Remark 6.2 We do not claim that the scheme converges for any initial datum of the Cauchy prob-
lem for the Burgers equation (and actually it does not). The convergence result above only applies
to a non-increasing initial condition belonging to [−1/2, 1/2].
Note that this scheme is not conservative, but, surprisingly (see [31]) this does not prevent it from
converging toward the right solution.

Proof. First remark that the CFL condition that is here required is w∞∆t < 1
2∆x, with w∞ = 1/2

as W (x) = 1
2 |x|.

The entropy solution u of the Burgers equation with a nonincreasing BV initial datum is a nonin-
creasing BV function. By Cauchy-Schwarz inequality, we have∫ 1

0
|Qρ(tn)(z)−Qρn∆x

(z)| dz ≤ ‖Qρ(tn) −Qρn∆x
‖L2(0,1) = dW

(
ρ(tn), ρn∆x

)
,
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where (ρ(t))t≥0 is the solution of (1.1), with W (x) = 1
2 |x| as before and ρini = −∂xuini as initial

condition, and (ρn∆x)n≥0 is the numerical solution obtained by Scheme (2.14) with d = 1 together
with initial condition (2.13) (numerical solution whose convergence at order 1/2 is stated in Theorem
2.2).

Observing that W is convex, we apply Theorem 2.2 with λ = 0. We obtain∫ 1

0
|Qρ(tn)(z)−Qρn∆x

(z)| dz ≤ dW (ρ(tn), ρn∆x) ≤ C
(√
tn∆x+ ∆x

)
.

The claim follows provided we prove that∫
R
|u(tn, x)− un∆x(x)| dx =

∫ 1

0
|Qρ(tn)(z)−Qρn∆x

(z)| dz. (6.48)

In order to prove (6.48), we notice that, from a geometrical point of view, the left hand side of
equality (6.48) corresponds to the area between the curves x 7→ u(tn, x) and x 7→ un∆x(x). Also, the
right hand side is a measure of the area between their generalized inverses. However, the graph of
the pseudo-inverse of a function may be obtained by flipping the graph of the function with respect
to the diagonal. Since this operation conserves the area, we deduce that both areas are equal, that
is (6.48) holds.

Another way to prove the identity (6.48) is to observe that the solution u of the Burgers-Hopf
equation reads:

u(t, x) =
1

2

[
ρ
(
t, (x,+∞)

)
− ρ
(
t, (−∞, x)

)]
, t ≥ 0, x ∈ R,

where ρ is the solution in Theorem 2.1. In fact, as the number of points x for which ρ(t, {x}) > 0 is
at most countable for any given t > 0, we have the almost everywhere equality:

u(t, x) = ρ
(
t, (x,+∞)

)
− 1

2
.

Similarly,

un∆x(t, x) =
∑
i∈Z

uni 1[xi,xi+1)(x) =
1

2
−
∑
i∈Z

1[xi,xi+1)(x)
∑
k≤i

ρnk

=
1

2
−
∑
i∈Z

1[xi,xi+1)(x)ρn∆x(t, (−∞, xi]) =
1

2
− ρn∆x

(
t, (−∞, x]

)
= ρn∆x

(
t, (x,+∞)

)
− 1

2
.

So, to complete the proof, it suffices to use the fact that, for any two probability measures µ and
µ′ on R, ∫

R

∣∣µ((x,+∞)
)
− µ′

(
(x,+∞)

)∣∣dx =

∫ 1

0
|Qµ(z)−Qµ′(z)|dz,

see [7, Theorems 2.9 and 2.10], noticing that the function Qµ we use here is the right continuous
version of the quantile function used in [7].
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Figure 4: Time dynamics of the numerical solution of the aggregation equation (1.1) with W (x) =
W1(x) = 1− e−5|x| and an initial datum given by the sum of three bumps. Time increases from top
left to bottom right.
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Figure 5: Time dynamics of the numerical solution of the aggregation equation (1.1) with W (x) =
W2(x) = 5|x| and an initial datum given by the sum of three bumps. Time increases from top left
to bottom right.

6.4 Numerical simulation in two dimensions

As an illustration, we propose now a numerical example in two dimensions. The spatial domain is
the square [0, 1] × [0, 1]; it is discretized with Nx = 70 nodes in the x-direction and Ny = 70 nodes
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Figure 6: Time dynamics of the numerical solution of the aggregation equation (1.1) with W (x) =
W1(x) = 1− e−5|x| and an initial datum given by a square. Time increases from top left to bottom
right.

in the y-direction; we take a time step ∆t = 10−3. We consider two different initial data: the sum
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Figure 7: Time dynamics of the numerical solution of the aggregation equation (1.1) with W (x) =
W2(x) = 5|x| and an initial datum given by a square. Time increases from top left to bottom right.

of three bumps (as in [15])

ρini(t, x)

=
1

M

(
e−100((x1−0.25)2+(x2−0.3)2) + e−100((x1−0.77)2+(x2−0.7)2) + 0.9e−100((x1−0.37)2+(x2−0.62)2)

)
,
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where M is a normalization constant such that ‖ρini‖L1 = 1; and an initial density with a square
shape

ρini(t, x) = 5× 1[0.2,0.8]×[0.2,0.8]\[0.3,0.7]×[0.3,0.7].

With these numerical data, we compare the numerical results between the two potentials W1(x) =
1 − e−5|x| and W2(x) = 5|x|. For |x| close to 0, we have that ∇W1 ∼ ∇W2. Then the short
range interaction is similar between both potentials, but the long range interaction is different. The
numerical results are displayed in Figures 4 and 6 for the potential W1(x) = 1−e−5|x| and in Figures
5 and 7 for the potential W2(x) = 5|x|.

In each case, we observe, as expected, the aggregation in finite time of ρ towards a Dirac delta.
Indeed it has been proved in [14] that when the initial data is compactly supported, solutions
converge towards a Dirac delta in finite time. We also observe that the time dynamics during this
step of concentration is different between potentials W1 and W2.

The case with an initial datum with three bumps has been implemented in [15] with a Lax-
Friedrichs scheme. We obtain here similar results but we observe a smaller numerical diffusion. Then
we can make similar comments for the comparison between the two potentials W1 and W2. For the
potential W1, we observe that each bump coalesces into a Dirac delta, then the three remaining
Dirac deltas merge into a single Dirac delta (see Fig 4). For the potential W2, the solution seems to
be more regular and Dirac deltas seems to appear for larger time (see Fig 5).

For the initial data with a square shape, the density ρ keeps, for both potentials, a shape similar
to the initial square shape which tightens as time increases. However with the potential W1 (Fig 6),
we notice a strong concentration at the corners of the square, whereas in the case of the potential
W2 (Fig 7) the density is homogeneous along the edges of the square with a slight concentration in
the middle of the edges.
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