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Face Hallucination using Linear Models of Coupled
Sparse Support

Reuben A. Farrugia, Member, IEEE, and Christine Guillemot, Fellow, IEEE

Abstract—Most face super-resolution methods assume that
low- and high-resolution manifolds have similar local geometrical
structure, hence learn local models on the low-resolution manifold
(e.g. sparse or locally linear embedding models), which are
then applied on the high-resolution manifold. However, the low-
resolution manifold is distorted by the one-to-many relationship
between low- and high- resolution patches. This paper presents
the Linear Model of Coupled Sparse Support (LM-CSS) method
which learns linear models based on the local geometrical
structure on the high-resolution manifold rather than on the low-
resolution manifold. For this, in a first step, the low-resolution
patch is used to derive a globally optimal estimate of the high-
resolution patch. The approximated solution is shown to be
close in Euclidean space to the ground-truth but is generally
smooth and lacks the texture details needed by state-of-the-art
face recognizers. Unlike existing methods, the sparse support
that best estimates the first approximated solution is found on
the high-resolution manifold. The derived support is then used
to extract the atoms from the coupled low- and high-resolution
dictionaries that are most suitable to learn an up-scaling function
for every facial region. The proposed solution was also extended
to compute face super-resolution of non-frontal images.

Extensive experimental results conducted on a total of 1830
facial images show that the proposed method outperforms seven
face super-resolution and a state-of-the-art cross-resolution face
recognition method in terms of both quality and recognition. The
best recognition performance was achieved using LM-CSS fol-
lowed by the Local Binary Pattern (LBP) face recognizer, where it
was found to outperform the state-of-the-art Discriminant Face
Descriptor (DFD) very-low resolution face recognition system,
achieving rank-1 recognition gains between 34% and 60% at
very low-resolutions. Moreover, subjective results show that the
proposed solution is able to super-resolve more accurate facial
images from the challenging IARPA Janus Benchmark A (IJB-A)
dataset, which considers a wide range of poses and orientations
at magnification factors as high as five.

Index Terms—Face hallucination, face recognition, face super-
resolution, sparse representation.

I. INTRODUCTION

MOST countries around the world use Closed Circuit
Television (CCTV) systems to combat crime in their

major cities. These cameras are normally installed to cover
a large field of view where the query face image may not
be sampled densely enough by the camera sensors [1]. The
low-resolution and quality of face images captured on camera
reduces the effectiveness of CCTV in identifying perpetrators
and potential eyewitnesses [2], [3].
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Super-resolution techniques can be used to enhance the
quality of low-resolution facial images to improve the recogni-
tion performance of existing face recognition software and the
identification of individuals from CCTV images. In a recent
survey Wang et al. distinguish between two main categories
of super-resolution methods: reconstruction based and learning
based approaches [4]. Reconstruction based methods register
a sequence of low-resolution images onto a high-resolution
grid and fuse them to suppress the aliasing caused by under-
sampling [5], [6]. On the other hand, learning based meth-
ods use coupled dictionaries to learn the mapping relations
between low- and high- resolution image pairs to synthesize
high-resolution images from low-resolution ones [7], [8]. The
research community has lately focused on the latter category
of super-resolution methods, since they can provide higher
quality images and larger magnification factors. Generic super-
resolution techniques [7], [8] can be used to super-resolve
facial images. Recent advances in this area have proposed
to model the up-scaling function of generic images using
machine learning [9], [10].

In their seminal work, Baker and Kanade [11] exploited
the fact that human face images are a relatively small sub-
set of natural scenes and introduced the concept of face
super-resolution (also known as face hallucination) where
only facial images are used to construct the dictionaries.
The high-resolution face image is then hallucinated using
Bayesian inference with gradient priors. The authors in [12]
assume that two similar face images share similar local pixel
structures so that each pixel could be generated by a linear
combination of spatially neighbouring pixels. This method
was later extended in [13] where they use sparse local pixel
structure. Although these methods were found to perform well
at moderately low-resolutions, they fail when considering very
low-resolution face images where the local pixel structure is
severely distorted. Classical face representation models were
used to model a novel low-resolution face image using a linear
combination of prototype low-resolution face images present
in a dictionary [14]–[21]. The combination weights are then
used to combine the corresponding high-resolution prototype
face images to hallucinate the high-resolution face image.
Nevertheless, global methods do not manage to recover the
local texture details which are essential for face recognition.

Data representation methods have also been used to hal-
lucinate high-resolution overlapping patches which are then
stitched together to reconstruct the high-resolution face image
[22]–[39]. Post processing techniques were used in [16]–
[18], [20]–[26] to recover more texture detail. Nevertheless,
both global and local methods [14]–[25], [27]–[39] assume
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that low- and high-resolution manifolds have similar local
geometrical structures. However, the authors in [28], [40]–[42]
have shown that this assumption does not hold well because
the one-to-many mappings between low- and high-resolution
patches distort the structure of the low-resolution manifold.
Therefore, the reconstruction weights estimated on the low-
resolution manifold do not correlate well with the actual
weights needed to reconstruct the unknown high-resolution
patch on the high-resolution manifold.

Motivated by this observation, the authors in [41]–[44]
derive a pair of projection matrices that can be used to
project both low- and high-resolution patches on a common
coherent subspace. However, the dimension of the coherent
sub-spaces is equal to the lowest rank of the low- and high-
resolution dictionary matrices. Therefore, the projection from
the coherent sub-space to the high-resolution manifold is ill-
conditioned. On the other hand, the Locality-constrained Iter-
ative Neighbour Embedding (LINE) method presented in [45],
[46] reduces the dependence from the low-resolution manifold
by iteratively updating the neighbours on the high-resolution
manifold. This was later extended by the same authors in [47]
where an iterative dictionary learning scheme was integrated
to bridge the low- and high-resolution manifolds. Although
this method yields state-of-the-art performance, it cannot guar-
antee to converge to an optimal solution. A recent method
based on Transport Analysis was proposed in [48] where
the high-resolution face image is reconstructed by morphing
high resolution training images which best fit the given low-
resolution face image. However, this method heavily relies
on the assumption that the degradation function is known,
which is generally not possible in typical CCTV scenarios. An
ensemble of feature-based regression functions and classifiers
was used in [49], while deep learning was used in [50] for face
de-blurring applications. While the latter approach claims to
perform hallucination in the wild, the tests were conducted on
faces which are almost frontal.

Different automated cross-resolution face recognition meth-
ods have been proposed to cater for the resolution discrepancy
between the gallery and probe images1. These methods either
try to include the resolution discrepancy within the classifier’s
optimization function [1], [51]–[53] or else by projecting both
probe and gallery images on a coherent subspace and compute
the classification there [54]–[58]. However, although these
methods are reported to provide good results, they suffer from
the following shortcomings i) most of the methods ( [52], [54]–
[58]) do not synthesize a high resolution face image (unlike
face hallucination methods) and ii) they generally assume that
several images of the same subject are available in the gallery,
which are often scarce in practice.

This work presents a two layer approach named Linear
Models of Coupled Sparse Support (LM-CSS), which em-
ploys a coupled dictionary containing low- and high-resolution
training patches to learn the optimal up-scaling function for

1Gallery images are high-quality frontal facial images stored in a database
which are usually taken in a controlled environment (e.g. ID and passport
photos). Probe images are query face images which are compared to each
and every face image included in the gallery. Probe images are usually taken
in a non-controlled environment and can have different resolution.

each patch corresponding to a specific facial region. The main
contributions of this work are summarized below:

1) We show experimentally (see section III) that learning
mapping relations that maximize the Peak Signal-to-
Noise Ratio (PSNR) quality metric (as done by ex-
isting face hallucination methods) generally provides
smooth facial images that lack texture details essential
for face recognition and person identification. We also
demonstrate that more texture consistent solutions can
be derived when using a sparse subset of atoms from a
over-complete coupled dictionaries.

2) The LM-CSS method described in section IV is a novel
two-stage face hallucination method that differs from
existing methods:

a) All existing face hallucination methods discussed
above [14]–[25], [27]–[39], [41]–[48] synthesize
the high resolution test image using a weighted
combination of high-resolution face images. The
resulting synthesized face is not accepted as crim-
inal evidence in court since it morphs a number of
faces. On the other hand, both stages of LM-CSS
use the facial images contained within coupled dic-
tionaries to learn the optimal up-scaling function
for each patch. The design philosophy of LM-CSS
is close to interpolation schemes (modelling an up-
scaling function) which are well accepted to restore
forensic evidence.

b) Opposed to existing methods [14]–[25], [27]–[39],
[41]–[44], LM-CSS exploits the geometrical struc-
ture of the high-resolution manifold, which is not
distorted, to select the atoms that are most suitable
to learn the the up-scaling function for each patch.
We show experimentally in Section III that the
first stage of LM-CSS derives a first approximation
which better preserves the local neighbourhood.
The second stage finds the sparse coupled support
to be used to estimate the final up-scaling function
which is able to reconstruct facial images which
are more coherent to the ground-truth.

c) Unlike the methods in [45]–[47] the proposed
method is non-iterative and is guaranteed to con-
verge to an optimal solution.

3) Existing face hallucination methods are designed and
tested on frontal face images. This limits their use in
practice since facial images captured by CCTV are often
far from frontal pose. This work proposes a method
that exploits facial landmark points to align the coupled
dictionaries with the input low-resolution face. This
method can be applied to all face hallucination schemes,
including LM-CSS (see Section VI-D). While being
simple, this can be considered as the first attempt to
extend existing face hallucination methods to perform on
facial images whose orientation vary significantly from
the frontal pose.

Apart from this, we demonstrate that while existing face
hallucination schemes try to derive a solution that minimizes
the mean square error (MSE) and assume that it will improve
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recognition, we show here that this is in fact not true. The MSE
metric is biased toward blurred images [66] that lack texture
detail essential for person identification and recognition. In
fact, the analysis in Section III and results in Section VI show
that reconstructing faces whose texture is more coherent to
the ground truth aids the recognition performance more than
solutions that minimize the MSE. These findings are in line
with recent results obtained in the related field of face sketch
recognition [59].

The proposed approach has been extensively evaluated
against seven face hallucination and one cross-resolution face
recognition methods using 930 probe images from the FRGC
dataset against a gallery of 889 individuals and 900 probe
images from the CAS-PEAL dataset against a gallery of 1040
individuals using a closed set identification scenario with one
face image per subject in the gallery2. The quality analysis was
conducted using all 1830 probe images from both datasets.
The best rank-1 recognition performance was attained using
the proposed LM-CSS face super-resolution and using the
LBP face recognizer which achieved rank-1 recognition gains
between 34% and 60% over the Discriminant Face Descriptor
(DFD) [58] cross-resolution face recognizer at very low res-
olutions, around 1% gain over the most competitive method
LINE+LBP and between 2% and 8% over Eigen-Patches+LBP.
The quality analysis further shows that the proposed method
is competitive, and most of the time superior to Eigen-Patches
while it outperforms LINE by around 1dB in Peak Signal-
to-Noise Ratio (PSNR). Subjective results further demonstrate
that the proposed LM-CSS can be used to super-resolve facial
images from the challenging IARPA Janus Benchmark A (IJB-
A) dataset and generates facial images with more texture detail
and lower visual distortions.

The rest of the paper is organized as follows. After intro-
ducing the notations in Section II, we analyse the Neighbour
Embedding scheme of [61] which is the basis of the most
successful schemes in face hallucination from which we derive
the observations on which our method will be based on. The
proposed LM-CSS method is described in Section IV while
the proposed extension to perform face super-resolution in the
wild are provided in Section V. The testing methodology and
results are provided in Section VI while the final concluded
remarks are provided in Section VII.

II. PROBLEM FORMULATION

We consider a low-resolution face image X where the
distance between the eye centres (inter-eye distance) is defined
as dx. The goal of face super-resolution is to up-scale X by a
scale factor α =

dy
dx

, where dy represents the inter-eye distance
of the desired super-resolved face image. The image X is
divided into a set of overlapping patches of size

√
n ×
√
n

with an overlap of γx, and the resulting patches are reshaped
to column-vectors in lexicological order and stored as vectors
xi, where i ∈ [1, p] represents the patch index.

2Collection of gallery images is laborious and expensive in practice.
This limits the number of gallery images that can be used in practice for
recognition, where frequently only one image per subject is available in the
gallery. This problem is referred to as the one sample per person in face
recognition literature [60].

In order to learn the up-scaling function between low-
and high-resolution patches, we have m high resolution face
images which are registered based on eye and mouth cen-
ter coordinates, where the inter-eye distance is set to dy .
These images are divided into overlapping patches of size
[α
√
n× α

√
n] with an overlap of γy = [αγx], where [∗]

stands for the rounding operator. The i-th patch of every high-
resolution image is reshaped to column-vectors in lexicological
order and placed within the high-resolution dictionary Hi. The
low-resolution dictionary of the i-th patch Li is constructed
using the same images present in the high-resolution dictio-
nary, which are down-scaled by a factor 1

α and divided into
overlapping patches of size

√
n×
√
n with an overlap of γx.

This formulation is in line with the position-patch method
published in [33] where only collocated patches with index
i are used to super-resolve the low resolution patch xi.

Without loss of generalization we will assume that the
column vectors of both dictionaries are standardized to have
zero mean and unit variance to compensate for illumination
and contrast variations. The standardized low-resolution patch
is denoted by xsi and the aim of this work is to find an
up-scaling projection matrix that minimizes the following
objective function

Φi = argmin
Φi

||Hi −ΦiLi||22 (1)

where Φi is the up-scaling projection matrix of dimensions
[α]2n×n. The standardized i-th high-resolution patch is then
hallucinated using

ỹsi = Φix
s
i (2)

where xsi is the standardized i-th low-resolution patch. In
the sequel, the upper-script s indicates that the vector is
standardized to have zero mean and unit variance. The pixel
intensities of the patch are then recovered using

ỹi = [σiỹ
s
i + µi] (3)

where µi and σi represent the mean and standard deviation of
the low-resolution patch xi. The resulting hallucinated patches
are then stitched together by averaging overlapping pixels to
form the hallucinated high-resolution face image Ỹ.

This formulation is considerably different from the one
commonly used in [14]–[25], [27]–[39], [41]–[48] where they
try to find the optimal reconstruction weightswi that minimize
the following optimization function

wi = argmin
wi

||xsi − Liwi||22 (4)

and applying some additional regularization terms to improve
the approximation. In essence, these methods exploit the
structure of the low-resolution manifold to find the optimal
combination of atoms from the low-resolution dictionary that
best reconstructs the low-resolution test patch xsi . The same
combination weights are then used to synthesize the high-
resolution patch using

ỹsi = Hiwi (5)
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which is a weighted combination of the atoms contained within
the high-resolution dictionary.

III. QUALITY AND TEXTURE ANALYSIS

Motivated by the success of Neighbour Embedding (NE)
[61], which forms the basis of existing state-of-the-art face
hallucination schemes, we investigate here the effect that the
number of atoms (or neighbours) has on its performance.
We emphasize here that the results presented in this section
are computed using the NE algorithm, and not the LM-CSS
proposed in this paper which will be described in Section IV.
In this experiment we consider NE and we vary the number
of neighbours k used to compute the weighted combination.
Figure 1 depicts the quality and texture analysis as a function
of k using different magnification factors. These results were
computed using all the 886 images from the AR face dataset
[62] while the coupled dictionary is constructed using one-
image per subject from the Color Feret [63] and Multi-Pie
[64] datasets as described in section VI-A. The quality was
measured using PSNR3 while the Texture Consistency (TC)
was measured by comparing the LBP features of the reference
and hallucinated images. The LBP features were extracted
using the method in [65] where the similarity was measured
using histogram intersection. In this experiment n = 25,
γx = 2 and m = 1203.

The results in Figure 1a demonstrate that the PSNR in-
creases rapidly until k = 200, and keeps on improving
slowly for larger values of k. The highest PSNR value was
obtained when k = m i.e. all column-vectors are used to
approximate the optimal combination weights. However, the
results in Figure 1b show that the texture consistency increases
steadily up till k = 200 and starts degrading (or remains
steady) as k increases. This indicates that the texture between
the reference and hallucinated image is more consistent when
using a small number of atoms (i.e. k = 200) while a larger
neighbourhood size will provide blurred images which lack
important texture details. The subjective results in Figure 2
support this observation where it can be seen that the images
derived using k = 200 generally contain more texture details
while the images for k = m = 1203, which attain larger PSNR
values, are more blurred. We also present the spectrum of
the LBP texture descriptor to see why the texture consistency
decreases when k > 200. It can be seen that the LBP spectrum
using NE with k = 200 is closer to the spectrum of the high-
resolution facial images, which is confirmed by the higher
TC metric. Moreover, one can observe that the LBP spectrum
of NE using k = 1203 contains more noisy spikes and is
more sparse i.e. less non-zero coefficients. These spikes can be
explained by the fact that since the face images restored using
k = 1203 are blurred, they contain more repetitive texture,
and therefore the energy of the spectrum is contained within
a smaller number of coefficients.

All the face hallucination methods found in literature [14]–
[25], [27]–[39], [41]–[48] follow the same philosophy of
generic super-resolution and are designed to maximize an

3Similar results were obtained using other full-reference quality metrics
such as Structural Similarity (SSIM) and Feature Similarity (FSIM) metrics.

objective measure such as PSNR. In spite of that, the PSNR
quality metric depends on the squared difference between the
distorted and original image in a holistic manner and is biased
to favour blurred facial images which is inconsistent with the
human vision system (HVS) [66]. All these methods assume
that increasing the PSNR will inherently improve the face
recognition performance. The above results and observations
reveal that improving the PSNR does not correspond to
improving the texture detail of the hallucinated face image.
Moreover, state-of-the-art face recognition methods [65], [67]–
[69] exploit the texture similarity between probe and gallery
images to perform automated facial recognition. This indicates
that optimizing the face hallucination to minimize the mean
square error leads to sub-optimal solutions, at least in terms of
recognition. Therefore, comparing face hallucination methods
using solely the PSNR quality metric (as done by all papers on
face hallucination) provide misleading conclusions on which
method performs best, since it ignores the texture consistency
between the reference The results in Fig. 2 and remarks in
the related field of face scatch recognition [59] shows that
it is more important to recover texture detail coherent with
the reference face image than reducing the mean square error,
since recognition and identification exploits facial texture
to discriminate between different individuals. The results in
Fig. 1b further show that there is a relation between texture
similarity and sparsity, i.e. facial images hallucinated using
the k-nearest atoms, where (k � m), are more consistent in
terms of texture. This observation is used in the design of the
proposed LM-CSS which will be described in Section IV.

IV. LINEAR MODELS OF COUPLED SPARSE SUPPORT

The proposed method builds on the observations drawn in
the previous section where the main objective is to find the
atoms that are able to better preserve the similarity between the
hallucinated and ground-truth images in terms of both texture
and quality. A schematic diagram of the proposed method
is shown in Fig. 3. The aim of this approach is to learn
an up-scaling function for each patch by exploiting the local
geometrical structure of the high-resolution manifold. Fig. 3
shows the block-diagram of the proposed LM-CSS method,
where in this example the first patch (i = 1) covering the right
eye is being processed. The low-resolution patch xi is first
standardized (zero mean and unit variance) and then passed to
the first layer (Layer 0) which derives the first approximation
ỹ
s{0}
i by modelling an up-scaling function Φ

{0}
i for every i-

th patch using all the elements (or atoms) within the coupled
patch dictionaries Li and Hi. This solution is seen here
as a point on the high-resolution manifold which is closest
to the ground-truth in Euclidean space. While this solution
is optimal in terms of Euclidean distance, it lacks texture
detail which is essential for face identification and recognition.
Given that the first approximated solution ỹ

s{0}
i is sufficiently

close to the ground-truth (which is unknown), ỹ
s{0}
i will

share similar local structure on the high-resolution manifold,
which was proved to be valid in other research domains [70],
[71]. The purpose of the second layer (Layer 1) is then to
exploit this similarity between the local structure of ỹ

s{0}
i and
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Fig. 1: Performance analysis using different neighbourhood size k.
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Fig. 2: The upper row shows the original face image and corresponding LBP spectrums, and the second and third rows show
the super-resolved faces and corresponding LBP spectrum using NE with k = 200 and k = 1203 respectively

the ground truth to derive the atoms which are optimal to
reconstruct ỹ

s{0}
i , and we define the sparse weights with the

largest k coefficients as the coupled sparse support. However,
instead of using the sparse weight coefficients directly, which
will approximate the blurred first solution ỹ

s{0}
i , we use the

coupled sparse support to select the corresponding atoms from
the dictionaries Li and Hi to derive a refined up-scaling
function Φ

{1}
i which is able to preserve better the texture of

the reconstructed i-th patch. In the next subsections we detail
the contribution of both layers.

A. Layer 0: First Approximated Solution

Driven by the observations illustrated in Section III, the aim
of Layer 0 is to derive an up-scaling function which solves the
following L2-regularized least squares problem

Φ
{0}
i = argmin

Φ
{0}
i

||Hi −Φ
{0}
i Li||22 subject to ||Φ{0}i ||

2
2 ≤ δ{0}

(6)
where all the atoms in dictionaries Li and Hi are used to
model the up-scaling function for the i-th patch. This has a
closed form solution given by

Φ
{0}
i = HiL

T
i

(
LiL

T
i + λ{0}I

)−1
(7)
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Ỹ

xs1
Stand. Inv. Stand.

xs1 ỹ1

Fig. 3: Block Diagram of the proposed method.

where λ{0} is a regularization parameter which ensures that
the covariance matrix LiL

T
i is invertible and I is the identity

matrix. This solution ignores the local geometric structure of
the low-resolution manifold which is known to be distorted,
and approximates the upscaling function using the global
structure of the low-resolution examples included in Li. The
first approximation ỹ

s{0}
i is then computed using

ỹ
s{0}
i = Φ

{0}
i xsi (8)

This provides a unique and global solution for the approxi-
mation of the ground-truth. Backed up by the results in Fig. 1a,
this solution, which employs all elements within the coupled
dictionaries, provides the largest PSNR and is thus close to
the ground-truth in Euclidean space.

In order to characterize the locality of the proposed first
approximation ỹ

s{0}
i with respect to the ground-truth, we use

the neighbourhood preservation metric which is defined by

npL,i,k =
1

k
(NN(ysi ,Hi, k) ∩NN(xsi ,Li, k)) (9)

npH,i,k =
1

k

(
NN(ysi ,Hi, k) ∩NN(ỹ

s{0}
i ,Hi, k)

)
(10)

where npL,i,k and npH,i,k corresponding to the neighbour
preservation when searching for neighbours on the low- and
high-resolution dictionaries respectively. Here, the function
NN(x,D, k) derives the k-nearest neighbours of vector x
which minimize the MSE from the dictionary D. The results
in Fig. 4 clearly demonstrates that searching on the high-
resolution manifold using the up-scaling function Φ

{0}
i com-

puted using Layer 0 is more beneficial than searching on the
low-resolution manifold, since one can find neighbourhoods
more coherent with the ground truth at different neighbour-
hood sizes. We emphasize here that all face hallucination
techniques search for the neighbours on the low-resolution
manifold, except for the LINE method [47], where they start
by searching on the low-resolution manifold and then try to re-
fine the neighbourhood search iteratively on the high resolution
manifold. Nevertheless, the LINE method is not guaranteed to

Fig. 4: Neighbour preservation computed using all images
from the AR dataset averaged over all patches and images. The
solid lines depict the performance when searching in the high-
resolution dictionary Hi using the first approximation ỹ

s{0}
i

while the dotted lines indicate nearest neighbourhood searches
on the low-resolution dictionary Li.

converge while our first approximation is computed using a
closed form solution.

Searching for neighbours on the high-resolution manifold
results in improving the quality of the reconstructed patches.
Fig. 5 compares the classical Neighbour Embedding which
derives the k neighbours on the low resolution manifold (NE-
LRM) with an extended version of Neighbour Embedding
where the k-nearest neighbours of ỹ

s{0}
i on the high-resolution

manifold are used to derive the optimal reconstruction weights.
These results clearly show that searching for neighbours on the
high-resolution manifold improves the neighbourhood preser-
vation and results in improving the quality of the reconstructed
patches by achieving lower root MSE (RMSE). Nevertheless,
the up-scaling function Φ

{0}
i which employs all the elements

within the coupled dictionary, generates facial images which
are blurred and lack important texture details which reduces
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Fig. 5: RMSE analysis comparing NE-LRM and NE-HRM at
different resolutions.

the discrimination between different faces (see results in
Section III).

B. Layer 1: Refined up-scaing function

The aim of Layer 1 is to find the corresponding coupled
column-vectors within the coupled dictionaries Li and Hi,
which will be referred to as coupled sparse support si for the
i-th patch that best reconstruct the first approximated solution
ỹ
s{0}
i . One simple solution could be to find the k-nearest

neighbours of ỹ
s{0}
i and then use Locally Linear Embedding

(LLE) [72] as done in [61] to reconstruct it. While this
approach exploits the locality of the first approximation to
find the support, it does not ensure that the optimal atoms are
selected. In this work we formulate this problem to minimize
the following objective function

ηi = argmin
ηi

||ηi||0 = k

subject to ||ỹs{0}i −Hiηi||22 ≤ δ{1}
(11)

where ηi is the sparse vector, ||ηi||0 represents the number of
non-zero entries in ηi which is constrained to be equal to k
and δ{1} is the noise parameter. This optimization seeks for
the k atoms in Hi that are most suitable to reconstruct ỹ

s{0}
i .

The authors in [73], [74] have shown that (11) can be relaxed
and solved using Basis Pursuit Denoising (BPDN) which is
formulated by

ηi = argmin
ηi

||ỹs{0}i −Hiηi||22 + λs||ηi||1 (12)

where λs is a regularization parameter. This optimization can
be solved in polynomial time using linear programming. In
this work we use the solver provided by SparseLab4 to solve
the above BPDN problem. The support si is then set as the k
indices of ηi with the largest magnitude. The results in Fig.
6 show that modelling ỹ

s{0}
i using BP provides significantly

4The code can be found at https://sparselab.stanford.edu/

Fig. 6: RMSE showing the error between the ỹ
s{0}
i and those

modelled using NE-HRM and BP. Both methods seek for the
support si on the high-resolution manifold by exploiting the
locality of ỹ

s{0}
i . The solid lines depict the performance using

BP while the dotted lines show the RMSE obtained nusing
NE-HRM at different resolutions.

better performance in terms of RMSE when compared to the
NE-HRM method described in the previous subsection. This
shows that BPDN can find the optimal support si and can
represent ỹ

s{0}
i with only k atoms.

Fig. 7 depicts the geometrical representation of the the
proposed method. The first approximated solution ỹ

s{0}
i is

sufficiently close to the ground-truth, which is generally not
known. Nevertheless, Layer 1 exploits the local-structure on
the high-resolution manifold to find the k-column vectors
whose support corresponds to the indices of the k non-zero
coefficients of ηi with the largest magnitude. Given that ỹ

s{0}
i

is sufficiently close to the ground truth, we assume that the
optimal support si suitable to reconstruct ỹ

s{0}
i is a good

approximation of the actual support of the ground-truth. This
assumption is supported by empirical results in [71] where
they demonstrated that the sparse vector ηi tends to be local,
i.e. the support of two vectors that are sufficiently close are
relatively correlated.

Nevertheless, it is important to emphasize here that recon-
structing the i-th patch using the weighted combination Hiηi
will provide a solution very close to the approximated solution
ỹ
s{0}
i and will therefore still lack texture details. Instead, we

define two coupled sub-dictionaries Li(si) and Hi(si), which
correspond to the atoms marked in orange in Fig. 7, and we
use them to derive a projection matrix Φ

{1}
i which minimizes

the following objective function

Φ
{1}
i = argmin

Φ
{1}
i

||Hi(si)−Φ
{1}
i Li(si)||22

subject to ||Φ{1}i ||
2
2 ≤ δ{1}

(13)

which has a closed form solution given by
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xsi

ysi

coupled sparse support
first approx. ỹ

s{0}
i

ground-truth
low-res patch

Fig. 7: Geometrical representation of the proposed LM-CSS
method.

Φ
{1}
i = Hi(si)Li(si)

T
(
Li(si)Li(si)

T + λ{1}I
)−1

(14)

where λ{1} is a regularization parameter and I is the identity
matrix. The refined projection matrix employs only k atoms
and is therefore expected to provide a solution which is less
smooth and thus preserve the texture details important for
recognition. On the other hand, given that the support si is
optimal to reconstruct the initial solution ỹ

s{0}
i , we expect

that improving the texture consistency will not significantly
reduce the PSNR quality metric. The resulting super-resolved
standardized patch is then approximated using

ỹ
s{1}
i = Φ

{1}
i xsi (15)

The resulting hallucinated patch ỹ
s{1}
i is then inverse stan-

dardized using (3) to recover the actual pixel intensities. The
last step involves stitching the overlapping patches together,
which is computed by averaging overlapping pixels.

The complexity of the first layer which employs all m
atoms in the dictionary is of order O(n3). The second layer
first computes BPDN followed by Multivariate Ridge Regres-
sion on the selected k support points. In this work we use
the SparseLab solver for BPDN which employs Primal-Dual
Interior-Point Algorithm whose complexity is of order O(m3).
The complexity of Multivariate Ridge Regression using k
support vectors is of the order O(n3). This analysis reveals that
the complexity of the proposed method is mostly dependent on
the sparse solver used, where existing state-of-the-art solvers
can reduce it by orders of magnitude than O(m3) [76].

V. FACE HALLUCINATION IN THE WILD

Existing face hallucination methods are only suitable to
super-resolve frontal facial images. The main problem is that
the coupled dictionaries contain frontal face images and are

therefore not suitable to compute face hallucination in the
wild. This section presents a simple, yet effective method
that registers the coupled dictionaries to the orientation of
the face image being processed. Fig. 8 shows a schematic
diagram of the proposed method. The landmark points are
manually marked on the input low-resolution test image and
the coordinates of each landmark point are stored in zx.
The high-resolution landmark points are then approximated
using zy = αzx which corresponds to scaling the landmark
coordinates by a scalar α. Every image contained within the
training dataset is warped using piecewise affine transforma-
tion to register the high-resolution dictionary with the expected
shape zy . The low-resolution dictionary is then constructed
by simply down-sampling every image contained within the
high-resolution dictionary by a scale factor α. In Fig. 8,
we use LM-CSS method to super-resolve non-frontal views.
Nevertheless, this method can be used to extend existing face
hallucination techniques which can use the registered low- and
high-resolution dictionaries to super-resolve the low-resolution
test image X and synthesize the high-resolution face image Ỹ.
In this work we use the 21 facial landmark-points defined in
[77] since it caters for both affine (rotation, translation and
scaling) and more complicated 3-dimensional deformations
from the frontal view.

...

Training Face Dataset

Upscale

Warping ...

Registered High Resolution Dictionary

Downscale

...
Registered Low Resolution Dictionary

LM-CSS
Ỹ

X
zx

zy

Fig. 8: Illustration of the LM-CSS in the Wild.

VI. RESULTS

The proposed system is compared to several popular and/or
state-of-the-art methods. In subsection VI-A we investigate the
effect that the number of support points k has on performance
for LM-CSS (Please note that the results shown in Section III
are computed using the NE method [61]). The performance in
terms of face recognition and quality are evaluated in sections
VI-B and VI-C respectively. In all these experiments, the
dictionary used to learn the up-scaling projection matrix for
each patch consisted of a composite dataset which includes
images from both Color Feret [63] and Multi-Pie [64] datasets,
where only frontal facial images were considered. One image
per subject was randomly selected, resulting in a dictionary of
m = 1203 of facial images.



9

The gallery consisted of another composite dataset which
combined frontal facial images from the FRGC-V2 (controlled
environment) [78] and MEDS datasets [79]. One unique image
per subject was randomly selected, providing a gallery of 889
facial images. The probe images were taken from the FRGC-
V2 dataset (uncontrolled environment), where two images per
subject were included, resulting in 930 probe images. Another
gallery and probe set was considered from the CAS-PEAL
dataset [], where the 1040 faces with neutral expression are
used as gallery while 900 images with different expressions
were randomly selected as probe images. All probe images
are frontal faces, however various poses and illuminations
were considered. All the images were registered using affine
transformation computed on landmark points of the eyes
and mouth centres, such that the distance between the eyes
dy = 40. The probe and low-resolution dictionary images
were down-sampled to the desired scale α using MATLAB’s
imresize function.

The experiments in subsection VI-D were conducted to
evaluate the performance of the proposed method in the wild.
In this experiment we used the IJB-A dataset [80] which
contains face images with a wide range of pose and orientation
variations. In these experiments the AR dataset was used as a
Training face dataset since it contains the 21 landmark points
for each of the 886 subjects. Unless stated otherwise, all patch
based methods are configured such that the number of pixels
in a low-resolution patch n = 25, the low-resolution overlap
γx = 2, and the patches are stitched by averaging overlapping
regions. All the methods apply the super-resolution algorithm
on the luminance component of the YCbCr color model,
while the chrominance components were up-scaled using bi-
cubic interpolation. All simulations were run using a machine
with Intel (R) Core (TM) i7-3687U CPU at 2.10GHz running
Windows 64-bit Operating system.

A. Parameter Selection for LM-CSS

The proposed method has four parameters that need to
be tuned, namely the regularization parameters λ{0}, λ{1}

and λs and the support size k. The regularization parameters
λ{0} and λ{1} adopted by Multivariate Ridge Regression can
be easily set to a very small value since its purpose is to
perturb the linear-dependent vectors within a matrix to avoid
singular values. In all experiments, these parameters were set
to 10−6. Similarly, the BPDN’s regularization parameter λs
which controls the sparsity of the solution was set to 0.01,
since it provided satisfactory performance on the AR dataset.

Fig. 9 shows the average PSNR and Rank-1 recognition
using the LBP face recognizer [65] on all 930 probe images
using the FRGC dataset. From these results it can be observed
that PSNR increases as the support size is increased, until
k = 150 where it starts decreasing (or stays in steady state).
This result confirms the observations obtained in section III
where a different set of probe images was used. On the other
hand, the best rank-1 recognition is attained at k = 50, and the
recognition starts decreasing at larger values of k. Again, this
confirms the results in section III where it was observed that
more texture consistent facial images are obtained when using

a smaller support size. We emphasize here that the results in
section III were computed using the neighbour embedding [61]
while the results presented in this subsection are computed for
the proposed LM-CSS method.

B. Recognition Analysis

Three face recognition methods were adopted in this exper-
iment, namely the LBP face recognition [65] method (which
was found to provide state-of-the-art performance on the
single image per subject problem in [67]), the Gabor face
recognizer [68]5 and the VGG-Face Convolutional Neural
Network (CNN) descriptor [69]6. The Gabor Face-recognizer
method performs classification in the Principal Component
Analysis (PCA) subspace, where the PCA basis were trained
off-line on the AR dataset. The proposed method was com-
pared with Bi-Cubic Interpolation and seven face hallucination
methods, namely Eigen-transformation [14], Neighbour Em-
bedding [61], the method of Yang et. al. (ScSR) [76], Position-
Patch [33], Sparse Position-Patch, [34], Eigen-Patches [22] and
LINE [47]. The LINE method, which up to the knowledge of
the authors is the only method that tries to exploit the structure
of the high-resolution manifold to bridge the low- and high-
resolution manifolds, represents the current state-of-the-art in
face hallucination. We also compare our method followed by
an off-the-shelf face recognition system against the specialized
very-low-resolution face recognition system DFD described in
[58]. These methods were configured using the same patch
size and overlap as indicated above and configured using the
optimal parameters provided in their respective papers. The
methods were implemented in MATLAB, where the code
for [47], [58], [76] were provided by the authors. In this
experiment we show results for LM-CSS with k = 50 and
k = 150, where the latter corresponds to the neighbourhood
size adopted by LINE.

The recognition performance is summarized in Tablea I
and II on the FRGC and CAS-PEAL datasets respectively.
In these tables we adopt the Area Under the ROC curve
(AUC) as a scalar-valued measure of accuracy for unsuper-
vised learning [81] together with the rank-1 recognition. The
VGG-Face CNN face recognition was found to be particularly
fragile at the very low-resolutions considered here, where it
only achieves a rank-1 recognition up to 19% on bi-cubic
interpolated images at a magnification factor α = 2. It can
also be noticed that face recognition can benefit from the
texture detail recovered using face hallucination where rank-1
recognition rate gains between 20% and 60% were obtained
over bi-cubic interpolated facial images when using the LBP
face recognizer on very-low-resolution images. It can also be
seen that the cross-resolution face recognition system DFD
[58] performed well at low-resolutions such as dx = 20, but
its performance significantly drops at lower-resolutions where
LM-CSS provided rank-1 recognition gains between and 34%
and 60%. These results also show that our proposed method is

5The code was provided by the authors in http://www.mathworks.com/
matlabcentral/fileexchange/35106-the-phd-face-recognition-toolbox.

6The pre-trained network was provided by the authors in http://www.robots.
ox.ac.uk/∼vgg/software/vgg face/
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Fig. 9: Analysing the effect of the number of support vectors on the performance of the proposed LM-CSS hallucination
method on the FRGC dataset.

most of the time superior to all the other methods considered
in this experiment in terms of both rank-1 recognition and
AUC metric which involves a total of 1830 probe images from
two different datasets. More precisely, rank-1 recognition rate
gains of between 1% and 2% were achieved over LINE and
between 2% and 8% over Eigen-Patches when using the LBP
face recognizer.

Figure 10 shows the Cumulative Matching Score Curve
(CMC) which measures the recognition at different ranks
for the FRGC dataset. For clarity, only the methods that
showed competitive rank-1 recognition rates were included,
and compared to the oracle where the probe images were
not down-sampled (i.e. dx = dy). Bi-cubic interpolation was
included to show that state-of-the-art face recognition methods
benefit from the texture details recovered by patch-based
hallucination methods, achieving significant higher recognition
rates at all ranks. It can also be noted that the proposed method
outperforms the other hallucination methods, especially at
lower resolutions and lower ranks.

C. Quality Analysis

Tables III and IV show the quality analysis measured in
terms of PSNR and the Structural Similarity Metric (SSIM)
[66] on the FRGC and CAS-PEAL datasets respectively. In
this experiment we compare our LM-CSS method (configured
using k = 50 and k = 150). These results show that the
proposed method outperforms all other schemes on the FRGC
dataset and is competitive to Eigen-Patches and superior to all
other schemes on the CAS-PEAL dataset. It is important to
notice that while LINE provided the most competitive results
in terms of recognition, its performance in terms of PSNR is
relatively low, where LM-CSS achieves PSNR gains of 1 dB at
different magnification factors on the CAS-PEAL dataset, and
we achieve better PSNR even when using a smaller number

of support i.e. k = 50. This can be attributed to the fact that
since LINE employs a neighbourhood size 150 it manages to
recover important texture detail, but the resulting face image
is noisy. On the other hand, Eigen-Patches adopts all atoms
in the dictionary and achieves good PSNR performance at
the expense of getting images which are more blurred and
lacks important texture details. This can but confirmed by its
poor performance in terms of recognition. Subjective results
in the following subsection consolidate these remarks. It is
also important to mention that the dictionary which is used
to restore facial images from both datasets is made up of
mixed ethnicities. Nevertheless, this dictionary provides good
performance on the CAS-PEAL dataset which only contains
faces of Asian people.

D. Face Hallucination in the Wild

In order to assess the performance of the proposed method
in the wild, we conduct experiments using 104 images from the
IJB-A dataset. In this experiment, we compare our proposed
LM-CSS method with LINE [47] and Eigen-Patches [22]
which provided the most competitive performance in terms
of recognition and PSNR respectively. These methods are
not adequate to perform face hallucination in the wild since
they are inherently designed to super-resolve frontal faces.
Nevertheless, all these schemes were extended to perform
face hallucination in the wild using the method described in
Section V. All the images in the AR dataset are used as a
dictionary here since they contain all the 21 landmark points
that are required to register the training images to the non-
frontal test images. Every image was scaled so that the high-
resolution faces have an inter-eye distance dy = 40 and the
low-resolution face images have an inter-eye distance dx = 8.
We also compare these methods with two state-of-the-art
generic super-resolution methods, namely the Convolutional
Neural Network based scheme (SRCNN)m [9] and Non-local
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TABLE I: Summary of the Rank-1 recognition results and Area Under Curve (AUC) metric using three different face recognition
algorithms on the FRGC dataset.

Halln Method Recn Method
Resolution dx

8 10 15 20
rank-1 AUC rank-1 AUC rank-1 AUC rank-1 AUC

Bi-Cubic
Gabor 0.0000 0.6985 0.0000 0.7823 0.0344 0.8829 0.5215 0.9181
LBP 0.3065 0.9380 0.5032 0.9598 0.6065 0.9708 0.7054 0.9792
DeepFaces 0.0000 0.5296 0.0000 0.5337 0.0258 0.6223 0.1903 0.7157

Eigentransformation [14]
Gabor 0.0591 0.7852 0.1097 0.8359 0.3312 0.8841 0.5183 0.9098
LBP 0.2559 0.9390 0.4516 0.9554 0.5624 0.9633 0.6495 0.9688
DeepFaces 0.0151 0.5794 0.0194 0.5954 0.0398 0.6187 0.1226 0.6612

Neighbour Embedding [61]
Gabor 0.2323 0.8624 0.4710 0.8968 0.6172 0.9182 0.6409 0.9272
LBP 0.5548 0.9635 0.6398 0.9712 0.7215 0.9795 0.7559 0.9830
DeepFaces 0.0151 0.5940 0.0602 0.6290 0.2086 0.6970 0.4075 0.7562

ScSR [76]
Gabor 0.0000 0.7618 0.0065 0.8392 0.4237 0.9048 0.6215 0.9250
LBP 0.4237 0.9486 0.6000 0.9650 0.6860 0.9765 0.7559 0.9823
DeepFaces 0.0000 0.5399 0.0000 0.5455 0.0441 0.6364 0.2376 0.7200

Sparse Position-Patches [34]
Gabor 0.2333 0.8632 0.4645 0.8969 0.6118 0.9152 0.6398 0.9254
LBP 0.5677 0.9649 0.6441 0.9721 0.7247 0.9803 0.7570 0.9830
DeepFaces 0.0161 0.5870 0.0419 0.6198 0.1624 0.6880 0.3796 0.7553

Position-Patches [33]
Gabor 0.1108 0.8354 0.2849 0.8814 0.5774 0.9154 0.6419 0.9281
LBP 0.4699 0.9588 0.5849 0.9675 0.6849 0.9782 0.7312 0.9812
DeepFaces 0.0161 0.5914 0.0398 0.6201 0.1785 0.6878 0.3559 0.7408

Eigen-Patches [22]
Gabor 0.1613 0.8517 0.3849 0.8934 0.6065 0.9172 0.6387 0.9283
LBP 0.5226 0.9625 0.6215 0.9704 0.7237 0.9800 0.7602 0.9830
DeepFaces 0.0129 0.5927 0.0452 0.6226 0.1882 0.6900 0.3516 0.7457

LINE [47]
Gabor 0.3118 0.8696 0.5011 0.8986 0.6118 0.9168 0.6409 0.9252
LBP 0.5925 0.9647 0.6559 0.9714 0.7323 0.9804 0.7677 0.9833
DeepFaces 0.0312 0.6036 0.0710 0.6385 0.2161 0.7050 0.4172 0.7630

DFD [58] 0.0108 0.7387 0.1570 0.8684 0.5978 0.9559 0.7677 0.9772

Proposed (k = 50)
Gabor 0.2753 0.8803 0.5000 0.9036 0.6183 0.9202 0.6452 0.9281
LBP 0.6032 0.9658 0.6581 0.9722 0.7398 0.9798 0.7742 0.9833
DeepFaces 0.0172 0.5874 0.0484 0.6293 0.1914 0.7015 0.4022 0.7609

Proposed (k = 150)
Gabor 0.1978 0.8701 0.4495 0.8996 0.6140 0.9201 0.6409 0.9292
LBP 0.5452 0.9644 0.6344 0.9710 0.7398 0.9801 0.7602 0.9831
DeepFaces 0.0151 0.5890 0.0527 0.6291 0.2108 0.7011 0.3828 0.7578

Centralized Sparse Representations (NCSR) [7]. From the
results in Fig. 11 one can see that the generic super-resolution
methods manage to improve the quality of the original LR
image, but the resulting faces are generally blurred since they
do not exploit the facial structure. On the other hand, the facial
images reconstructed using Eigen-Patches (EP) are blurred and
lacks texture detail which is important for recognition, which
confirms its poor performance in terms of recognition. On
the other hand, the results provided by LINE contain sever
structural noise, which confirms our hypothesis that it is not
guaranteed to converge to an optimal solution, thus confirming
the poor PSNR performance in Section VI-C. On the other
hand, the LM-CSS method manages to reconstruct to get facial
images which are closer to the ground truth with more texture
detail compared to SRCNN, NCSR and Eigen-Patches, and
less structural noise when compared to LINE.

The input low-resolution face images of the above ex-
periments are formed by smoothing and down-sampling the
original high-resolution face image to be able to compare it
with respect to the ground-truth. This does not represent the
real relationship between the unknown high-resolution and the
available low-resolution face image in the real world [82].
In order to further assess the effectiveness of the proposed
method, we conduct experiments on some real low-resolution
face image from the IJB-A dataset and compare the actual low-
resolution face image with the proposed LM-CSS solution in
Fig. 12. Apart from the distortions caused by blurring and
down-sampling, the test images contain compression artefacts

which are not catered by our proposed method. Nevertheless, it
can be seen that even though the proposed LM-CSS in the wild
does not cater for compression artefacts, it manages to increase
the texture detail on the facial region. Moreover, in our
previous work we demonstrated that dictionary based super-
resolution methods, such as LM-CSS, can be made robust
to compression by exploiting the syntax of the compressed
image/video [83].

E. Complexity Analysis

The complexity in terms of the average time taken to syn-
thesize a high-resolution image from a low-resolution image
in seconds is summarized in Table V. These results show
that the proposed method is significantly less computationally
intensive than Eigen-Patches but more complex than the other
methods, including LINE. While complexity is not the prime
aim of this work, the performance of the proposed scheme can
be significantly improved using more efficient l1-minimization
algorithms to solve the problem in Layer 1 as mentioned in
[76], since this is the most computationally intensive part in
our method.

VII. CONCLUSION

In this paper, we propose a new approach which can be
used to synthesize a high-resolution facial image from a low-
resolution test image. The proposed method first derives a
smooth approximation which is close to the ground-truth in
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TABLE II: Summary of the Rank-1 recognition results and Area Under Curve (AUC) metric using two different face recognition
algorithms (on the CAS-PEAL dataset.

Halln Method Recn Method
Resolution dx

8 10 15 20
rank-1 AUC rank-1 AUC rank-1 AUC rank-1 AUC

Bi-Cubic
Gabor 0.0156 0.7928 0.0300 0.8470 0.1811 0.8729 0.4211 0.8775
LBP 0.2111 0.8945 0.4656 0.9385 0.5033 0.9420 0.7622 0.9715
DeepFaces 0.0033 0.5437 0.0033 0.5527 0.0533 0.6353 0.1422 0.6857

Eigentransformation [14]
Gabor 0.0400 0.7542 0.0956 0.8078 0.2467 0.8489 0.4167 0.8644
LBP 0.1500 0.8410 0.3367 0.8897 0.3511 0.8960 0.5489 0.9218
DeepFaces 0.0144 0.5723 0.0156 0.5760 0.0300 0.5897 0.0356 0.6082

Neighbour Embedding [61]
Gabor 0.1356 0.8264 0.3667 0.8767 0.5700 0.8992 0.6433 0.8905
LBP 0.5567 0.9213 0.6622 0.9457 0.8067 0.9745 0.8556 0.9796
DeepFaces 0.0156 0.5846 0.0267 0.6052 0.0878 0.6670 0.1400 0.7069

ScSR [76]
Gabor 0.0356 0.8298 0.0967 0.8617 0.3644 0.8728 0.5456 0.8773
LBP 0.2800 0.9061 0.5656 0.9536 0.6056 0.9538 0.8122 0.9753
DeepFaces 0.0044 0.5517 0.0089 0.5648 0.0567 0.6217 0.1433 0.6809

Sparse Position-Patches [34]
Gabor 0.1467 0.8268 0.3100 0.8670 0.5356 0.8795 0.6100 0.8802
LBP 0.5400 0.9282 0.6633 0.9525 0.8211 0.9668 0.8667 0.9709
DeepFaces 0.0178 0.5818 0.0244 0.5996 0.0922 0.6584 0.1644 0.7013

Position-Patches [33]
Gabor 0.0933 0.8355 0.2411 0.8798 0.5178 0.8916 0.6156 0.8880
LBP 0.4711 0.9114 0.5889 0.9452 0.7800 0.9662 0.8356 0.9701
DeepFaces 0.0200 0.5992 0.0333 0.6196 0.1022 0.6821 0.1544 0.7085

Eigen-Patches [22]
Gabor 0.1422 0.8451 0.3322 0.8829 0.5600 0.8896 0.6300 0.8867
LBP 0.5400 0.9192 0.6567 0.9497 0.8222 0.9726 0.8611 0.9708
DeepFaces 0.0167 0.5950 0.0422 0.6148 0.1011 0.6675 0.1678 0.7078

LINE [47]
Gabor 0.1700 0.8303 0.4056 0.8722 0.5822 0.8920 0.6322 0.8849
LBP 0.5822 0.9220 0.6833 0.9458 0.8167 0.9744 0.8633 0.9797
DeepFaces 0.0144 0.5888 0.0267 0.6065 0.1033 0.6672 0.1489 0.7057

DFD [58] 0.0200 0.6865 0.1022 0.8299 0.4778 0.9331 0.8467 0.9716

Proposed (k = 50)
Gabor 0.1811 0.8427 0.3633 0.8733 0.5656 0.8888 0.6311 0.8896
LBP 0.5622 0.9282 0.6922 0.9538 0.8256 0.9756 0.8689 0.9806
DeepFaces 0.0178 0.5851 0.0289 0.6015 0.0989 0.6597 0.1622 0.7067

Proposed (k = 150)
Gabor 0.1544 0.8516 0.3344 0.8789 0.5644 0.8900 0.6244 0.8904
LBP 0.5344 0.9385 0.6789 0.9611 0.8322 0.9783 0.8756 0.9820
DeepFaces 0.0189 0.5969 0.0356 0.6117 0.1122 0.6726 0.1722 0.7086

TABLE III: Summary of the Quality Analysis results using the PSNR and SSIM quality metrics on the FRGC dataset.

Halln Method
Resolution dx

8 10 15 20
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bi-Cubic 24.0292 0.6224 26.2024 0.7338 25.2804 0.7094 28.6663 0.8531
Eigentransformation [14] 24.3958 0.6496 26.8645 0.7504 24.9374 0.6724 27.7883 0.7892
Neighbour Embedding [61] 26.9987 0.7533 27.9560 0.7973 29.9892 0.8714 31.6301 0.9122
ScSR [76] 24.1088 0.6316 26.6015 0.7600 24.9749 0.7067 28.7794 0.8639
Position-Patches [33] 27.3044 0.7731 28.2906 0.8145 30.1887 0.8785 31.7192 0.9143
Sparse Position-Patches [34] 27.2500 0.7666 28.2219 0.8100 30.1290 0.8767 31.7162 0.9146
Eigen-Patches [22] 27.3918 0.7778 28.3847 0.8196 30.3118 0.8842 31.8986 0.9203
LINE [47] 27.0927 0.7591 28.0253 0.8009 30.0471 0.8727 31.6970 0.9131
Proposed (k = 50) 27.1307 0.7679 28.1078 0.8093 30.0240 0.8761 31.6875 0.9139
Proposed (k = 150) 27.4866 0.7802 28.4200 0.8009 30.3431 0.8845 31.9610 0.9209

TABLE IV: Summary of the Quality Analysis results using the PSNR and SSIM quality metrics on the CAS-PEAL dataset.

Halln Method
Resolution dx

8 10 15 20
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bi-Cubic 22.1115 0.6517 25.0259 0.7831 23.3753 0.7478 27.9440 0.9016
Eigentransformation [14] 21.8434 0.6324 24.7969 0.7457 22.7048 0.6681 26.0714 0.7913
Neighbour Embedding [61] 25.1745 0.7545 26.7105 0.8166 29.7110 0.9078 32.3148 0.9488
ScSR [76] 21.9956 0.6589 25.4175 0.8029 22.9500 0.7406 27.9659 0.9078
Position-Patches [33] 25.9597 0.8036 27.5107 0.8577 30.3056 0.9250 32.7771 0.9569
Sparse Position-Patches [34] 25.6982 0.7825 27.2117 0.8418 30.1578 0.9192 32.6840 0.9546
Eigen-Patches [22] 26.0834 0.8071 27.6536 0.8620 30.6109 0.9303 33.1584 0.9615
LINE [47] 25.2454 0.7567 26.7365 0.8176 29.8449 0.9085 32.4446 0.9492
Proposed (k = 50) 25.5597 0.7704 27.0966 0.8318 30.0366 0.9125 32.6052 0.9521
Proposed (k = 150) 26.0875 0.8046 27.6003 0.8579 30.6199 0.9287 33.2108 0.9613

Euclidean space on the high-resolution manifold. Based on
the assumption that the patches reside on a high-resolution
manifold, we assume that the optimal support to represent

the first approximation is good to reconstruct the ground-
truth, which was shown to be valid in other research domains
[70], [71]. The coupled sparse support is then used to model
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Fig. 10: Cumulative Matching Score Curves (CMC) of face images hallucinated from different resolutions dx.

TABLE V: Summary of the time taken (in seconds) to syn-
thesize one image at different resolutions.

Halln Method Resolution dx
8 10 15 20

Eigentransformation [14] 2.84 2.69 2.74 2.75
Neighbour Embedding [61] 0.25 0.33 0.73 1.24
Position-Patches [33] 1.59 2.11 4.69 8.37
Sparse Position-Patches [34] 0.59 0.79 1.72 3.02
Eigen-Patches [22] 10.89 14.80 34.74 63.98
LINE [47] 2.23 2.16 2.61 2.83
Proposed 8.04 5.78 4.71 5.43

the up-scaling function for each patch using Multivariate
Ridge Regression. The proposed method differs from existing
methods since i) it models the up-scaling function for each
patch rather than combining a number of high-resolution faces
which makes it more acceptable by the forensics community,
ii) the proposed method exploits the local structure of the high-
resolution manifold to select the optimal support instead of
exploiting the structure of the low-resolution manifold which

is known to be distorted, iii) LM-CSS is non-iterative and
is guaranteed to converge to an optimal solution and iv) we
propose a method that can extend face hallucination methods
to be used on non-frontal images.

Extensive simulations were conducted on frontal images
from the FRGC and CAS-PEAL dataset, where a total of
1830 images were evaluated in terms of both recognition
and quality. This makes the most extensive evaluation of
face hallucination that can be found in literature. From these
results it was concluded that images super-resolved using the
proposed LM-CSS followed by LBP face recognition provides
the best recognition performance. It was found to significantly
outperform the cross-resolution face recognition system DFD
[58] where rank-1 recognition gains between 34% and 60%
were attained at very low-resolution. It was also shown to
outperform other face hallucination schemes followed by
LBP. The quality analysis shows that our LM-CSS method
outperforms existing methods, most of the time. Moreover,
subjective results show that apart from outperforming generic
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HR LR SRCNN [9] NCSR [7] EP [22] LINE [47] LM-CSS

Fig. 11: Super-resolved face images in the wild. The HR image represents the original ground-truth and LR is the low-resolution
image where dx = 8 and the other images are restored with a magnification factor α = 5.



15

Fig. 12: Super-resolved results from real-world low-resolution faces taken from the IJB-A dataset. For each example, the
original LR face is shown on the left, the facial region of the low resolution face image is shown at the centre and the
synthesized high-resolution face image is shown at the right.

super-resolution in the wild, our LM-CSS manages to recover
higher quality images than both LINE and Eigen-Patches,
which showed the most competitive results.

Future work points us in the direction to implement face
hallucination techniques which are able to hallucinate and
enhance face images afflicted by different distortions such
as compression, landmark-point misalignment, bad exposure
and other distortions commonly found in CCTV images. The
ability of current schemes (including the proposed method)
are dependent on the dictionaries used, and therefore these
schemes can be made more robust by building more robust
dictionaries.
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REPLY TO REVIEWERS

The authors would like to thank the reviewers for their work and recommendations. We believe that their questions and
recommendations helped improve the quality of the revised paper. Below we address all the queries raised and modified the
paper accordingly. In summary, we have completely rewrote section IV, compared our method with Yang et. al. [76], derived
results on an additional dataset (CAS-PEAL - as indicated by the previous reviewing board and mentioned by Reviewer 2),
compared our method in the wild with the extended LINE and Eigen-Patches in Fig. 11 and included all references recommended
by the reviewers. We would like to emphasize here that this work provides the most extensive evaluation of face hallucination
where apart from evaluating it in terms of PSNR, we are also presenting recognition performance objectively using different
face recognition systems. We also show that this method can perform very well in the wild - outperforming both generic SR
methods and the extended LINE and Eigen-Patches (extended using the method in V).

Reviewer 1

1. This paper presents a two-step framework for face hallucination. The first step is to obtain a global optimal approximation
which may lack some texture details. Then in the second step, the missed details are compensated through sparse support
based ridge regression. Through experiments illustrate that: (1) The objective image quality scores is not always consistent
with the perceptual quality of reconstructed face images and also the face recognition accuracy. Actually, this point has been
also found on other literatures, such as Wang et al. ”Evaluations on Synthesized Face Sketches”, Neurcomputing, 2016.
Related literature should be cited. (2) The proposed method could achieve state-of-the-art performance on the face images in
the wild.

The authors would like to thank the reviewer for suggesting this very recent reference which we have included in the
revised version (see sections I) and which further substantiates our conclusions. Note that, the recommended paper has been
published in Nov. 2016 while ours was submitted in June 2016. This recommended paper was cited in reference [59].

2. In addition, the proposed two-step framework is very similar with another work on heterogeneous image transformation
(Wang et al. Heterogeneous Image Transformation, PRL, 2013.) and the regression framework in this work is very related
to the cascaded linear regression based image super-resolution work (Hu et al. SERF: A Simple, Effective, Robust and Fast
Image Super-Resolver from Cascaded Linear Regression, IEEE TIP, 2016).

Once again, the authors would like to thank the reviewer for pointing two papers which have some level of similarity
to our proposed scheme, and therefore were included in the introductory part of the paper to make the literature covered
in this paper more complete (see [26] and [10]). Nevertheless, while some similarity exist, there are substantial differences
between our proposed method and these papers listed here:

For example, our method differs from the ”Heterogeneous Image Transformation”:
1) The support in [26] is found on the low-resolution manifold which as found in [28], [40]–[42] is distorted because of the

one-to-many mappings between the low- and high-resolution patches. This part is actually similar to the work of [34]
who does exactly that for face hallucination (e.q. 3). In our case we are first finding a first estimate of the up-scaling
function using all elements in the dictionary to derive the first approximation of the up-scaling function using (7) and
use it to find a point on the high resolution manifold using (8). Then we exploit the locality of the first approximated
solution to fund the support on the high-resolution manifold i.e. the atoms which are optimal to reconstruct the first
approximation ỹ

s{0}
i . Instead of using the weights directly, we use the k atoms whose weights have the largest value

as support and we extract the coupled sub-dictionaries Li (si) and Hi (si) to derive a refined up-scaling function using
(14) where the final solution is computed using (15).

2) Unlike our approach, this method reconstructs the transformed (in our case super-resolved) patch i2j using the notation
in this paper using a weighted combination of atoms found using sparse coding on the initial manifold (in our case
low-resolution manifold). In our case, we are modelling the up-scaling function by first finding and estimate and then
refine it by exploiting the high-resolution manifold, as mentioned above.

3) The main similarity between this approach and our method resides in the use of regression where here they use support
vector regression. Nevertheless, this approach considers the second layer as a de-blurring operator to restore missing
detail and does not use the original input for up-scaling (as done in our case). In the referenced work they train an SVR
model using the output of the first stage (which uses a weighted combination of atoms found from the low-resolution
manifold) and uses the high-resolution examples to learn the regression model. In our case we are using multivariate
ridge regression to model the up-scaling functions in (7) and (14).

Our approach differs from ”A Simple Effective, Robust and Fast Image Resolver from Cascaded Linear Regression”:
1) This work adopts a cascade of linear regression models to compute generic super-resolution. This method learns a

sequence of regressors to degrease the mean square error with respect to the high resolution patches at each layer. While
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the learning of the up-scaling function of the proposed method is similar to the first layer of the sequence of regressors
used in this paper, the aim of the second layer in our approach is to find the support (and thus coupled atoms) on the
high resolution manifold, and the next stage we only use atoms with this coupled support to learn the second mapping
relation (see (14)) which better preserves the texture detail.

2) The paper mentioned here divides the dictionary using clusters computed using k-means on the t-th level dictionary.
Therefore, the atoms selection process considered here is different from the one adopted in our approach where sparse
coding is used to find the support. In the new version we show that sparse coding derives atoms that are more suitable to
reconstruct ỹ

s{0}
i than k Nearest Neighbours. Moreover, instead of trying to reduce the error, we use the same dictionary

where only the selected coupled support are used in the second layer - therefore our approach is not a cascade of
regressors.

3) Please note that, the recommended paper has been published in Sep. 2016 while ours was submitted in June 2016.
While two of the papers mentioned were published after our submission in June, we appreciate the fact that the reviewers

have included them since it ensures that the most relevant and recent papers are included in this new version of the manuscripts.

Reviewer 2

The authors propose an improved method for face image super-resolution. The proposed method uses an LM-CSS algorithm
to learn the optimal up-scaling function and then exploit the geometrical structure of the high-resolution images from the
high-resolution dictionary. However, my main concern for this paper is lack of novelty and I have some questions and unclear
things in the proposed energy model.

1. Although the first step of learning the up-scaling function is somewhat new, the second layer that exploiting the
locality of the high-resolution images to refine the first estimation using the high-resolution dictionary is based on some
existing methods.

To address this remark we have restructured Section IV where we try to explain at high level the objective of each
layer. We then placed the detail of each layer in two separate sub-sections.

We first of all thank the reviewer for stating that learning an up-scaling function as a first step is somewhat new. In order
to emphasize the contribution provided by Layer 0, we have obtained additional results which clearly show that searching
for the closest neighbour on the high-resolution manifold using the first approximation provided by Layer 0 gives a better
neighbourhood preservation and also reduces the reconstruction error , than when searching for the neighbourhood on the low-
resolution manifold. We refer the reviewer to both Fig. 4 and Fig. 5 in the revised version of this paper. All face hallucination
schemes (except the LINE method) try to find neighbours or sparse support on the low-resolution manifold. These results
clearly show that computing the first approximation ỹ

s{0}
i using the first layer is beneficial, and allows to derive neighbours

which are more coherent with the actual neighbours of the ground-truth we are trying to approximate. The LINE method first
finds nearest neighbours on the low-resolution manifold using k = 150 neighbours and tries to improve the neighbourhood
selected on the high-resolution manifold. However, since the first approximation is based on neighbourhood computed on the
low-resolution manifold nL, the neighbour preservation is inferior to our Layer 0 (npH ) approximation. We therefore claim
that LINE is not guaranteed to converge - and actually results in Fig. 11 and quality analysis in Table IV confirm this comment.

However, we believe that the second layer was not properly explained in the previous version of the paper - and this point
was also remarked by reviewer 3. This second step is complementary, and goes together with the first step. One key issue
provided by the second layer is to identify the support si (marked in orange in Fig. 7) which are optimal to reconstruct the
first estimated solution ỹ

s{0}
i . The size of the support is controlled by the parameter k which as shown in Section III has an

impact on both PSNR and texture consistency for Neighbour Embedding. Therefore, the objective here is to find a support si
which is optimal to reconstruct ỹ

s{0}
i that is formulated in equation (12). Instead of using the weighted combination using the

derived ηi, which will converge to the first approximation and thus will lack texture details, we use the support si to extract
the k column vectors from Li and Hi to get the sub-dictionaries Li (si) and Hi (si). Here si corresponds to the k atoms with
the largest magnitudes ηi. These sub-dictionaries are then used to derive a refined up-scaling function Φ

{1}
i using(14).

Given that only k atoms are used to derive the refined up-scaling function Φ
{1}
i in (14), the solution is expected to get better

texture consistency (k is much smaller than the total number of atoms available) while achieving higher PSNR values (the
sparse support is derived using BPDN to get the sparsest solution which minimizes the least squares distance from the first
approximation (12). Therefore, the resulting refined up-scaling function Φ

{1}
i should provide a compromise between texture

consistency and PSNR.
We believe that the second layer is innovative because
1) we seek for the sparse support on the high resolution manifold instead of on the low-resolution manifold or nearest

neighbours on the high-resolution manifold (as done by LINE). The results in section IV-B show that the sparse support
is a better reconstruction model and is able to find the k support that are optimal to reconstruct the first solution. Then
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we exploit the locality of Φ
{1}
i which is close to the ground truth in Euclidean space to derive a refined up-scaling

function Φ
{1}
i using (14).

2) the method is not iterative and is guaranteed to converge to an optimal solution. The experimental results demonstrates
that it is much more stable than LINE when tested on two frontal datasets using 1830 images and on the non-frontal
images from the IJB-A dataset.

So, finding the support on the high-resolution manifold and using them to refine the projection matrix is innovative and
gives an edge over the LINE and other methods considered in the experiments in terms of both recognition and quality
(objective and subjective).

2. Some symbols are not clearly defined in this paper. For example, xsi in (2), what does the superscript s mean?

The symbol xsi was defined prior equation (1) and is defined as a standardized low-resolution patch. Nevertheless, the
authors agree that it is more appropriate to define this symbol following equation (2) where it is first used. This symbol was
re-defined after equation (2) where we specifically mention that upper-script s stands for standardized vectors (zero mean unit
variance).

3. The authors claim that PSNR does not correspond to the texture details based on some experimental results. Their
response to Reviewer1 is also based on observation in results, but it is still not clear why PSNR always increase while texture
details keep disappearing in Figure 2. Is there any theoretical explanation for this claim?

We have used a recommendation provided by reviewer 3 to show the LBP spectrum to show what is happening.
Given that the original Fig. 2 was not giving enough information to the reviewers we decided to modify it such that apart
from the facial image at different neighbourhood size, we also give the LBP spectrum and also PSRN and TC quality metrics.
From the results in Fig. 1 it can be seen that the PSNR saturates at around k = 200 while texture consistency starts going
down at that point for Neighbour Embedding. The reason why PSNR increases (although marginally) beyond this point is
because it Neighbour Embedding employs a least squares solution which tries to minimize the MSE - and the MSE is smaller
when increasing the number of column-vectors that are combined. Please note that unlike generic super-resolution, the textures
combined are similar i.e. right eye patches are combined to restore the right eye patch of the low-resolution test image.
However, if we add the number of column vectors (atoms) to combine, these will derive blurred patches, because patches
with different textures (different location of the eye center, different eye brows, different expression) are being combined. If
we select the k atoms which are closest in some sense i.e. all patches have their eyes open, then the reconstructed patch will
have higher texture consistency.

In Fig. 2 we show the LBP spectrum and show that the LBP spectrum of faces reconstructed using k = 200 is closer to the
LBP spectrum of the high-resolution image, which explains the higher TC metric. On the other hand, images reconstructed
using k = 1203 are blurred and thus have more repetitive texture - which provides spikes in the spectrum. Moreover, given
that these images contain less texture, the resulting spectrum is more sparse. Given that since the texture consistency metric
measures the similarity between the low- and high-resolution spectrum, and that one can see that the spectrum of those images
super-resolved using k = 200 are more consistent to that of the ground truth to those reconstructed using k = 1203, one can
expect that the texture consistency metric starts decreasing if the number of atoms used to estimate a patch is too large.

The theoretical justification which explains why the blurred images using k = 1203 is achieving higher PSNR values is
that it is based on the least squares and is therefore biased towards over smoothed (i.e. blurred) images. Several research
efforts (see work of A.C. Bovik and many others) have tried to design metrics which do not favour blurred images. The
texture consistency metric measures how the texture is related to the original texture of the original image. Given that the
LBP spectrum is more noisy when using larger neighbourhood sizes, this will contribute to reducing the texture consistency,
as seen in Fig. 1. Please note that these results were obtained using the neighbour embedding scheme [61], which finds
the weighted combination on the low-resolution manifold and then uses the same neighbourhood and weights on the high
resolution dictionary to restore the original image. Therefore, what is happening there is that increasing the number of
neighbours is combining more facial images in the high-resolution images thus converging more to a blurred face image with
lower texture. Therefore, the texture consistency will drop once more than 200 neighbours are considered.

4. The authors also do not provide compelling results that convince me it works substantially better than previous
methods. As shown in Tables 1 and 2, the proposed method only achieves PSNR gains about 0.1-0.3dB.

Based on the recommendation of the same reviewer, we have tested our algorithm and compared to several other
schemes on a different dataset - the CAS-PEAL dataset which was used by Jiang et al [47]. We have also added the face
hallucination of Yang et. al. for comparison. It must be mentioned that unlike other face hallucination schemes where they only
test on a small set of images (40 images in [47]), we choose two datasets where the gallery images are captured in controlled
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environment while the probes are captured either outdoors (FRGC) or using different expressions for the CAS-PEAL dataset.
We have evaluated our scheme using a total of 1830 probe images for recognition and quality evaluation. We must also
mention that all face hallucination schemes just give results about PSNR on much smaller datasets and give no indication
of its impact on recognition. We can therefore state here that the evaluation provided in this paper is the most extensive
evaluation of face hallucination found in literature.

Our proposed LM-CSS achieves rank-1 recognition rates between 20% and 60% over bi-cubic interpolation. We are also
outperforming a very-low-face-recognition scheme DFD published in PAMI in 2014 at very low-resolution, achieving gains
between (34% and 60%) - thus showing for the first time that hallucination followed by recognition can be more advantageous
at very low resolutions such as dx = 8 where DFD achieves are rank-1 recognition of 2% while our LM-CSS followed by
LBP face recognizer achieves rank-1 recognition of 56%. Apart from that we are outperforming Eigen-Patches (which is found
to provide the most competitive PSNR) by achieving rank-1 recognition gains between 2% and 8%. The most competitive
method in terms of recognition was found to be LINE followed by LBP face recognition, where we consistently outperform it
by around 2% at different magnification factors on the CAS PEAL dataset. All this information is included in the discussion
in the new version of this paper.

Apart from analysing the recognition performance, we did a quality analysis and found out that on the CAS-PEAL
database we can achieve PSNR gains of around 1dB over LINE - which is the most competitive scheme in terms of
recognition. On the other hand we are achieving like 0.3dB PSNR gain over Eigen-Patches on the FRGC dataset while
the results on the CAS PEAL dataset are closer. Nevertheless, the subjective results in Fig. 11 clearly show that the
images reconstructed using LINE are generally very noisy while images reconstructed using Eigen-Patches are generally
very smooth. On the other hand, those images reconstructed using LM-CSS have more texture detail and of significantly
better quality. It must be mentioned that if we want to achieve the highest PSNR values we can set k = 1203 where
ỹ
s{1}
i = ỹ

s{0}
i (see results in tables VI and VII in the reply to reviewer 3 Q.1, which confirms what I am saying here.

However, this was not included in the paper because achieving the highest PSNR is not the aim of this work - but the
aim is to get the facial images with the best subjective quality (as shown in Fig. 11) and can achieve the highest recognition rates.

5. Some raised questions by the reviewers are not answered by the authors. The reviewers asked the authors to compare the
proposed algorithm with other methods on a new dataset, and compare with the work: Yang et al. But the authors did not
consider these suggestions.

The proposed algorithm was compared to the method of Yang et al. and all algorithms were evaluated in terms of
recognition and PSNR using the CAS-PEAL data base - which was recommended by the reviewer this reviewer is referring
to. Our proposed method outperforms the method of Yang et al quite significantly. Moreover, the results on the CAS-PEAL
dataset are quite consistent with those computed on the FRGC dataset. In fact, we can say that the including the CAS-PEAL
dataset consolidates the superiority of our proposed scheme in terms of both quality and recognition.

Reviewer 3

This paper presents a two-step face hallucination method. The first step is to approximate HR face images by a linear
model and then the second step is to enhance the facial details by a coupled LR/HR dictionaries. Since using the weights
calculated from LR inputs to hallucinate HR faces needs to combine a number of HR faces, which may introduce distractions,
this paper estimates an interpolation function to upsample LR inputs by a linear model. The paper assumes that in this
case the upsampled HR faces are close enough to the ground-truth HR faces on the HR face manifold but they are still
blurred. Hence, the paper tries to find k nearest neighbors to generate the details. Hence, they can achieve high-frequency details.

To be more accurate we try to find the k-sparse support approximation on the high-resolution manifold rather than
the closest neighbours. We have re-structured Section IV to make the explanation of the proposed method more clear.
Moreover, we include more results which show that the first step is essential to find an optimal approximation which preserves
the local neighbourhood better. Moreover, the second layer is used to find the k-sparse support suitable to approximate the first
approximation and use them to refine the up-scaling function that is able to recover texture detail which is more consistent to
that of the ground truth.

This paper is well written and the methodology is clearly stated, which is easy to understand. However, in my opinion, the
novelty is minor and in the experimental part the comparison is not sufficient/unfair, such as Fig. 8. Here are my concerns:

The authors would like to thank the reviewer for remarking that the paper is well written and that the methodology
is clear. As mentioned, we have explained in more detail the function of each layer where the contribution and novelty
component of each layer is better emphasized. Moreover, we have tested our proposed method against state of the art methods
found in literature (7 hallucination methods and 1 very low resolution face recognition method) on two data-sets since we added



22

the results on the CAS-PEAL dataset. We hope that we will be able to adequately answer to the concerns raised by this reviewer.

1. I agree that higher PSNR does not mean better visual quality or better recognition accuracy. But in Part VI-B,
why do the authors choose different k values? In my opinion, this paper should find a trade-off k which can achieve better
PSNR while improving recognition accuracy. Furthermore, I am wondering what the differences would be given different values
of k? I think the comparison is not fair because for different tasks the paper tries to use different parameters. From Fig.1 b,
TS begins to decrease after 200, why do the authors use k=50 for recognition tasks? Why not set k=150 for all the experiments?

Please note that the results in Section III are derived using Neighbour Embedding scheme in [61], and is used to get
a better understanding on the effect of k on the performance of neighbour embedding - which is the basis of most recent
work on face hallucination. From these results we show that improving PSNR does not mean you get images which are
coherent with the ground-truth in terms of texture which is more related to recognition. We introduce LM-CSS in section IV.
Therefore, the results which show that TC decreases after k = 200 is for neighbour embedding and not for LM-CSS. In the
revised version we make this more clear in section III and mention it again in section VI-A, where we are trying to find the
optimal parameters for LM-CSS. The results in section VI-A show that the optimal parameters for LM-CSS is dependent on
the application scenario. From these results it can be seen that the best performance in terms of recognition rate was achieved
using k = 50 while adequate PSNR performance can be achieved using k = 150 and we decided to use this configuration
for the results on both FRGC and CAS-PEAL datasets. Therefore, given these results it is not possible to find one optimal
value of k for both scenarios. In fact, if you look at the PSNR results in tables III and IV Eigen-Patches, which uses all
elements in the dictionary attains the most competitive performance to our scheme. However, even thou it achieves good
PSNR performance it attains very low recognition performance (see results in table I and II). On the other hand, the LINE
method, which employs k atoms from the dictionary, seems to be more competitive in terms of recognition but suffers in
terms of PSNR. While we still outperform LINE in terms of recognition, our method achieves PSNR gains of up to 1dB using
the same neighbourhood size i.e. k = 150. Therefore, it is not possible to derive a k optimal for both application domains.

To get a compromise with the point raised by the reviewer we include results with LM-CSS for both k = 50 and
k = 150 in tables I - IV in the new version of this paper. Some additional results are included below to help the reviewer
understand the effect that k has on performance. As one can see in Tables VI and VII, we show quality results in terms
of PSNR and SSIM using different values of k for both Eigen-Patches, LINE and our proposed LM-CSS. It can be seen
that even if we reduce the value of k to 50 for LM-CSS. the results are still superior to the performance of LINE when
using k = 150 (optimal setting proposed in [47]). It must be mentioned that reducing the value of k for LINE makes their
method unstable and provides significant losses in PSNR (up to 2dB relative to LINE with k = 150). On the other hand,
our LM-CSS method is guaranteed to converge even when using a small number of support, such as k = 50. We must
also mention here that to achieve the best performance in terms of PSNR we can set k = 1203, i.e. using all elements in
the dictionary. However, setting k = 1203 produces blurred images which will reduce the recognition performance. Given
that achieving the highest PSNR is not the prime aim of this work we decided not to include results with k = 1203 in this paper.

TABLE VI: Summary of the Quality Analysis results using the PSNR and SSIM quality metrics on the FRGC dataset.

Halln Method

Resolution dx

8 10 15 20

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Eigen-Patches [22] 27.3918 0.7778 28.3847 0.8196 30.3118 0.8842 31.8986 0.9203

LINE [47] (k = 50) 25.6811 0.6869 26.6226 0.7355 28.6833 0.8264 30.3465 0.8808

LINE [47] (k = 150) 27.0927 0.7591 28.0253 0.8009 30.0471 0.8727 31.6970 0.9131

Proposed (k = 50) 27.1307 0.7679 28.1078 0.8093 30.0240 0.8761 31.6875 0.9139

Proposed (k = 150) 27.4866 0.7802 28.4200 0.8009 30.3431 0.8845 31.9610 0.9209

Proposed (k = 1203) 27.5140 0.7947 28.4044 0.8300 30.3431 0.8915 31.9393 0.9245

In tables VIII and IX we show the recognition results using different configurations of k for Eigen-Patches, LINE and
our method when using LBP face recognition. It can be seen that increasing the value of k to 150 for LM-CSS provides
performance which is still competitive with LINE (k = 150), where actually we achieve the best performance on the
CAS-PEAL dataset with k = 150 while we have performance very close to LINE on the FRGC dataset. It is also interesting
to notice that the LINE method is very unstable when you reduce the neighbourhood size k to 50, where it achieves
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TABLE VII: Summary of the Quality Analysis results using the PSNR and SSIM quality metrics on the CAS-PEAL dataset.

Halln Method

Resolution dx

8 10 15 20

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Eigen-Patches [22] 26.0834 0.8071 27.6536 0.8620 30.6109 0.9303 33.1584 0.9615

LINE [47] (k = 50) 22.7275 0.6176 24.2920 0.7018 27.3511 0.8349 29.8894 0.9039

LINE [47] (k = 150) 25.2454 0.7567 26.7365 0.8176 29.8449 0.9085 32.4446 0.9492

Proposed (k = 50) 25.5597 0.7704 27.0966 0.8318 30.0366 0.9125 32.6052 0.9521

Proposed (k = 150) 26.0875 0.8046 27.6003 0.8579 30.6199 0.9287 33.2108 0.9613

Proposed (k = 1203) 26.1637 0.8122 27.6838 0.8638 30.6712 0.9319 33.2487 0.9627

recognition rates even lower than Eigen-patches. This can be explained since the first approximation uses k neighbours on the
low-resolution manifold to get the first estimate, this will be inaccurate since the neighbour preservation will be quite low.
Therefore, LINE will find it very hard to converge to a good solution.

TABLE VIII: Summary of the Rank-1 recognition results and Area Under Curve (AUC) metric using two different face

recognition algorithms (on the FRGC dataset.

Halln Method Recn Method

Resolution dx

8 10 15 20

rank-1 AUC rank-1 AUC rank-1 AUC rank-1 AUC

Eigen-Patches [22] LBP 0.5226 0.9625 0.6215 0.9704 0.7237 0.9800 0.7602 0.9830

LINE [47](k = 50) LBP 0.5786 0.9604 0.6224 0.9696 0.7041 0.9785 0.7553 0.9821

LINE [47](k = 150) LBP 0.5925 0.9647 0.6559 0.9714 0.7323 0.9804 0.7677 0.9833

Proposed (k = 50) LBP 0.6032 0.9658 0.6581 0.9722 0.7398 0.9798 0.7742 0.9833

Proposed (k = 150) LBP 0.5452 0.9644 0.6344 0.9710 0.7398 0.9801 0.7602 0.9831

TABLE IX: Summary of the Rank-1 recognition results and Area Under Curve (AUC) metric using two different face recognition

algorithms (on the CAS-PEAL dataset.

Halln Method Recn Method

Resolution dx

8 10 15 20

rank-1 AUC rank-1 AUC rank-1 AUC rank-1 AUC

Eigen-Patches [22] LBP 0.5400 0.9192 0.6567 0.9497 0.8222 0.9726 0.8611 0.9708

LINE [47](k = 50) LBP 0.3878 0.8673 0.5189 0.8895 0.7556 0.9492 0.8333 0.9699

LINE [47](k = 150) LBP 0.5822 0.9220 0.6833 0.9458 0.8167 0.9744 0.8633 0.9797

Proposed (k = 50) LBP 0.5622 0.9282 0.6922 0.9538 0.8256 0.9756 0.8689 0.9806

Proposed (k = 150) LBP 0.5344 0.9385 0.6789 0.9611 0.8322 0.9783 0.8756 0.9820

2. As mentioned in the second contribution of this paper, previous methods are not acceptable as criminal evidence,
because the hallucinated faces are combined from multiple HR faces or patches. Hence, this paper proposes a linear model
to interpolate LR faces first. However, in the second step, this paper also needs to use multiple reference HR patches to
hallucinate HR details, which are cropped from multiple HR faces as well. So my question is that if the hallucinated details
also come from multiple facial parts, why the results generated by the proposed method are acceptable for forensic evidence?
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We believe that the contribution of the second layer was not well presented in the previous version. As mentioned
earlier, we decided to restructure the section of the proposed method to make the contribution of each layer more clear and
make sure that the novelty component of each layer is more apparent. We have also added more results to show what is the
gain provided by each layer. In fact, in both steps we are modelling an up-scaling function using a set of face images to derive
a linear up-scaling function for each patch. The second step is complementary, and goes together with the first step. One key
issue provided by the second layer is to identify the support si (marked in orange in Fig. 7) which are optimal to reconstruct
the first estimated solution ỹ

s{0}
i . The size of the support is controlled by the parameter k which as shown in Section III has

an impact on both PSNR and texture consistency for Neighbour Embedding. Therefore, the objective here is to find a support
si which is optimal to reconstruct ỹ

s{0}
i that is formulated in equation (12). Instead of using the weighted combination using

the derived ηi, which will converge to the first approximation and thus will lack texture details, we use the support si to
extract the k column vectors from Li and Hi to get the sub-dictionaries Li (si) and Hi (si). Here si corresponds to the k
atoms with the largest magnitudes ηi. These sub-dictionaries are then used to derive a refined up-scaling function Φ

{1}
i using

(14). Therefore, Φ
{1}
i is still an up-scaling function which does not combine patches from different faces, and is expected to

be more accepted by the forensics community.

3. As for the third contribution, LM-CSS uses manually labeled facial landmarks to align reference HR faces. In my
opinion, there is no big difference from existing methods [12-36, 38-41]. Because the manually labeled landmarks can be
easily embedded to the state-of-the-art methods, I think the novelty of the third contribution is really limited.
5. In Fig. 8, this paper mainly compares with general super-resolution methods rather than the state-of-the-art face hallucination
methods, such as [30, 31, 44]. I think Fig.8 should demonstrate the visual results of those methods.

The authors agree with the fact that the third contribution can be applied to a number of face hallucination methods
including LINE, Eigen-patches etc. Nevertheless, the authors of LINE claimed they are doing face hallucination on real-world
images and poor performance was obtained when the face image deviated slightly from frontal (see last row of Fig. 13 of
reference [47]). Given that the method proposed for the third contribution is extendible to other schemes does not make
it limited but actually makes it more widely usable. It shows that by aligning the dictionaries to the input low-resolution
test image, one can employ face hallucination in the wild. Such scheme was never published which makes it novel while
not being complex. On the other hand, schemes based on deep learning which are said to be able to compute face super
resolution in the wildn(will go into more detail when answering question 6) are not that good since they have a number
of limitations mentioned below. We here demonstrate the images restored using LINE, Eigen-Patches and LM-CSS with
non-aligned dictionaries (see Fig. 13. Of course the quality of the reconstructed faces is poor because they are not aligned
- but that is their actual implementation. On the other hand, better quality can be achieved using generic super-resolution
schemes such as NCSR and SRCNN (deep learning based super-resolution scheme).

To provide a more adequate answer to question 5 we have integrated Eigen-patches and LINE in our dictionary alignment
strategy and show the results in the newer version (see Fig. 11). It can be immediately noticed that wile the hallucination
methods provide sharper face images, the images reconstructed using Eigenpatches with aligned dictionary are blurred while
those reconstructed using the aligned LINE method have structural distortion - which is consistent with the results presented on
frontal images. On the other hand the images constructed using aligned LM-CSS are of much better quality at a magnification
factor of 5 starting from a resolution where inter-eye distance is of only 8 pixels.

4. This paper employs LBP features to measure the texture similarity. I may suggest that by showing image spectrum of
hallucinated faces readers could easily tell what kind of frequency components are hallucinated rather than a value of TS. From
the spectrum, it also can be easy to tell whether the generated high-frequency details are consistent with the ground-truths or not.

We would like to take the opportunity to thank the reviewer for this suggestion. In this revised version we modify
Fig. 2 to use the suggested spectrum of LBP to show what happens when we increase the neighbourhood size k when
using neighbour embedding. Using the LBP spectrum one can notice that while the face image is more blurred (k = 1203)
the resulting spectrum has more noisy spikes which contributed to reducing the texture consistency when using larger
neighbourhood size. We believe that the use of this spectrum in Fig. 2 helps the reader to better understand what the texture
consistency metric is doing and to explain why it drops when using larger neighbourhood sizes. Please note that the results
in Fig. 2 are for neighbour embedding [61] and not for the LM-CSS.

6. Very recently, there are some deep learning based face hallucination methods have been proposed, the authors
should not miss those.

The authors thank the reviewer to point us towards recent advances in deep learning. The method [50] adopts a bi-
channel convlutional neural network to reconstruct Gaussian and Motion blur. They use a 48 × 48 input network, which
makes it quite rigid for super-resolution. If for example, you have an image of resolution 20 × 20 one has to up-scale the
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Fig. 13: Face hallucination in the wild without dictionary alignment.

input image to 48× 48, while if you have a higher resolution you must down-scale the input image to 48× 48, thus loosing
information. In their results in Fig. 4 they consider images of resolution 50 × 50, which roughly corresponds to an inter-eye
distance of dx = 30. Please note that we are considering much lower resolutions in our work. Another important thing to
mention, is that while they are claiming face super-resolution in the wild, the face images using in the evaluation are quite
frontal. The results we present in Fig. 11 and 12 are much more realistic and truly in the wild. We have contacted to authors
of this paper to give us the code or learned models - but they did not reply. Nevertheless, this contribution will be included
in the introductory part of our new version of the paper (ref [?]).

Another project that one can find on github is the srez project https://github.com/david-gpu/srez. We have tried to implement
their method - however when we contacted the developer of this project to see whether we can use their code to super-resolve
new data, he answered as follows:

”Right, there current code does not support the user to provide a particular 16x16 image to be supersampled. It’s just
a proof of concept prototype. You would need to modify the source code to read an external image and upsample it.”

The srez algorithm is very restrictive i.e. it can only super-resolve images of resolution 16× 16 and achieves a magnification
factor of 4. So it has to be retrained for different input resolutions and different magnification factors. Please note that in our
work to perform face super-resolution in the wild we are not restricted by the input resolution or the magnification factor we
want to achieve. Nevertheless, experimental results show that it it hard to reliably super-resolve facial images with an inter-eye
distance lower than 8 pixels. Method based on deep learning is restricted by the number of input and output neurons.

We have done some experiments to see how good the srez project is: In fact if the reviewer has a look at the images
in https://github.com/david-gpu/srez, one can immediately notice that while the reconstructed faces are appealing, they do
not resemble the original face image. In fact, we found out that the PSNR of the facial region averaged over all images of
the facial region is just 20.75dB - which is very low. This can be explained by the fact that the inter-eye distance of the
low-quality image is just 5 pixels, which is too small and thus the low-quality image has too little information to exploit to
reconstruct a reliable approximation of the high-resolution face image.

Base on the above concerns, I think the novelty of this paper is limited which cannot reach the bar of TIP right
now. Hence my decision is major revision.

We hope the reviewer is more satisfied with the modifications and replies, and finds the contribution of this paper
more appropriate for publication in TIP.


