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Light Field Compression with Homography-based
Low Rank Approximation

Xiaoran Jiang, Mikaël Le Pendu, Reuben A. Farrugia, Christine Guillemot Fellow, IEEE

Abstract—This paper describes a light field compression
scheme based on a novel homography-based low rank approxima-
tion method called HLRA. The HLRA method jointly searches
for the set of homographies best aligning the light field views
and for the low rank approximation matrices. The light field
views are aligned using either one global homography or multiple
homographies depending on how much the disparity across views
varies from one depth plane to the other. The light field low-rank
representation is then compressed using HEVC. The best pair of
rank and QP parameters of the coding scheme, for a given target
bit-rate, is predicted with a model defined as a function of light
field disparity and texture features. The results are compared
with those obtained by directly applying HEVC on the light field
views re-structured as a pseudo-video sequence. The experiments
using different data sets show substantial PSNR-rate gain of our
compression algorithm, as well as the accuracy of the proposed
parameter prediction model, especially for real light fields. A
scalable extension of the coding scheme is finally proposed.

Index Terms—Light fields, Low rank approximation, Homog-
raphy, Compression.

I. INTRODUCTION

L IGHT field (LF) imaging has emerged as a very promis-
ing technology in the field of computational photography.

Many acquisition devices have been recently designed to
capture light fields, going from arrays of cameras capturing
the scene from slightly different viewpoints [1], to single
cameras mounted on moving gantries and plenoptic cameras.
Plenoptic cameras are becoming commercially available using
arrays of micro-lenses placed in front of the photosensor
to obtain angular information about the captured scene [2],
[3]. Compared to classical 2D imaging, light fields capture
the intensity values of light rays interacting with the scene.
The recorded flow of rays is in the form of large volumes
of data retaining both spatial and angular information of a
scene which enables a variety of post-capture processing, such
as re-focusing, extended focus, different viewpoint rendering
and depth estimation, from a single exposure [1], [2], [4].
For a comprehensive overview of light field image processing
techniques, please refer to [5].

Given the very large volume of high-dimensional data, the
design of efficient compression schemes of light fields is
a key challenge for practical use of this technology. First
methods for compressing synthetic light fields appeared in the
late 90’s essentially based on classical coding tools as vector
quantization followed by Lempel-Ziv (LZ) entropy coding [4]
or wavelet coding as in [6] and [7], yielding however limited
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compression performances (compression factors not exceeding
20 for an acceptable quality). Predictive schemes inspired
from video compression methods have also been naturally
investigated, adding specific prediction modes in schemes
inspired from H.264 and MVC, as in [8] and [9]. Motivated
by the objective of random access and progressive decoding,
which is not enabled by predictive schemes, the authors in [10]
describe another approach using a wavelet transform applied
in the 4 dimensions of the light field. The scheme naturally
inherits the scalable and progressive properties of wavelet-
based coding schemes. The authors in [11] instead use a
Principal Component Analysis (PCA) to enable random access
to pixels and to support scalability.

The compression of real light fields has recently gained at-
tention thanks to the emergence of capturing devices (plenoptic
cameras or rigs of cameras). In this paper, we focus on the
compression of real light fields captured by plenoptic cameras.
Prior work in this area has followed two main directions:
either coding the array of sub-aperture images extracted from
the lenslet image as in [12]–[14], or directly encoding the
lenslet images captured by plenoptic cameras [15]–[20] with
an extension of HEVC with dedicated prediction modes.

Instead of directly encoding the light field (the array of sub-
aperture images or the lenslet image for light fields captured
by plenoptic cameras), the authors in [21] consider the focus
stack as an intermediate representation of reduced dimension
of the light field and encode the focus stack with a wavelet-
based scheme. The light field is then reconstructed from the
focus stack using the linear view synthesis approach described
in [22].

In this paper, we describe a light field compression algo-
rithm based on a low rank approximation exploiting scene
and data geometry. In particular, light fields with a dense
angular sampling such as those captured by plenoptic cameras
are addressed. We consider the coding of the sub-aperture
images (i.e. views) already extracted from a lenslet image.
Thanks to the high correlation between the views in such light
fields, the matrix whose columns are formed by vectorizing
each view can be well approximated by a low rank matrix.
In addition, a prior alignment of the views with homography
warpings increases the correlation and thus improves the low
rank approximation. In the proposed method, homography
projections are searched for each view in order to obtain the
best low rank matrix approximation for a given target rank
k (where k is less than the number of views). This joint
homography alignment and low rank optimization procedure
is illustrated in Fig. 1. In the cases where the scene contains
several layers of depth, the method has also been extended to
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Fig. 1. Overview diagram of the HLRA method.

search for one homography for each depth plane. To cope with
artifacts at the frontier of two depth planes when performing
the homography warpings, a blending of homographies is
performed.

The obtained rank k matrix is expressed as a product of
a matrix B, containing k basis vectors, with a matrix C
containing weighting coefficients as shown in Fig. 1. This de-
composition enables an efficient encoding where the k images
formed by reshaping each column of B are compressed with
HEVC-Intra. The weights contained in C and the homography
parameters are also necessary to reconstruct the light field,
hence are transmitted using classical entropy coding. Note that
this low rank approximation method is based on our earlier
work described in [14].

The PSNR-rate performance of the compression scheme
depends on two key parameters: the approximation rank and
the quantization parameter (QP) of the HEVC encoder. Using
a set of training light fields, we learn a model to predict the
pair of rank and QP parameters yielding the best PSNR for
a given target bit-rate. The model is learned as a function of
several input light field features: disparity indicators defined as
a function of the decay rate of the SVD values of the original
and registered view matrices, as well as texture indicators
defined in terms of the decay rate of SVD values computed on
the central view. The parameter prediction problem is cast as
a multi-output classification problem solved using a Decision
Tree ensemble method, namely the Random Forest method
[23].

A scalable extension is finally described in which the
homography-based low rank model is used to compress the
base layer. The reconstructed base layer is used to predict the
light field, and the residue for each light field view is encoded
by using the proposed low rank based scheme, with or without
view alignment.

Our experiments show the advantage of using the pro-
posed joint alignment and low rank optimization rather than
first aligning the views independently of the targeted rank.
Furthermore, the compression performances of the proposed
scheme are assessed against those obtained with two methods
applying HEVC inter-coding on pseudo-sequences of sub-
aperture images [12], [13]. In the sequel, the method in [12]

will be referred to as HEVC-lozenge, while the method in [13]
will be called HEVC-pseudo. Thanks to the robustness of our
method to noise and color variations across views, substantial
PSNR-rate gains are obtained for two different datasets of real
light fields: the INRIA dataset [24] and that of the ICME 2016
Grand Challenge (Light-Field Image Compression) [25].

II. LIGHT FIELDS: BACKGROUND AND NOTATIONS

The light rays emitted by a scene and received by an
observer at a particular point (x, y, z) in space, at a given
instant t, can be described by the 7D plenoptic function
L(x, y, z, θ, φ, t, λ) where (θ, φ) are angles giving the orien-
tation of the light rays and λ their wavelength. For a static
light field, the 7D plenoptic function can be simplified into a
4D representation called 4D light field in [4] and lumigraph
in [26], describing the radiance along rays by a function
L(x, y, u, v) of 4 parameters at the intersection of the light rays
with 2 parallel planes. This simplification is done assuming
constant radiance of a light ray from point to point, and given
that an R,G,B sampling of the wavelength is performed by
the color filters coupled with the CCD sensors.

The light field can be seen as capturing an array of view-
points (called sub-aperture images in particular in the case of
micro-lens based capturing devices) of the imaged scene with
varying angular coordinates u and v. The different views will
be denoted here Iu,v ∈ RX×Y , where X and Y represent
the vertical and horizontal dimensions of each sub-aperture
image. Each sub-aperture image corresponds to a fixed pair
of (u, v) coordinates. In the following, the notation Iu,v for
the different views (or sub-aperture images) is simplified as
Ii with a bijection between (u, v) and i. The complete light
field can hence be represented by the matrix I ∈ Rm×n:

I = [vec(I1) | vec(I2) | ... | vec(In)] , (1)

with vec(Ii) being the vectorized version of the sub-aperture
image Ii, and where m is the number of pixels in each view
(m = X ×Y ) and n is the number of views in the light field.

III. RELATED WORK

A. Low-rank approximation

Many algorithms taking advantage of the low rank property
of a matrix have been developed in the recent literature.
For instance, the methods in [27]–[34] tackle the problem of
completing a low rank matrix from a subset of its entries.
A closely related problem referred to as robust principal
component analysis (RPCA) consists in decomposing a matrix
as the sum of a low rank and a sparse matrix. The authors
in [35] solved this problem using an augmented Lagrangian
multiplier method. Note that although those problems are NP-
hard in general and involve non-convex optimization (the rank
of a matrix being non-convex), recent theoretical papers [36]–
[38] have shown that under surprisingly broad conditions, a
convex relaxation replacing the rank by the nuclear norm leads
exactly to the same unique solution.

Inspired by the RPCA, a low rank approximation model
has been considered in the RASL method [39] for aligning
correlated images. In their model, each input image is warped
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by a homography projection. The homography parameters are
determined in order to optimize the low rank and sparse de-
composition of the matrix formed by concatenating the vector-
ized warped images. In the context of light filed compression,
however, this sparse and low rank decomposition approach
does not necessarily yield a compact representation of the
original light field. Although useful for ignoring inconsistent
pixels between views in the RASL alignment, the sparse
term still contains important visual features of the light field
(e.g. specular light, disocclusion) which essentially consist of
high frequencies. Therefore, encoding this term is likely to
degrade the overall coding performance. The authors in [40]
have nevertheless shown the efficiency of such a compression
scheme for encoding videos captured with a fixed camera. In
that case the sparse term only captures the moving objects
which can be efficiently compressed with a classical video
encoder. The static background is essentially contained in the
low rank term with a typical rank of 1 or close to 1, and can
be encoded at a very low cost.

Note also that for encoding efficiently a low rank matrix
A of size m × n and of rank k � min(m,n), a preliminary
factorization step of the form A = BC (where B ∈ Rm×k and
C ∈ Rk×n) must be performed. Such a factorization can be
obtained with a singular value decomposition. Alternatively,
in the SLRMA compression method [41], a similar factor-
ization is found by solving an optimization problem which
additionally constrains the sparsity of the matrix B in a given
dictionary.

B. Light fields compression

In this section, we focus on prior work dealing with the
compression of light fields captured by plenoptic cameras.
The methods proposed in the literature can be classified into
two categories: those which aim at directly compressing the
raw lenslet data after de-vignetting and demosaicing (e.g.,
[15]–[20]) and those which compress the sub-aperture images
extracted from the lenslet data (e.g., [12], [13]).

Most solutions proposed for directly encoding the lenslet
data aim at exploiting spatial redundancy or self-similarity
between the micro-images. The micro-image is the set of
pixels behind each micro-lens, and is also sometimes called
elemental image. Spatial prediction modes have thus been
proposed for unfocused cameras in [15] and [42] based on
a concept of self-similarity compensated prediction or us-
ing locally linear embedding techniques in [43]. These self-
similarity prediction modes have been further extended to bi-
directional prediction in [18] and [19]. The authors in [16]
introduce a bi-directional spatial prediction mode in HEVC
for encoding elemental images captured by a focused 2.0
camera [44] which has been further extended in [20]) for
unfocused 1.0 cameras. While the elemental images (EI) in
the focused 2.0 plenoptic cameras can be seen as a cropped
multi-view image from one viewing angle, the EI produced by
the unfocused 1.0 cameras capture angular information of one
point in space. A scalable extension of HEVC-based scheme is
also proposed in [45] where a sparse set of micro-lens images
(also called elemental images) is encoded in a base layer. The

other elemental images are reconstructed at the decoder using
disparity-based interpolation and inpainting. The reconstructed
images are then used to predict the entire lenslet image and a
prediction residue is transmitted yielding a multi-layer scheme.
The authors in [17] instead partition the raw light field data
into tiles which are then encoded as a pseudo-video sequence
using HEVC.

A second category of method consists in encoding the set
of sub-aperture images (or views) which can be extracted
from the lenslet images after de-vignetting, demosaicing and
alignment of the micro-lens array on the sensor, following
the raw data decoding pipeline described in [46]. The author
of [47] exploits inter-view correlation by using homography
and 2D warping to predict views. Homographies are computed
via Random Sample Consensus (RANSAC) [48]. The authors
in [12] form a pseudo-sequence by using a lozenge scanning
order and encode this pseudo-sequence using HEVC inter-
coding. In [13], a coding order and a prediction structure
inspired from those used in the multi-view coding (MVC)
coding standard is proposed, showing significant performance
gains compared with HEVC-Intra.

Here, we consider instead a very different approach which
aims at reducing the dimensionality of the data using low rank
approximations prior encoding.

IV. HOMOGRAPHY-BASED LOW RANK APPROXIMATION

The error introduced by the low rank approximation model
depends on how well the sub-aperture images are aligned. We
hence propose to search for the homographies minimizing the
low rank approximation error for a targeted rank.

Let Ii and Ij be two sub-aperture images for which we
assume there exists an invertible homography transformation
hi, such that

Ij(x, y) = (Ii ◦ hi)(x, y) = Ii(hi(x, y)). (2)

A homography transformation hi can be characterized by a
3× 3 matrix Hi which transforms each coordinates (x, y) in
Ii into the coordinates ( xH

wH
, yHwH

), where

[xH , yH , wH ]
>

= Hi · [x, y, 1]
>
. (3)

However, without loss of generality, the last element Hi(3,3)

can be fixed to 1. The eight remaining elements are then
sufficient to parametrize the homography.

Let h be the set of homographies associated to each view
of the light field. In what follows, we will consider h as the
matrix [h1 | ... | hn] where h1, ..., hn are vectors of size 8× 1
whose elements are the homography parameters. The low rank
optimization problem is then formulated as

argminh,B,C ‖I ◦ h−BC‖2F , (4)

where ‖.‖F is the Frobenius norm, B ∈ Rm×k, C ∈ Rk×n
(k < n), and I ◦ h stands for the matrix containing all views
aligned using homographies h1, ...hn and can be written as

I ◦ h = [vec(I1 ◦ h1) | ... | vec(In ◦ hn)] . (5)

Note that for aligning all the views, only n− 1 homographies
would be sufficient assuming that one view (e.g. the central
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view) is not warped and is used as reference for aligning
the other views. However, this would require constraining the
minimization problem (4) to ensure that the homography of
the central view is equal to the identity. For simplicity, we did
not consider such a constraint in our formulation.

A. Linear Approximation

Minimizing Eq. (4) is non trivial due to the non linearity of
the term I ◦ h. Nevertheless, when the change in h is small,
we can approximate it by local linearity as follows:

I ◦ (h+ ∆h) ≈ I ◦ h+

n∑
i=1

Ji∆hiε
>
i , (6)

where ∆h = [∆h1 | ... | ∆hn], Ji is the Jacobian matrix of the
warped and vectorized sub-aperture image, vec(Ii ◦ hi), with
respect to the parameters of hi (i.e. Ji = ∂

∂ζ vec(Ii ◦ ζ)|ζ=hi
).

And εi is a n× 1 vector with element i equal to 1 and all the
other elements equal to 0.

B. Iterative minimization

The minimization problem in Eq. (4) is iteratively solved
by updating alternatively the matrices B and C and the homo-
graphies h1, ..., hn. Each homography hi is first initialized so
that the corresponding 3×3 matrix Hi is equal to the identity.
• Given h fixed, B and C are found by computing the

singular value decomposition I ◦ h = UΣV >. Then B
is set as the k first columns of UΣ and C is set as the
k first rows of V >, so that BC is the closest k-rank
approximation of I ◦ h.

• h is updated by solving Eq. (4) for B and C fixed.
By noting the updated homography parameter matrix
h′ = h+ ∆h, the minimization Eq. (4) becomes:

h′ = h+ argmin
∆h
‖I ◦ (h+ ∆h)−BC‖2F (7)

Given the approximation in Eq. (6), the problem is then
to find:

∆h = argmin
∆h
‖I ◦ h−BC +

n∑
i=1

Ji∆hiε
>
i ‖2F (8)

This problem is independently solved for each column
∆hi of ∆h and can be equivalently stated as:

∀i, ∆hi = argmin
∆hi

‖(I ◦ h−BC)εi + Ji∆hi‖2F (9)

This is a linear least squares problem with solution:

∀i, ∆hi = J†i (BC − I ◦ h)εi (10)

where J†i denotes the Moore-Penrose pseudoinverse of Ji.

C. Recalculating C to account for quantization errors in B

Since the matrix B will need to be compressed to be
transmitted to the receiver side, the receiver will obtain a
matrix B′ with compression artifacts. To reduce the impact
of the compression (i.e. quantization) errors on the light field

reconstruction, the matrix C is recalculated to account for
these quantization errors, as follows:

C ′ = argmin
C
‖I ◦ h−B′C‖2F= (B′)†(I ◦ h). (11)

In practice, this adaptation of C to the compression artifacts
of the matrix B can increase the PSNR by about 1 dB
when strong compression is applied (e.g. QP = 38). Fig. 2
shows the PSNR gain of this adaptation for the light field
“TotoroWaterfall” (cf. Fig. 6). The PSNR gains are shown for
the case where one homography per view is applied.
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Fig. 2. PSNR gain when the matrix C is re-calculated to account for the
compression errors of the matrix B. Alignment has been performed using
one homography per view.

V. LOW RANK APPROXIMATION USING MULTIPLE
HOMOGRAPHIES

When the disparity varies from one depth plane to another,
one global homography per view is not sufficient to well align
the whole views. For such light fields, the above homography-
based low rank approximation method can be extended to the
case where different homographies are computed for different
depth planes segmented thanks to a scene depth map.

In order to avoid the high transmission cost of one depth
map per view, we instead consider a single depth map of the
central view which can be directly estimated using methods as
proposed in [49]–[51]. The same depth map is then used for
all the views. Note that for the type of light fields addressed,
with a dense angular sampling but a limited baseline, using
only the depth map of the central view results in a limited loss
of accuracy for extracting the depth planes and for computing
the corresponding homographies.

Each value in the depth map D is normalized between 0
and 1, indicating if the corresponding pixel is close to the
camera (close to 0) or not (close to 1). q depth planes are
then obtained by uniformly quantizing D with quantization
thresholds {σp}p∈J1,qK. The thresholds are defined to split in
equal parts the range of depth values between the minimum
and maximum depth in D. Each depth plane p is characterized
by a mask Mp = 1]σp,σp+1](D), where 1 is the pixel-wise
indicator function.

We apply one homography to each depth plane p of the sub-
aperture image Ii. In what follows, we note hpi the vector con-
taining the corresponding homography parameters. Blending
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Fig. 3. Separation on two depth planes: depth map (the left column) and the
weights w1 and w2 associated to each depth plane (the middle and the right
columns).

is required to naturally mix the depth planes. Here, instead of
blending the pixel values, we blend the homographies, which
yields less artifacts at the frontier of depth planes. For that
purpose, at each pixel coordinate (x, y), we define the series
of weights {wp(x,y)}p∈J1,qK that determine the importance of
the homography of each depth plane p for this pixel:

wp(x,y) =


1, if D(x,y) ∈ [σp + δ, σp+1 − δ] ;
D(x,y)−(σp−δ)

2δ , if |D(x,y) − σp| < δ;
(σp+1+δ)−D(x,y)

2δ , if |D(x,y) − σp+1| < δ;

0, otherwise,

(12)

with δ a shallow neighborhood where the blending is applied.
Fig. 3 shows the weights w1 and w2 associated to each depth
plane for the LF “TotoroWaterfall”.

The warping (Eq. (3)) is then modified as follows:

[xH , yH , wH ]
>

=

q∑
p=1

wp(x,y)H
p
i · [x, y, 1]

>
. (13)

Once the warped images I ◦ h are obtained by applying
Eq. (13) for each sub-aperture image and each depth plane,
we compute B and C at each iteration exactly as described in
Section IV. Note that we must now determine nq homogra-
phies. The size of h is then 8× nq. Similar to Eq. (10), each
vector of homography parameters hpi is updated by adding
∆hpi computed as:

∀i, p, ∆hpi = Jpi
†

[(BC − I ◦ h)εi � vec(Mp)] , (14)

with Mp the corresponding binary mask of depth plane p and
� the Hadamard product.

VI. COMPRESSION ALGORITHM

A. Algorithm overview

The different steps of the complete compression algorithm
are shown in Fig. 5. The low rank representation is compressed
by encoding the columns of the matrix B using HEVC Intra
coding. However, any encoder could be used to compress
the proposed homography-based low rank representation. The
columns of the matrix B are first quantized on 16 bits
before being encoded using HEVC-Intra coding. The first three
columns of the matrix B for the LF “TotoroWaterfall” are
shown in Fig. 4. The first column represents low frequency
information, whereas the others contain data with high fre-
quency. One can observe that by using homographies to align
sub-aperture views, the average image in the first column
becomes sharper, and there is less high frequency information
remaining in the following columns.

(a) Without alignment.

(b) With alignment, 1 homography per view, k = 5.

Fig. 4. First three columns of the matrix B (“TotoroWaterfall” LF).

Besides the matrix B, additional elements need to be
transmitted. The coefficients of the matrix C of size k × n,
where k and n are the approximation rank and the number
of views, are encoded using a scalar quantization on 16 bits
and Huffman coding. The 8× n× q homography parameters,
with q the number of depth planes per view, are encoded the
same way. In the case where multiple homograhies are applied,
depth-planes need to be segmented. So that the decoder can
find the depth planes, as explained in Section V, one depth map
is encoded using 8 bit quantization followed by HEVC-Intra
(we used QP=32 in the experiments). Percentages of bitrate
cost for the different elements are analyzed in Section VII-A4.

B. Model-based coding parameters prediction

For a given target bit-rate and a given input light field,
the PSNR performance of the compression scheme depends
on two key parameters: the rank k of the approximation
and the HEVC quantization parameter (QP). To automatically
select the best pair of parameters (k, QP), we train a model
represented by a function f of a set of input features:

(k,QP) = f(LF features,Target bitrate) (15)

To generate training data labels, we encode at first several light
fields with different values of k and QP, and then labels are
extracted by taking the (k, QP) pairs only corresponding to
the data points on the envelope of the PSNR-rate points.

1) Feature space: The parameter prediction is regarded as
a classification problem with the following input features:
• Disparity indicators of original light field:

– proportion of singular values of the matrix I which
contain at least 95% of the energy of I;

– decay rate of singular values of the matrix I which is
defined as the ratio between the first and the second
singular value.

• Disparity indicators of aligned light field: same indicators
as above for the matrix I ◦ h.

• Texture indicators: same indicators as above computed on
the matrix in which each column is a vectorized version
of each 8× 8 block of the central view.

• Bitrate of the encoded light field for a certain pair (k, QP).
This feature gives some indication of the bitrate range for
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Fig. 5. Coding and decoding scheme overview.

the input light field. In the experiments, we take k = 15,
QP = 14 and encode the original LF (without alignment
for a fast computation). Note that it requires nevertheless
a supplementary encoding pass.

• Target bitrate.
2) Decision trees: The model input features are a mixture

of continuous (e.g. bitrates and decay rate of singular values)
and discrete (e.g. proportion of singular values keeping 95% of
the energy) variables. Contrary to SVM or Logistic Regression
which are only efficient with continuous inputs, Decision Trees
(DT) are good candidates for dealing with data of different
nature and do not need variable scaling. DT is also known to be
robust to noisy data (outliers). Among models of DT ensemble,
we use Random Forest [23] as classifier. The number of trees
is 150, which is tuned by 10-fold cross-validation with our
dataset.

3) Chain-based multi-output classification: The (k, QP)
prediction task can be considered as a problem of Multi-output
classification (MOC), a supervised learning problem where an
instance is associated with a set of discrete labels, rather than
with a single label. A classical way is to predict separately
each label with a different classifier by assuming that these
labels are independent. In our case, however, k and QP are
strongly correlated. In order to improve the MOC performance,
we model the label dependencies by a modified Classifier
Chain (CC) at the expense of an increased computational cost.

As in [52], a CC model involves several classifiers, which
are linked along a chain where each classifier deals with
a classification problem associated with a different label.
The predictions of the different classifiers are cascaded as
additional features. In other words, the feature space of each
link is extended with the label associations of all previous
links. We have observed that a competitive chain scheme
is experimentally better than simple unidirectional chains. In
such a scheme, the values of k and QP are at first separately
predicted by two independent Random Forests, each taking the
feature space defined in Section VI-B1. We then choose the

prediction (k or QP) for which the classifier gets a higher
probability and add it into the new feature space. A third
Random Forest is then employed to predict the other label
with the augmented feature space.

VII. PERFORMANCE ANALYSIS

For simulations, we consider real light fields captured by
plenoptic cameras using an array of micro-lenses, coming from
different sources: 1/- the INRIA dataset [24] which contains
LFs captured either by a first generation Lytro camera (63
LFs, 11× 11 views of 379× 379 pixels per LF) or a second
generation Lytro Illum camera (46 LFs, 15 × 15 views of
625×434 pixels per LF); 2/- the ICME 2016 Grand Challenge
dataset [25] containing 12 Lytro Illum LFs.

Lytro LFs are decoded by the Matlab Light Field Toolbox
v0.4 [53]. With the INRIA dataset, we only consider the 9×9
central views in order to alleviate the strong vignetting and dis-
tortion problems on the peripheral views, which comparatively
impact more the performance of the HEVC-based reference
schemes, e.g. [12], [13]. Note, however, that there are still
variations of light intensity, to a lesser extent, in the truncated
light fields. With the ICME 2016 Grand Challenge dataset, we
take 13× 13 central views as defined by the challenge testing
conditions. The test light fields in this section are shown in
Fig. 6 and Fig. 7.

For the INRIA dataset, the method in [49] has been used to
estimate a depth map of the central view in order to test our
method with multiple homographies per view as described in
Section V. For the ICME 2016 Grand Challenge dataset, the
provided depth maps have been used.

In experiments, the bitrate and PSNR are given for the
luminance component. The PSNR is derived from the MSE
(mean square error) computed on the whole light field.

A. Analysis of HLRA-based compression
1) Joint homography and low rank optimization: We first

assess the benefit of the joint optimization of the homographies
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Fig. 6. Test light fields in INRIA dataset. First line: Real Light Fields captured
by a Lytro 1G camera (From left to right: TotoroWaterfall, Beers, Flower
and TapeMeasure); Second line: Real Light Fields captured by a Lytro Illum
camera (From left to right: Fruits, Bench, BouquetFlower1 and Toys).

Fig. 7. Thumbnails of the ICME 2016 Grand Challenge dataset. From left
to right, First line: Ankylosaurus & Diplodocus 1, Bikes, Color Chart 1,
Danger de Mort; Second line: Desktop, Flowers, Fountain, Friends; Third
line: ISO Chart 12, Magnets, Stone Pillars Outside, Vespa.

and of the B and C matrices. Table I shows the PSNR
obtained with different values of rank k for homography search
and low rank approximation. The same value of k in both
columns means that the same rank is used for computing
the homographies and the transmitted matrices B and C.
By comparing the first and the third row on one hand, and
the second and fourth row on the other hand, for both light
fields, one can see that for a given approximation rank, a joint
optimization of homographies and of the approximation brings
a significant gain.

2) Alignment gain: Fig. 8 shows the interest of view align-
ment for compression for three LFs: “TotoroWaterfall”, “Toys”
and “Ankylosaurus & Diplodocus 1”. The gain of applying
homographies to light field views is mostly significant at
low bitrates and with a low approximation rank. Note that
for plenoptic cameras using arrays of micro-lenses, disparity
across views is relatively limited, hence alignment by one
homography per view is usually sufficient to satisfy low rank
assumption. When the disparity significantly varies across
the scene (e.g. “TotoroWaterfall”), multiple homographies can
further improve the compression performance, despite the
additional bitrate cost for transmitting the depth map.

3) Accuracy of the parameters prediction model: Fig. 8
also suggests that the PSNR-rate performance depends on the
values of the approximation rank k and of the HEVC coder
quantization parameter (QP). For example, it appears that a
smaller approximation rank k is preferred at low bit-rate. It
can also be observed that the best pair of parameters (k, QP)
depends on the input light field, hence the need to model
the relationship between the target bit-rate, input light field

TABLE I
PSNR OBTAINED WITH DIFFERENT VALUES OF RANK k FOR

HOMOGRAPHY OPTIMIZATION AND LOW RANK APPROXIMATION.

aligning approximation PSNR (dB)

rank rank TotoroWaterfall Toys
5 5 34.44 34.67

30 30 45.98 41.94
30 5 33.04 33.12
5 30 40.23 38.33

TABLE II
EXACT MATCHING RATE OF DIFFERENT CLASSIFICATION SCHEMES.

independent CC CC competitive
classifiers k –> QP QP –> k CC

Lytro 1G 64.2% 65.7% 66.1% 67.1%

Lytro Illum 59.2% 62.0% 62.0% 64.1%

features and the best values for these parameters.
The model proposed in subsection VI-B for predicting the

best pair of (k, QP) has been trained using light fields in
the INRIA dataset [24]. The dataset contains both indoor and
outdoor captures and the light fields are taken with variable
focal length. The test content is not similar to the training
content. For each type of camera (Lytro first generation or
Illum), we chose 4 light fields for the test (cf. Fig. 6).
The remaining light fields are used for training and they
correspond to different types of scenes. Training and test
LFs are available for download on the website1. For each
LF, compression is performed with the HLRA scheme for a
combination of different values of k and QP (k ∈ {5, 15, 30}
and QP ∈ {2, 6, 10, 14, 20, 26, 38}). Finally, training data
labels consist of (k, QP) pairs only corresponding to the data
points on the envelope of the PSNR-rate points.

Table II shows the exact matching rates of the competitive
classifier chain (competitive CC) compared to other classi-
fication methods: 1/- independent classifiers: k and QP are
independently predicted; 2/- CC k –> QP: classifier chain with
k predicted before QP; 3/- CC QP –> k: classifier chain with
QP predicted before k. Note that in competitive CC scheme,
with two labels to classify, there are four classifiers to train
and three of them are employed at the test time, whereas in
a classical CC model, the number of classifiers is two at both
the training and test phase. Fig. 9 shows in solid lines the true
envelope after testing all possible (k, QP) pairs, and in dashed
lines the PSNR-rate curves corresponding to the predicted (k,
QP) pairs. Both one (black curves) and two homographies per
view (red curves) are investigated. Although the exact match of
(k, QP) values is not achieved for about 1/3 of cases (Table II),
we observe that the predicted PSNR-rate curve is very close
to the true envelope.

In order to avoid multiple trainings for different numbers
of homographies, the training has been done with a single
homography. However, one can see in Fig. 9 that the prediction

1https://www.irisa.fr/temics/demos/lightField/LowRank2/datasets/datasets.
html

https://www.irisa.fr/temics/demos/lightField/LowRank2/datasets/datasets.html
https://www.irisa.fr/temics/demos/lightField/LowRank2/datasets/datasets.html
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Fig. 8. PSNR-rate performance of HLRA: with (1 or 2 homographies per view) or without alignment of light field views.
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Fig. 9. Performance evaluation of model-based parameter prediction for 4 of the test LFs. The PSNR-rate curves corresponding to model-predicted coding
parameters are shown by dashed lines, and the envelope obtained by all possible combinations of coding parameters are shown by solid lines. Both one (black
curves) and two homographies per view (red curves) are investigated.

TABLE III
PERCENTAGE OF THE BITRATE ALLOCATED TO EACH ELEMENT. THE RESULTS ARE AVERAGED OVER TEST LIGHT FIELDS IN THE ICME 2016 GRAND

CHALLENGE DATASET AND INRIA LYTRO DATASET, RESPECTIVELY.

Nb. of H Traget bitrates
Datasets per view (bpp) B C h D

1H 4.5× 10−3 (k=10, QP=26) 81.9% 11.5% 6.6% -

ICME Grand 1H 9.8× 10−2 (k=60, QP=6) 95.7% 4.0% 0.3% -

Challenge 2H 5.1× 10−3 (k=10, QP=26) 67.6% 9.5% 11.1% 11.8%

2H 9.9× 10−2 (k=60, QP=6) 94.8% 4.0% 0.5% 0.7%

1H 1.0× 10−2 (k=5, QP=26) 92.4% 3.3% 4.3% -

INRIA 1H 3.0× 10−1 (k=60, QP=6) 99.1% 0.8% 0.1% -

Lytro Dataset 2H 1.2× 10−2 (k=5, QP=26) 77.5% 2.7% 7.5 % 12.3%

2H 3.0× 10−1 (k=30, QP=6) 98.4% 0.8% 0.3% 0.5%

model learned on light fields for one homography remains
valid for multiple homographies.

4) Bitrate cost percentage analysis: The percentage of the
bitrate allocated to each element is detailed in Table III. A
dominant part of bits are allocated to encoding the matrix
B. The homography parameters in h and the depth map D
require a fixed cost that does not vary in function of the target
bitrate. As a consequence, the percentage of their cost becomes
negligible at high bitrates.

B. Comparative assessment of compression performance
We assess the compression performance obtained with

the homography-based low rank approximation against two

schemes: direct encoding of the views as a pseudo-video
sequence according to a lozenge order (HEVC-lozenge) [12]
and according to the scanning order proposed in [13] (HEVC-
pseudo). In simulations, the base QPs of HEVC-pseudo are
set to QPB =8, 14, 20, 26, 32 and 38, and the views at
hierarchical layers 2, 3, 4, 5, 6 respectively have QPs equal to
QPB + 8,QPB + 9,QPB + 10,QPB + 11 and QPB + 12, as
described in [13]. For HEVC-lozenge, the base QPs are set to
20, 26, 32, 38 and a GOP of 4 is used. The HEVC version
used in the tests is HM-16.10.

In Figs. 10 and 11, both HLRA with 1H (one homography
per view) and HLRA with 2H (two homographies per view)
are investigated against HEVC-lozenge and HEVC-pseudo.
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Fig. 10. PSNR-rate performance comparisons with three images from the ICME 2016 Grand Challenge dataset.
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Fig. 11. PSNR-rate performance comparisons with three images from the INRIA dataset.

Original center view HEVC-lozenge [12] HEVC-pseudo [13] HLRA

Ankylosaurus & Diplodocus 1 PSNR = 38.70 dB PSNR = 37.92 dB PSNR = 39.79 dB
bitrate = 7.8× 10−3 bpp bitrate = 5.2× 10−3 bpp bitrate = 3.5× 10−3 bpp

Friends 1 PSNR = 32.68 dB PSNR = 34.54 dB PSNR = 36.50 dB
bitrate = 6.1× 10−3 bpp bitrate = 6.9× 10−3 bpp bitrate = 7.4× 10−3 bpp

Stone Pillars Outside PSNR = 34.04 dB PSNR = 34.50 dB PSNR = 35.00 dB
bitrate = 1.7× 10−2 bpp bitrate = 1.5× 10−2 bpp bitrate = 1.2× 10−2 bpp

Fig. 12. The approximation error of the center view obtained with HEVC-lozenge, HEVC-pseudo and HLRA compression schemes. Similar bitrates are
chosen for the three schemes.
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TABLE IV
BD-PSNR GAINS WITH RESPECT TO HEVC-LOZENGE SCHEME [12]. THE GAINS ARE SHOWN FOR THE HEVC-PSEUDO [13] AND FOR OUR HLRA

SCHEME WITH ONE OR TWO HOMOGRAPHIES PER VIEW.

HEVC-pseudo HLRA HLRA
Datasets LF Names [13] with 1H with 2H

Bikes 2.53 2.87 2.91
Danger de Mort 2.74 3.60 3.46

Flowers 3.16 3.22 3.33
Stone Pillars Outside 0.70 1.47 1.48

ICME Grand Vespa 1.79 1.79 2.00
Challenge Ankylosaurus & Diplodocus 1 0.58 1.30 1.35

13× 13× 625× 434 Desktop 2.00 1.95 2.14
Magnets 1 0.56 1.48 1.49

Fountain & Vincent 2 2.08 1.51 1.82
Friends 1 2.40 3.37 3.47

Color Chart 1 0.84 1.73 1.67
ISO Chart 12 1.97 1.90 1.77

Average 1.78 2.18 2.24
BouquetFlower1 1.78 2.12 2.13

INRIA Toys 0.70 1.55 1.56
Lytro Illum Bench 2.47 2.76 2.77

9× 9× 625× 434 Fruits 2.72 1.92 2.13

Average 1.92 2.09 2.15
Beers 1.55 2.24 2.26

INRIA TotoroWaterfall 1.85 1.50 2.08
Lytro 1G Flower 1.47 2.36 2.52

9× 9× 379× 379 TapeMeasure 1.26 1.63 1.69
Average 1.53 1.93 2.14

Overall average 1.76 2.11 2.20

Table IV, gives the PSNR gain (using the Bjontegaard mea-
sure) of the proposed method with one or two homographies
in comparison with the method HEVC-pseudo [13]. The
reference considered for computing the Bjontegaard measure is
HEVC-lozenge [12]. Furthermore, the approximation error of
the center view obtained with HEVC-lozenge, HEVC-pseudo
and HLRA is given in Fig. 12 for comparison.

Substantial gains in favor of HLRA schemes are observed
for most of the test light fields. In Table IV, in most cases,
best results are obtained with HLRA using two homographies
per view, though on average, one homography per view is
sufficient to outperform the HEVC-pseudo scheme. HLRA
with two homographies are especially interesting when the
scene contains several depth planes, such as “Desktop”, “To-
toroWaterfall” and “Flower”. Note that there is strictly only
one depth plane in “Color Chart 1” and “ISO Chart 12”,
and the inaccuracy in depth map estimation explains the
degradation when using 2 homographies per view for these
two LFs.

For real world LFs captured by plenoptic cameras, global
variations of light intensity are present between views. Al-
though this degrades the performance of HEVC inter coding,
our compression scheme is little affected since the rank of a
matrix remains constant when its columns are multiplied by
different factors.

Note that the PSNR of the central views (the 7 × 7 views
in the center of the light field) is quite stable. However, the
PSNR of the reconstructed views at the periphery of the light
field varies. The gap can be up to 2 - 3 dB for real LFs
between the central views and the views at the periphery. This

variation is due to 2 reasons: 1/- a peripheral view requires a
more significant homography transformation in order to align
with other views, and the error due to forward and inverse
warping is consequently more important. 2/- peripheral views
suffer more severely from noise and distortion than central
views. These artifacts are removed by low rank approximation,
which causes the drop of PSNR, but not necessarily the
degradation of visual quality. One may refer to the website2

to see the visual quality of reconstructed views. Furthermore,
this variation of PSNR between views is compensated in the
two layer scheme presented in Section VIII by transmitting
the residue.

C. Computational complexity analysis

The computational complexity of HLRA scheme mainly
resides in two parts: finding the set of homographies to align
the light field views, and encoding the matrix B. Searching
for homographies is an iterative procedure, each iteration
containing successive steps: 1/- warping involves multiplying
each pixel coordinate in each light field view [x, y, 1] by a
3 × 3 matrix, the complexity being O(nm); 2/- computing
the Jacobian Ji for i ∈ [|1, n|] implies O(nm) operations;
3/- the complexity for the SVD of the matrix I ′ = I ◦ h
is O(n2m); 4/- and finally for i ∈ [|1, n|], computing ∆hi
involves computing the pseudo-inverse of the Jacobian matrix
Ji of size m× 8, which has a complexity of O(m), followed
by a matrix multiplication with complexity O(m). Overall,
each iteration requires O(n2m) arithmetic operations.

2https://www.irisa.fr/temics/demos/lightField/LowRank2/LRcompression.
html

https://www.irisa.fr/temics/demos/lightField/LowRank2/LRcompression.html
https://www.irisa.fr/temics/demos/lightField/LowRank2/LRcompression.html


11

TABLE V
RUNTIMES. THE RESULTS ARE AVERAGED OVER THE TEST LIGHT FIELDS IN DIFFERENT DATASETS. THE NUMBER OF REQUIRED ITERATIONS (NB. ITERS)

AND RUNTIME (T) ARE DETAILED. THE RUNTIME IS MEASURED AT QPB = 20 BOTH FOR HLRA AND HEVC-PSEUDO [13].

HLRA HEVC-pseudo [13]
Datasets Searching H Encoding B

Nb. iters t (min) t (min) t (min)

ICME Grand k = 10 29.9 12.5 0.6
Challenge k = 30 7.3 3.2 1.7 17.0

13× 13× 625× 434 k = 60 2.7 2.7 3.3
INRIA k = 5 40.0 8.9 0.4

Lytro Illum k = 15 7.8 1.8 0.9 8.3
9× 9× 625× 434 k = 30 6.3 1.5 1.7

INRIA k = 5 20.8 2.2 0.2
Lytro 1G k = 15 5.0 0.6 0.5 5.0

9× 9× 379× 379 k = 30 4.8 0.5 0.9

In our experiments, we consider that the algorithm has
converged when the PSNR gain is less than 0.002 dB between
two successive iterations. Logically, an approximation with
smaller rank requires more iterations to converge. In fact, in
the extreme case where the approximation rank is equal to
the number of light field views, no alignment (hence zero
iteration) is needed and the decomposition in B and C is
reduced to a simple SVD. The encoding time of the matrix B
is proportional to the number of columns (the approximation
rank), since each column is intra coded by HEVC. Considering
their small size, the encoding time of C, h and the depth map
is negligible.

The number of iterations and the consumed time for find-
ing homographies and encoding B are detailed in Table V.
Simulations have been carried out with a Macbook Pro with
a 2.8GHz Intel Core i7 processor. In spite of the additional
cost for the iterative alignment, HLRA consumes less time in
total than the HEVC-pseudo scheme because the intra coding
of the columns of B is much faster than inter coding of all the
views in HEVC-pseudo. Note that our implementation of the
iterative alignment is written in Matlab and could be further
optimized in the future.

On the decoder side, only k images need to be decoded
with HEVC intra, and the remaining steps are the matrix mul-
tiplication BC (complexity O(mnk)) and inverse warpings
(complexity O(mn)). Note that the decoding process is not
iterative since the homographies and the matrices B and C
are directly transmitted to the decoder.

D. Limitations of the method

For synthetic light fields in HCI dataset [54], the HLRA
scheme performs in general better than HEVC-lozenge but
worse than HEVC-pseudo in terms of PSNR-rate performance
(cf. Table VI). Two main reasons may explain this degra-
dation. First, while the baseline of the light fields captured
with plenoptic cameras is limited by the aperture size of
the camera, there is no such limitation with synthetic light
fields which may then have much higher disparities between
views. In these conditions, global homography projections
less accurately compensate for the inter-view disparities than
the block-matching of HEVC inter. With large baselines, the
first columns of the matrix B contain considerably more

information, even after view alignment, and are therefore more
expensive to encode. This is the reason why, in Table VI,
the gap between our method and HEVC-pseudo is more
important for light fields with larger baselines ( “StillLife” and
“Buddha”) than for those with smaller baselines ( “Butterfly”
and “MonasRoom”). Secondly, synthetic light fields are free
of imperfections such as noise and variations of light intensity
between views. The real world LF imperfection degrades con-
siderably the performance of HEVC inter coding while HLRA
compression scheme is little affected. In fact, a global change
of light intensity in one view simply leads to multiplying the
corresponding coefficients in the matrix C by different factors,
while the noise is mostly dropped by the low rank model.

TABLE VI
BD-PSNR GAINS (WITH RESPECT TO HEVC-LOZENGE SCHEME [12])

EVALUATION FOR SYNTHETIC LIGHT FIELDS IN HCI DATASET. THE
GAINS ARE SHOWN FOR THE HEVC-PSEUDO [13] AND FOR OUR HLRA

SCHEMES.

LF Names HEVC-pseudo [13] HLRA
Buddha 4.72 1.00
Butterfly 2.52 0.17

MonasRoom 3.90 1.08
StillLife 4.37 -4.28

VIII. SCALABLE LIGHT FIELD CODING

Thanks to the matrix factorization used in our approach,
our coding scheme naturally presents an interesting scalability
property. Although the encoder transmits a fixed number of
columns of the matrix B corresponding to the rank k, the
decoder can choose to decode less than k columns. Since
the matrices B and C are obtained by a singular value
decomposition which sorts the singular values and their cor-
responding singular vectors, the first columns of B contain
most of the energy of the light field signal. Therefore, a
fast approximation of the encoded light field can already be
performed on the decoder side by decoding only those first
columns. The decoder may then progressively refine the low
rank approximation by decoding additional columns.

However, in addition to the errors caused by the low rank
approximation, we have identified two other types of errors
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either caused by the quantization in the HEVC compression,
or by the forward and inverse homography warping. These
errors are not corrected by encoding additional columns of
B. Therefore, we propose a scalable extension of our method
where the residual between the original and the decoded light
field is encoded as an enhancement layer, as illustrated in
Fig. 13.

For our experiment, the base layer is computed by encoding
the original light field with HLRA using a single homography.
For the residual layer, four coding schemes are tested:
• HEVC-lozenge encoding [12].
• HEVC-pseudo encoding [13].
• HLRA without alignment (only BC factorization).
• HLRA with one homography.
Fig. 14 shows the PSNR-rate performance of the scalable

light field coding. For comparing the different residual layer
coding schemes, the base layer is encoded at a fixed target bi-
trate of 0.01 bpp. The corresponding k and QP parameters are
automatically predicted by our classification model decribed in
section VI-B. For the HLRA encoding of the residual (either
with or without homography alignment), results are shown for
different values of the approximation rank kr. Each curve is
generated by varying the QP parameter in the HEVC encoding
of the residual B matrix.

We first note that all the variants of our HLRA scheme per-
form significantly better than the HEVC-lozenge and HEVC-
pseudo schemes applied to the residual layer.

Unlike the base layer (cf. Fig. 8), aligning the residual
and encoding with a low rank kr does not significantly
improve the results at low or medium bitrates compared to
a higher rank encoding. The best performance at any bitrate
is then obtained by choosing the highest rank kr. In this case,
homography alignment only brings very little gains which
may not justify the added complexity of the optimization
procedure for determining homographies for the residue. The
BC factorization computed by a single SVD step is then
sufficient for the residual matrix encoding.

Finally, in comparison to the single layer approach (red
curve), encoding a residual layer with a high approximation
rank (kr = 30) only results in a negligible loss compared to
single layer HEVC-based coding while providing scalability.
Note that similarly to the base layer, the residual layer encoded
with the BC factorization can be decoded by progressive
refinement when decoding the successive columns of the B
matrix.

IX. CONCLUSION

In this paper, we have proposed a new compression scheme
for light field images. In our method, each view of the light
field is first warped using either one global homography, or
a model consisting of a homography per depth plane with
a smooth transition between depth planes. Considering the
matrix formed by concatenating each warped and vectorized
view, a joint optimization of homography parameters and low
rank matrix approximation is performed. For an approximation
rank k, the resulting rank k matrix can be factorized as the
product of a matrix containing k basis vectors and a smaller
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original
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HLRA compression

Residual computation
IR = I − I ′

original
LF Matrix I

I ′

Residual coding
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1

Fig. 13. Scalable light field coding chain.
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Fig. 14. Scalable coding performance for a base layer encoded with the single
homography HLRA. The red curve shows the single layer result at varying
target bitrates. The other curves show the scalable performance for different
residual encoding methods, where the base layer is encoded at a target bitrate
of 0.01 bpp (k = 5, QP= 26).

matrix of coefficients. Our method then consists in encoding
each of the k basis vectors using HEVC intra, along with
the coefficients and homography parameters. In the case of
multiple depth planes, the depth map must be encoded as well
using HEVC intra. For most tested light fields, experimental
results show substantial performance gains compared to the
state-of-the-art methods which encode the views as a pseudo-
sequence with HEVC inter. The method is particularly well
suited for real light fields captured with plenoptic cameras
which have limited disparity, but may contain imperfections
such as variations of light intensity across views.

Our method is dependent on two encoding parameters: the
rank k and the QP parameter in HEVC. Therefore, we have
also proposed a prediction scheme for determining the best
couple (k, QP) as a function of a target bitrate and additional
features computed on the input light field. Our experiments
show that the predicted parameters always result in close to
optimal coding performance. Furthermore, the model remains
valid in broader conditions than what it was trained for (i.e.
multiple homographies).
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Finally, a scalable extension has been proposed where a
residual layer is encoded. We have shown that homography
warping is not necessary for the residual. A simpler coding
scheme only based on matrix factorization is sufficient and
it substantially outperforms the HEVC inter encoding of the
pseudo-sequence of view residuals.
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