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Using a Memory of Motion to Efficiently Warm-Start

a Nonlinear Predictive Controller

N. Mansard1, A. Del Prete1, M. Geisert1, S. Tonneau1, O. Stasse1

Abstract— Predictive control is an efficient model-based
methodology to control complex dynamical systems. In general,
it boils down to the resolution at each control cycle of a
large nonlinear optimization problem. A critical issue is then
to provide a good guess to initialize the nonlinear solver so
as to speed up convergence. This is particularly important
when disturbances or changes in the environment prevent
the use of the trajectory computed at the previous control
cycle as initial guess. In this paper, we introduce an original
and very efficient solution to automatically build this initial
guess. We propose to rely on off-line computation to build
an approximation of the optimal trajectories, that can be
used on-line to initialize the predictive controller. To that
end, we combined the use of sampling-based planning, policy
learning with generic representations (such as neural networks),
and direct optimal control. We first propose an algorithm
to simultaneously build a kinodynamic probabilistic roadmap
(PRM) and approximate value function and control policy.
This algorithm quickly converges toward an approximation of
the optimal state-control trajectories (along with an optimal
PRM). Then, we propose two methods to store the optimal
trajectories and use them to initialize the predictive controller.
We experimentally show that directly storing the state-control
trajectories leads the predictive controller to quickly converges
(2 to 5 iterations) toward the (global) optimal solution. The
results are validated in simulation with an unmanned aerial
vehicle (UAV) and other dynamical systems.

I. INTRODUCTION

This paper focuses on the control of complex dynamical

systems such as UAVs and legged robots. Classical control

approaches are hardly applicable to these systems, which

represent thus an open problem for the robotics community.

Different techniques exist to control complex dynamical

systems, most of which can be labeled either as model based,

or as model free.

Model-based approaches, such as Model Predictive Con-

trol (MPC), exploit a model of the system to find the control

inputs that drive it towards a desired state. Despite their

remarkable capabilities and their wide use in robotics, they

are severely limited by the associated computation time,

which makes their application to large systems extremely

challenging. Moreover, model-based techniques need to face

the problem of modeling errors, which negatively affect their

performance on real hardware.

At the other end of the spectrum we find model-

free approaches, such as reinforcement learning [1]. These

approaches can learn—either by trial and error or by

demonstration—how to control a system to achieve a speci-

fied task. Model-free techniques shine exactly where model-

based techniques struggle, that is in their computation time
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and in their adaptation capabilities. However, the off-line

learning phase may require unacceptable training times for

large systems. Moreover, these techniques need an exhaustive

exploration of the state space in order to perform reliably,

which in general cannot be ensured.

Given the complementary nature of model-based and

model-free approaches, many ways to combine them have

been proposed. We can observe two main families of ap-

proaches:

1) Using model-based techniques to speed up the training

of model-free techniques.

2) Learning models/functions to improve the performance

of model-based techniques.

In the first family we can find works from both robotics and

computer graphics, where local trajectory optimization has

been used to guide the search of a desired control policy [2],

[3], [4]. This allows to speed up the training phase (of neural

networks in these specific cases) and thus to explore a larger

part of the state space. However, this does not completely

solve the issue of reliability of the resulting controller, and

it needs an extremely accurate learning to avoid unstable

control policies.

In the second family we can find different techniques, most

of which boil down to learning a certain function off-line, and

then using this function on-line inside an MPC. The learned

function can be the Value function [5], the system dynamics

model [6], or the cost function [7]. The main goal is always

to speed-up the MPC computation time and/or to improve

the quality of the computed solution. Earlier versions of the

same idea consisted in storing a library of optimal trajectories

computed off-line, and then use nearest-neighbor to recover

the control trajectories to use on-line [8]. The same concept

has been applied also to sampling-based planning, where

the Value function has been learned to improve the quality

of an RRT [9]. Similarly, trajectory optimization has been

used to alleviate the curse of dimensionality of dynamic

programming [10].

This work combines the two above-mentioned families:

we first use model-based techniques to learn off-line a

control policy, which we then use on-line to warm-start an

MPC. With respect to previous work we present several

peculiarities:

• In the off-line training phase we combine a local

trajectory optimization with a sampling-based motion

planner (PRM) to compute better sample trajectories.

This allows us to learn a better control policy with

respect to using only a local trajectory optimization.



• Rather than generating the sample trajectories and learn-

ing the control policy in sequence, we do it in a cyclic

way. After learning the control policy, we use it to

improve the PRM, thus leading to an even better quality

of the sample trajectories.

• We use the learned policy to initialize the MPC, rather

than to modify the problem definition. This makes the

system more reliable because the learned function does

not affect the problem we are solving, but only the

starting point of the search.

• We show that rather than learning the control policy we

can learn the future state and control trajectories. De-

spite the higher dimensionality of the learning problem,

this approach gave much better results in our tests, and

it avoids the need of performing a roll out to retrieve

the trajectories from the policy.

II. BACKGROUND: OPTIMAL CONTROL AND

KINODYNAMIC PLANNING

We consider here the problem of finding the (global)

minimum of an optimal control problem, i.e computing

optimal control and state trajectories of an arbitrary dynamic

system in its environment.

A. Dynamic model

We denote by x ∈ X the state of the system (typically a

vector of dimension nx, possibly representing an element of a

Lie group) and by u ∈ U its control vector (living in a vector

space of dimension nu). We denote by Ω a parametrization

of the environment where the system evolves (e.g. obstacle

location, external disturbances, time-dependent uncontrolled

dynamic effects).

We consider an autonomous dynamics (time independent):

ẋ = f(x, u,Ω) (1)

We denote by X : t→ X and U : t→ U the trajectories

in state and control spaces. X and U are constrained together

to respect (1).

B. Optimal control

Among all admissible trajectories X,U , we are interested

in the pairs that minimize a cost functional L(X,U). The

functional is typically composed of an integral cost term and

a terminal cost term, that encodes the task to be achieved by

the system. The optimal trajectory starting from an arbitrary

state x0 ∈ X is the solution of the following optimal control

problem:

minimize
X∈X ,U∈U,

T>0

L(X,U)

subject to ẋ(t) = f(x(t), u(t),Ω), ∀t ∈ [0, T ]

x(0) = x0

(2)

where the decision variable T is the duration of the preview

interval. We suppose that (2) has a unique minimum (no

redundancy). Moreover, we suppose that L is sufficiently

constraining to bring the trajectory to end at—or close to—a

desired state. More specifically, we do not consider here the

typical terminal constraint x(t) = x∗, while some terms in

L should play a similar role.

Additional constraints can also be considered (typical state

limits, obstacle avoidance, etc are supposed to be encoded

in X and U ).

C. Value function and optimal policy

For any initial state x ∈ X and environment Ω, we denote

by V (x,Ω) the Value function, i.e. the optimal cost of (2) for

x0 = x. We denote by π(x,Ω) the policy function, i.e. the

optimal control to apply to get the optimal cost. Finally, we

denote by X∗(x,Ω), U∗(x,Ω) the optimal state and control

trajectories.

We are interested in robotic systems where it is typically

not possible to obtain an analytical expression of V , π, X∗

and U∗. We are then doomed to approximate these functions

by numerical methods.

Dynamic programming tends to globally solve the prob-

lem, by integrating over the whole state space. It is thus

limited by the curse of dimensionality. On the other hand,

direct trajectory optimization only considers one trajectory

at a time. Any discretization (i.e piecewise constant, poly-

nomial, etc) of the control and/or state trajectories is chosen

by the user. Problem (2) is then converted into a standard

optimization problem (i.e. with a finite number of decision

variables), which is solved by an iterative descent algorithm

(typically a Gauss-Newton sequential quadratic program).

In the design of the numerical algorithm, care has to been

taken to the sparsity and the numerical conditioning of the

problem. Well-known algorithms are Differential Dynamic

Programming (DDP) [11], its Gauss-Newton approximation

(iterative LQR) [12], and multiple-shooting [13]. Off-the-

shelf implementations of any of these algorithms are easily

available.

While the original optimal-control problem is character-

ized by global optimality principles (due to Pontryagin and

Bellman), their static approximation is most of the time

a non-convex optimization problem, only characterized by

local optimality principles. The direct consequence is that

the corresponding algorithms are likely to end in poor local

optima, sometimes not even able to converge to any relevant

solution at all.

To avoid this, it is necessary to give an initial guess that

the optimizer can use to initiate its search. This is true in

particular when the initial state x0 is far from the goal region,

and when it is important that the solver converges quickly.

When no heuristic initial guess is available (i.e. in the general

case), we can compute one of these complex trajectories

relying on sampling-based methods.

D. Kinodynamic planning

Kinodynamic planning is a class of problem considering

generic dynamical systems that cannot follow static trajecto-

ries. Kinodynamic planners sample the state spaces and try

to connect the sampled states with trajectories respecting (1).

Nodes (i.e. states) are connected by a local controller, which

we call a steering method: it is a function that maps any pair



of states to a connecting trajectory. By definition, we suppose

that the steering method is local, i.e. is only able to connect

two states if they are “close enough”. The major stake of

kinodynamic planning algorithms is to properly define this

“close enough”. Given two states x1, x2, we need a metric

function to define how close these points are, i.e. how likely

the steering method will be able to connect them. This

is where kinodynamic planning is correlated with optimal

control.

Suppose that the steering method can be modeled as an op-

timal control problem (with initial and terminal constraints).

minimize
X∈X ,U∈U,

T>0

L(X,U)

subject to ẋ(t) = f(x(t), u(t),Ω), ∀t ∈ [0, T ]

x(0) = x0, x(T ) = x1

(3)

The value, policy and optimal trajectory functions now

depend on both the initial and the final state (e.g.

V , V (x0, x1,Ω)). Then a proper metric in the state space

is given by the value function.

III. ITERATIVE ROADMAP EXTENSION AND POLICY

APPROXIMATION

A. Steering method, metrics and visibility

We define the visibility region as the state space region

around a state x0 that can be connected to x0 with the

steering method. We also define the visibility range as the

scalar characterizing the size of the minimal visibility region.

Ideally, a kinodynamic planner should sample new states on

the border of the visibility region and only try to connect

them to previously-sampled states within the visibility range.

In practice, the visibility border cannot be directly sampled.

The state space is rather uniformally sampled, while connec-

tions are tried only toward the closest points (in the sense of

the metrics).

Since neither the visibility range nor the exact value

function can be computed in the general case, the efficiency

of the planner then depends on the visibility range of the

steering method, and on the accuracy of the value-function

approximation.

B. Algorithm hypotheses and principles

We consider here that a local trajectory optimizer is

available to solve (3). The main hypothesis is that this solver

outputs the global optimum when the initial and terminal

points are close enough1. Under this hypothesis, any regular

metrics makes the classical sampling-based kinodynamic

planner probabilistically complete (i.e. able to find a path

toward any desired state).

Our objective is to use the local trajectory optimizer to

compute the control law of the robot in real time. For

that, the visibility radius must be enlarged so that any

admissible starting state is visible from the goal. We propose

to iteratively build i) a kinodynamic PRM whose edges are

1We suppose that, ∀x0 ∈ X , ∃ǫ > 0, such that any x1 in the ǫ-ball
around x0 can be connected by a globally-optimum trajectory.

locally optimal with respect to (3) and ii) an approximation

of the functions V, π,X∗ and U∗ (see Section III-C) based

on the trajectories stored in the PRM (see Section III-D).

The function approximators are then used to guide the

steering method (see Section III-E), hence enlarging its

visibility radius. Consequently, each new iteration improves

the cost associated to the PRM edges, hence the quality of the

approximators. The main difficulty is to make sure that the

PRM edges and the function approximators are consistent

(see Section III-F). At convergence of the algorithm, any

pair of nodes of the PRM can be directly connected using

the steering method guided by the approximators.

C. Value and policy approximator

We can approximate the value and policy functions by any

generic parametric model. In our experiments, we used 2-

layer neural networks with ELU and hyperbolic functions,

although any other parametric model is likely to work

similarly.The approximator is then a function of the states

and the parameters:

V (x0, x1,Ω) ≈ V̂ (x0, x1,Ω|αV )

π(x0, x1,Ω) ≈ π̂(x0, x1,Ω|απ)

Similar approximators can be built for X∗ and U∗.

It is important that the approximators and their gradients

with respect the parameters α can be efficiently evaluated.

D. Improving the approximation from the PRM

The edges of the PRM are locally-optimal trajectories.

Any subtrajectory of the edges corresponds to an example

of evaluation of the functions V, π,X∗, U∗.

These evaluations are possibly noisy, and possibly subop-

timal. We train the approximators to minimize the residual

mean squares (RMS) error:

min
α

∑

subtraj X̃

||V̂ (x̃0, x̃1,Ω|α)− Ṽ ||2

where x̃0, x̃1 are the boundaries of each subtrajectories X̃

and Ṽ is its cost.

In practice, we limit the minimal duration of the subtrajec-

tories to 20ms. A PRM containing 100s of trajectories will

then corresponds to around 10.000 subtrajectories. We solve

this problem with stochastic gradient descent, using mini-

batches (128 items) of subtrajectories. Ten epochs (i.e. 1000

gradient descents with mini-batches of size 128) are suffi-

cient to reach a stable RMS error. Even after convergence,

we do not expect the RMS error to be close to zero due to

the outliers in the dataset.

E. Expanding the graph using the approximators

The approximators are used twice in the PRM expansion.

First, the Value approximation is used as a metric to find the

nearest neighbors. Second, we initialize the steering method

with an approximation of the optimal trajectory.

Using a better approximation of the Value function results

in less failures of the local steering method when trying to

connect new sampled nodes to the existing graph.



More interestingly, using a better initialization of the

steering method increases its visibility range. This allows

us to connect nodes that are further away from each other,

speeding up the PRM expansion.

F. PRM and approximation consistency

In a PRM, we are generally interested by the connectivity

(a path that connects any pair of nodes should exist). In our

case, we are also interested in the consistency of the edge

trajectories, i.e. two trajectories joining a same goal should

not intersect. As the PRM edges are used as a training dataset

for improving the approximators, it is important that similar

inputs of the dataset corresponds to similar outputs in the

region where the function are smooth.

Consistency is clearly obtained at the global optimum of

(3). However, without the true Value and policy functions,

asserting this property is difficult [10]. We rather assert the

consistency by comparing the edges of the PRM with the

trajectories stored in the approximators. For each edge of the

PRM, we compute the approximated trajectory connecting

the associated states.

If the trajectories are different, the stored edge might

have a lower cost, a similar cost or a higher cost. A

lower PRM cost corresponds to the approximator not having

properly stored the corresponding edge yet: we do nothing.

A higher PRM cost corresponds to a suboptimal edge: we

then recompute the edge trajectory using the steering method

initialized with the approximated trajectory.

When the costs are similar, we have to investigate more

and compare the trajectory shape using any trajectory metric

(for example, integral of the squared distance in the state

space). If the distance is significant, it means that several

trajectories with similar cost exists for the corresponding

state. We then enforce the PRM consistency by replacing the

PRM edge with the approximation (refined with the steering

method).

G. IREPA algorithm

The previous developments lead to the Iterative Roadmap

Expansion and Policy Approximation algorithm (IREPA).

The goal of IREPA is to compute a fully connected PRM

(i.e. every pair of nodes must be directly connected), together

with the corresponding approximators. A consequence of this

output is that the resulting steering method (guided by the

approximators) can directly connect any pair of nodes in

the graph. The algorithm is summarized in pseudo-code in

Alg. 1.

We initialize the PRM graph with a given number of

nodes and no edge (line #1). At each iteration, we add a

given number of nodes in the graph and use the steering

method to try to connect the nearest neighbors in the PRM

(line #3). At the first iteration, we use the Cartesian metric

and no initialization of the steering method. In the following

iterations, we use the Value approximation as distance metric

and the trajectory approximation to initialize the steering

method.

Algorithm 1 Iterative Roadmap Expansion and Policy Ap-

proximation (IREPA)

1: Initialize PRM with a given number of state samples

2: repeat

3: Expand PRM

4: stop ← True if PRM is fully connected else False

5: Optimize approximator RMS

6: for every edge EPRM in the graph do

7: (x0,x1) ← getStartAndEndNodes(EPRM )

8: Enew ← approximator(x0, x1)
9: if Enew ≤ EPRM then

10: Replace EPRM by Enew

11: stop ← False

12: end if

13: end for

14: until stop

Once the PRM has been expanded, we update the approx-

imators to minimize the RMS with respect to the trajectories

stored in the PRM (line #5). Then, we check the consistency

of the PRM edges by comparing them to the trajectories

stored in the approximation (line #8-9).

The algorithm iterates until every pair of nodes is con-

nected and no progress is achieved optimizing the PRM

edges (line #4, #11 and #14).

The algorithm is probabilistically complete (as any kino-

dynamic PRM): as time increases, the probability that any

connected component of the state space will be explored

converges toward 1. When bounding the number of nodes,

we can also guarantee that the algorithm will stop either

with all nodes connected in pairs, or with a subpart of the

connections, and with the steering method able to generate

all the computed connections directly.

In practice, we have observed that the algorithm converges

to the global optimum of (3), i.e. Value and policy functions

respect the Hamilton-Jacobi-Bellman equation, and the edges

are globally-optimal trajectories. Probabilistic completeness

is achieved in the worst case in adding an infinite number of

node. In practice, we typically bound the number of nodes in

the PRM. A watchdog has then to be added to assert that the

algorithm is not trapped in a local minimum where the RMS

converges while the steering method fails to discover new

edges (again, adding new nodes would untrap the algorithm).

IV. PREDICTIVE CONTROL USING

APPROXIMATELY-OPTIMAL INITIAL GUESS

We now suppose that the approximator functions have

been properly trained off-line. We detail how these approxi-

mations can be used to properly initialize the direct optimal

control solver. The main objective is to use this initialization

on-line during the control of the robot. However, the same

initialization is used for the steering method during the PRM

expansion.



A. Importance of the warm-start

As predictive control often boils down to the resolution

of a nonlinear non-convex optimization problem, the impor-

tance of guiding the search is well recognized. In particular,

it should be recalled that no iterative descent algorithm can

be guaranteed to converge to a good optimum (either the

global optimum, or even a good local optimum) if initialized

outside of the basin of attraction of the optimum. As most

solvers used for optimal control are Newton or Gauss-

Newton solvers, the initialization should even occur in a

region around the optimum where the cost function is convex.

In general, it is not possible to guarantee this condition.

Predictive control, also called receding-horizon control,

often starts the search with the trajectory optimized at the

previous control cycle, shifted backward following the reced-

ing horizon. The optimization cycle then just needs to adjust

the start of the trajectory to the new sensor measurements,

and to explore a fraction of time at the end of the horizon.

However, this initialization may not be sufficient when

the robot faces large disturbances, or when the environment

changes suddently, or when the configuration at the end

of the horizon is particularly unstable. These situations are

typical of many robots, in particular UAVs (often facing

large disturbances with unstable horizon) and legged robots

(drastic changes at each new foot contact).

B. Storing the initial guess

Several ways to store the initial guess exist. A common

choice is to store an approximation of the policy function. A

trajectory from a given state x0 is then obtained by rolling

out the policy and integrating it using the dynamic model.

This method produces both a state and a control trajectory.

Alternatively, we can store an approximation of these

two functionals directly. The trajectories can be represented

by any discretization (e.g. passing points, splines or Bezier

coefficients, etc). We then approximate the function that

maps every point of the state space to the discretization

parameters. In this case, it is difficult to enforce the dynamic

consistency of the two resulting approximations. However,

this would be quickly corrected by the trajectory optimizer.

Approximating the policy is more compact, as the trajec-

tory discretization lives in a space larger than the control

space. In a sense, the policy approximation exploits the

recursivity of the control spaces, that the trajectory approx-

imation fails to capture. Moreover, the trajectories obtained

by roll-out respect the dynamic model. On the other hand, the

roll-out is subject to the (typical) instability of the dynamic

model. A small error in the policy approximation is likely

to result in a large error in the generated trajectories, as the

error is amplified by the dynamics. Moreover, the roll-out

might be more expensive to compute.

An alternative would be to approximate the function that

maps the current state to the next key state, along with a

parametrization of the control trajectory needed to reach it.

This solution would avoid the instability of the dynamic

roll-out while capturing the recursivity of the control. While

approximating the key states seems an appealing solution,

we were not able to obtained satisfying results with this

approach. We are not yet able to explain why.

C. Perspectives about alternative guiding techniques

In this work we decided to guide the optimal control solver

by initializing the search (i.e. warm start). However, other

guiding techniques might be considered. We could add a

guiding term to the cost function, whose importance would

be decreased as the optimizer iterates. Such a homotopy

optimization is used e.g. in interior point solvers (the log

barrier weight is decreased at each iteration) or in the contact-

invariant optimization [14]. An evident candidate here would

be to add a term based on the Value function [15], for which

we have a good approximation.

Another type of warm-start can be obtained by initializing

the descent direction, in particular if the BFGS approxima-

tion is used by the solver. Storing some subgradients was

exploited in computer vision [16], and might also be used

here to fasten the first iteration of the search.

V. RESULTS

In this section, we report the results obtained with a planar

UAV with two propellers. Trajectories obtained with other

dynamic systems are shown in the companion video.

The system has 3 degrees of freedom and 2 control inputs.

The small dimension allows us to more easily plot the

behavior of the algorithms and the resulting trajectories of

the system. We start by reporting the technical details of

our tests. Then we present the main results divided in off-

line phase (IREPA algorithm) first, and on-line phase (warm

start) last.

A. Setup

1) System dynamics and cost: The UAV is modeled by a

state of dimension 6: two translations x, z, one rotation θ,

and the corresponding velocities ẋ, ż, θ̇. The control inputs

are the forces f1, f2 applied by the propellers, which must

be positive and bounded. The dynamics is:

ẍ = −
1

m
(f1 + f2)sinθ (4)

ÿ =
1

m
(f1 + f2)cosθ − g (5)

θ̈ =
l

I
(f1 − f2) (6)

where m and I are mass and inertia of the UAV, g is gravity

and l is the lever arm of the propeller. We set m = 2.5kg,

I = 1.2kg m2, l = 0.5m, following the dimension of the

AscTec Falcon. The propellers are limited to 25N , without

continuity constraints.

We consider minimum-time trajectory, i.e. the cost func-

tion is the trajectory duration. Similar results are obtained

with minimum-norm running cost.



Fig. 1. Evolution of the PRM and the approximators during the IREPA
iterations. Top: decrease of the PRM mean edge cost (on a constant subset
of 140 edges) and approximator RMS error. Bottom: number of connections
between 30 reference nodes.

2) Approximators: We used a neural network to imple-

ment the approximator function (Value, policy, trajectories).

All networks are implemented with 2 hidden layers with

ELU activation function. The output layer of the Value

approximator is also activated by ELU, while policy and

trajectories output layer are hyperbolic tangent (scaled within

range limits).

Trajectories are optimized with the multiple shooting

solver ACADO [13], an open-source library that can be

used to easily solve various optimal-control problems. Inside

ACADO, the control trajectories are represented by piece-

wise constant functions (typically 20 intervals), while the

state trajectories are obtained from a RK45 integrator.

3) Computational setup: The optimal control solver and

neural-network stochastic gradient descent [17] are imple-

mented in C++. The rest of the application (planner, IREPA

algorithm, etc) is implemented in Python. The tests were run

on a single process on a Intel Xeon E5-2620 (2.1GHz). The

algorithm would be easy to parallelize: most of the CPU

time is consumed by the steering method, which can be run

independently on several cores.

B. Off-line phase

We first empirically validate the convergence of IREPA

and its efficiency compared to a kinodynamic PRM.

1) IREPA convergence: To better visualize the IREPA

converge, we first work with a fixed number of nodes in

the PRM (30). Fig. 1 shows several quantities during IREPA

convergence. The mean cost on a fixed number of edges

(the ones computed in the first iteration) decreases, while

better local optimum are computed for the edges thanks to

the improved approximators. Reciprocally, we plot the RMS

along with the stochastic gradient descent: the RMS error

converges to a local minimum at each IREPA iteration. Then,

when new and better edges are computed at the next IREPA

Fig. 2. Comparison of the progress of IREPA versus PRM algorithms.
Top: IREPA requires less evaluation of its (improved) steering method to
establish more connections between distant nodes. Bottom: the connections
computed by IREPA have also lower cost.

Fig. 3. Typical examples of the trajectories stored in the PRM (left), in the
approximators (middle) and computed by the steering method (right). The
trajectories computed in the early IREPA iterations are in light gray, while
dark grey is used for the trajectory computed in the last iterations. PRM
and approximator trajectories tends to converge toward a same optimum,
that the trajectory optimizer will easily optimize.

iteration, the RMS error can leave its local minimum. The

number of connections in the PRM constantly grows and

converges toward the maximum (830) in 15 iterations.

2) Propagation of the PRM: Then we compare the propa-

gation of the roadmap when IREPA is used, or when a stan-

dard kinodynamic PRM is used. We compare the progress of

the algorithms with respect to the number of evaluations of

the steering method. Clearly, many evaluations of this local

controller fail because the nodes that we try to connect may

be out of the visibility range of the method. Once more, we

fix the number of nodes in IREPA (only edges are added),

while both nodes and edges are added by the PRM. Fig. 2

summarizes the results. IREPA is much faster at creating new



1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.81.0

0.5

0.0

0.5

1.0 Approximate trajectories

1.0 0.8 0.6 0.4 0.20.0 0.2 0.4 0.6 0.81.5

1.0

0.5

0.0

0.5

1.0 Refined trajectories

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fig. 4. Bundle of trajectories (left) stored in the approximators, and (right)
refined by the predictive controller. Each point of the plane corresponds to an
initial configuration of the UAV (with 0 initial angle and 0 initial velocity),
while the goal state is 0. The trajectories stored in the approximators do
not exactly respect the boundary conditions. The refined trajectories are
smoother, dynamically consistant and respect all the constraints. The colors
depicts the cost of each trajectory.

Value function

Policy function

Fig. 5. Scatter plot of the value (top) and policy (bottom) functions along
IREPA iterations. The axes correspond to X and Z axis of the UAV, while
the angle θ and velocities are null. The desired state is the origin (i.e. we plot
V ([x, z, θ = 0, v = 03], 06) and similarly for π). Both functions converge
toward symmetric solutions. The policy is bang-bang, as expected.

connections, as the steering method increases its visibility

range when the approximators converge. On the contrary, the

poor metrics and the constant visibility range of the steering

method used in the PRM lead to many connection failures.

We also observe the mean cost to connect the 30 nodes

initially sampled together. In IREPA, this cost decreases

as lower-cost edges are found. In the standard PRM the

cost only decreases when a new path in the graph more

efficiently connects two nodes. In conclusion, with respect

to a standard PRM, IREPA converges much faster, and to

better trajectories.

3) Results of the off-line phase: We display in Fig. 3,

4 and 5 the trajectories computed and stored in the PRM

and the approximators. Fig. 3 shows the evolution of both

the PRM edges and the approximator. In the first IREPA

iterations, suboptimal edges are computed as the steering

method is cold started. This results in some inconsistency

between the trajectories stored in the PRM, hence large

RMS errors and poor quality of the trajectory approximators.

Consequently, the steering method often fails to converge to

a good optimum. Along the IREPA iterations, the trajectories

both in the PRM and in the approximators tend to converge

toward similar solutions, which are more consistent and

closer to optimal. Consequently, the steering method is

initialized with a good initial guess, and quickly converges

toward an low-cost trajectory.

Fig. 4 shows a set of trajectories for various initial

conditions, stored in the approximator and refined by the

predictive controller, at the end of the training phase.

Fig. 5 shows a 2d projection of the Value function and

the policy function. We know that the optimum should

be symmetric and the policy function should saturate the

controller. We can see that these properties are satisfied when

IREPA converges. We also see that the RMS error of the HJB

equation is small after convergence.

C. On-line phase

The objective of the IREPA algorithm is to build the initial

guess needed to warm start the predictive controller. We

now empirically validate that this warm-start is usefull and

compare the two solutions proposed in the paper.

1) Warm-start: We compare the performances of the

predictive controller without any initial guess (cold start),

against its performances when warm-started with either the

policy approximation (using a roll-out) or using the trajectory

approximation. First of all, the predictive controller may

often fail to find a admissible trajectory when no initial

guess is used (cold start). Rate of success is displayed in

Table I. Cold-start results in 60% failures. On the opposite,

any of the two warm-starts results in between 90% and 95%

of success (additional failures after 10 iterations are due to

implementation problems).

In the meantime, warm-start also results in more efficient

trajectories. An important difference clearly appears in Fig. 6.

The optimizer converges more quickly to the true optimum

when initialized with the trajectory approximator X̂∗ rather

than by a roll-out of the policy π̂. While the roll-out enforces
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Fig. 7. snapshots of an example trajectory obtained with the predictive controller. At time 1.58s, the UAV is impacted by an object which suddently
modifies its state. Using the initial guess, the predictive controller quickly reject the disturbance and converges to the desired equilibrium.

Fig. 6. Convergence of the predictive controller initialized either by the
policy roll-out or by the trajectory approximation. We consider a fixed set of
200 initial points, for which the (global) optimal Value is known. The points
are ordered by cost. We plot the cost obtained from the two approximations
after 2, 10 and 50 iterations of the predictive controller. Initializing with the
trajectory approximation, the solver quickly converges toward the optimal
trajectory. Initializing with the policy rollout also leads the solver to a good
solution, although 50 iterations are needed. In practice, when controlling a
robot, we cannot afford more than 5 iterations.

the dynamic consistency, it also brings some convolution

effects due to the dynamic instability, that tends to confuse

the solver, at least during the first iterations. After a large

number of iterations, both warm starts converge to the same

optimum, with similar rate of failure.

The critical point with predictive control is to be able to

quickly find an admissible trajectory. This is the case with

both initial guess. However, on the robot, it is not possible

to iterate more than 2 to 5 times. Under this assumption, the

initialization by the trajectory approximator is much more

efficient.

2) Predictive control: We use the initial guess in a pre-

dictive controller. An example of the resulting trajectory is

displayed in Fig. 7. The robot has to reached a desired steady

state. During the movement, it is hit by an object: this impact

instantaneously changes its velocity. A new trajectory is first

approximated then optimized, leading the robot to reject the

disturbance and to reach its final position.

TABLE I

SUCCESS RATE (%) OF THE STEERING METHOD AND AVERAGE COST (±

STANDARD DEVIATION) OF THE COMPUTED TRAJECTORIES FOR

DIFFERENT WARM-START TECHNIQUES (U: WARM START FROM POLICY

ROLL-OUT, J: WARM START FROM STATE-CONTROL TRAJECTORY) AND

AT DIFFERENT ITERATIONS (IT.) OF THE ALGORITHM.

U J Cold start
It. % Cost % Cost % Cost

2 90 0.47±0.18 88.5 0.07±0.07 31 2.05±1.85
5 90.5 0.34±0.10 93.5 0.07±0.08 45.5 0.37±0.36

50 85.5 0.04±0.09 85.0 0.03±0.07 42.0 0.06±0.10

Other trajectories are shown in the companion video

(see https://youtu.be/CbyCa7aeC7k) with a dou-

ble pendulum, a bicopter, a quadcopter in various situations

and a quadcopter with swinging load. Snapshots from the

videos are displayed in Figs. 8 to 11.

VI. CONCLUSION

This paper presented a new framework for the control

of complex dynamical system. In particular, we addressed

the open problem of providing a good initial guess to

warm start a predictive controller. The proposed framework

relies on sampling-based kinodynamic planning, trajectory

optimization, and function approximation to compute and

store the solution of a given optimal control problem. This

solution is then efficiently retrieved online to warm start a

predictive controller, thus speeding up its convergence.

Even though the presented results are preliminary, we

believe that the proposed approach could scale to much

higher-dimensional systems. This would unlock the so-far

unexploited potential of predictive control on complex me-

chanical systems.
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