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Corrigendum to “(Almost) Everything You Always Wanted to

Know About Deterministic Control Problems in Stratified

Domains”

G. Barles & E. Chasseigne ∗†

Abstract

The aim of this short note is: (i) to report an error in [1]; (ii) to explain why the compar-
ison result of [1] lacks an hypothesis in the definition of subsolutions if we allow them to be
discontinuous; (iii) to describe a simple counter-example; (iv) to show a simple way to correct
this mistake, considering the classical Ishii’s definition of viscosity solutions; (v) finally, to give
some elements of proof showing that this actually corrects the error.
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**********

In [1], we are considering deterministic control problems whose dynamic and cost (b, l) at any
point (x, t) ∈ R

N × [0, T ] are chosen in a set BL(x, t). The classical Hamiltonian is

H(x, t, p) := sup
(b,l)∈BL(x,t)

{

− b · p− l
}

.

Having a stratified problem means that RN can be decomposed as

R
N = M0 ∪M1 ∪ · · · ∪MN ,

where, for any k, Mk is a k dimensional submanifold of RN . The sets M0,M1, . . . ,MN−1 are the
locations where either BL(x, t) or H can have discontinuities. To take into account some particular
control problems on Mk, it is necessary to introduce the Hamiltonians which are defined on Mk by

Hk(x, t, p) := sup
(b,l)∈BL(x,t)

b∈TxM
k

{

− b · p− l
}

,

where TxM
k is the tangent space to Mk at x.

The definition of super and subsolutions in [1] follows the ones of Bressan & Hong [2]: a lsc
function v is a supersolution of the associated Hamilton-Jacobi-Bellman Equation if

vt +H(x, t,Dv) ≥ 0 on R
N × (0, T ] ,

∗Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 7350), Fédération Denis Poisson (FR CNRS
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while an usc function u is a subsolution if

ut +Hk(x, t,Du) ≤ 0 on Mk × (0, T ] , (1)

for any k = 0, · · · , N . And it is worth pointing out that these Hk- inequalities are really on
Mk × (0, T ]-inequalities, i.e. they are obtained by considering maxima of u − φ on Mk × (0, T ] for
any smooth test-function φ.

Unfortunately, this way to define subsolutions is not sufficent since it treats all the Mk separately
without linking them and this allows u to have artificial values on certain manifolds Mk as the
following example shows (1): consider in R

N the equation

|DU |+ U = min(|x|, 1) in R
N .

The ”control” solution is given, in B(0, 1) by

U(x) = |x|+ exp(−|x|)− 1 .

Now we can consider the stratification where MN−1 = S(0, 1) = {x : |x| = 1} and MN =
R

N \ MN−1. Then the above equation can be reformulated in terms of this stratified domain:
for subsolutions, we have the same equation in MN while

|DTu|+ u ≤ 1 on MN−1 ,

whereDTu stands for the tangent derivative of u on the sphere S(0, 1). For this stratified formulation,

u(x) :=

{

1 if x ∈ S(0, 1) ,

U(x) if x ∈ R
N \ S(0, 1)

is obviously a subsolution which is upper semi-continuous since U(x) = exp(−1) < 1 on S(0, 1). But
v := U in all RN is a also a supersolution and of course u(x) ≤ v(x) does not hold in R

N because
on S(0, 1), u(x) = 1 > v(x) = exp(−1).

The key fact in this counter-example to comparison is that we can put artificial values on MN−1

for the subsolution u since these values are unrelated with those of u on MN . A first way to correct
our result is just to assume u to be continuous or slightly weaker (but difficult to check) requirement.

In order to solve this problem while keeping only usc subsolutions, we have to add a global Ishii
type requirement for subsolutions, namely

ut +H∗(x, t,Du) ≤ 0 in R
N × (0, T ] . (2)

Hence the correct definition for a subsolution consists in the classical inequality due to

Ishii’s definition (2), reinforced by the Mk inequalities (1) in order to ensure that the control
problem on Mk (with perhaps low costs) is really seen in terms of HJB Equations.

The additional subsolution inequality (2) allows to prove, under the assumptions of [1] and, in
particular the normal controllability that
(i) For any x ∈ Mk, k < N − 1, u(x) = lim sup{u(y), y → x, y /∈ Mk}
(ii) For any x ∈ MN−1, we also have u(x) = lim sup{u(y), y → x, y /∈ MN−1} but this property is
true when y stays in any of the (locally) two connected component of RN \MN−1.

(1)This difficulty does not appear in Bressan & Hong [2] since the subsolutions are assumed to be continuous.
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Before giving an idea of the proof of (i) and (ii), we explain how to use it in the comparison proof.
The first step is to regularize u by a tangent sup-convolution and then by a standard convolution.
We claim in [1] that by doing so, we obtain a continuous u: the above counter-example shows that
this statement was wrong. But this is correct assuming (i) and (ii), since (essentially) the values of
u on each Mk are limits of values of u outside Mk.

To prove (i) we can assume that we are in the stationary case (for simplicity) and that Mk if flat
(this reduction is done in [1] using the regularity of Mk). Consider the function

y 7→ u(y)−
|y − x|2

ε
− Ce · (y − x) := u(y)− φ(y) ,

where e is any unit vector normal to Mk. If u(x) > lim sup{u(y), y → x, y /∈ Mk}, the maximum
of this function is necessarily achieved on Mk at yε. Using the normal controlabillity in MN we
deduce that H∗ is coercive in any normal direction to Mk so that if C is large enough we reach a
contradiction in H∗(yε, u(yε), Dφ(yε)) ≤ 0, which gives the desired property (i).

In the case of MN−1, the same proof shows that (i) also holds but this is not enough since, locally,
R

N \MN−1 has two connected components and we have to show that the property is true separately
for both connected components. Here, we assume again that MN−1 is an hyperplane and we take
the same test-function but with e = +n or −n where n is a normal vector to MN−1.

If u(x) > lim sup{u(y), y → x, y /∈ MN , n · (y − x) > 0}, we consider

y 7→ u(y)−
|y − x|2

ε
+ Cn · (y − x) .

The maximum cannot be achieved in the domain where n · (y − x) > 0. But in the complementary
of this set, the term +Cn · (y − x) has the right sign (i.e., it is non-positive), allowing to show that
a maximum is achieved and is converging to x as ε → 0. Again, the normal controllability of H∗

allows to get the contradiction.

In conclusion, the comparison result of [1] is correct if either we assume the subsolutions to satisfy
the properties (i)-(ii) above (for example, continuous subsolutions) or if we assume them to satisfy
(2) since this implies (i)-(ii). We also emphasize the fact that this change in the definition of
subsolution does not affect the stability properties (for subsolutions) since Ishii’s definition has nice
stability properties.
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