
HAL Id: hal-01591338
https://hal.science/hal-01591338

Submitted on 21 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Interlocking Systems Using Statistical
Model Checking

Quentin Cappart, Christophe Limbrée, Pierre Schaus, Jean Quilbeuf,
Louis-Marie Traonouez, Axel Legay

To cite this version:
Quentin Cappart, Christophe Limbrée, Pierre Schaus, Jean Quilbeuf, Louis-Marie Traonouez, et al..
Verification of Interlocking Systems Using Statistical Model Checking. 18th IEEE International Sym-
posium on High Assurance Systems Engineering (HASE), Jan 2017, Singapore, Singapore. pp.61 - 68,
�10.1109/HASE.2017.10�. �hal-01591338�

https://hal.science/hal-01591338
https://hal.archives-ouvertes.fr

Verification of interlocking systems using statistical
model checking

Quentin Cappart∗, Christophe Limbrée∗, Pierre Schaus∗, Jean Quilbeuf†, Louis-Marie Traonouez† and Axel Legay†
∗Université catholique de Louvain, Louvain-La-Neuve, Belgium

Email: {quentin.cappart — christophe.limbree — pierre.schaus}@uclouvain.be
†INRIA/IRISA, Rennes, France

Email: {jean.quilbeuf — louis-marie.traonouez — axel.legay}@inria.fr

Abstract—In the railway domain, an interlocking is the system
ensuring safe train traffic inside a station by controlling its active
elements such as the signals or points. Modern interlockings
are configured using particular data, called application data,
reflecting the track layout and defining the actions that the
interlocking can take. The safety of the train traffic relies thereby
on application data correctness, errors inside them can cause
safety issues such as derailments or collisions. Given the high
level of safety required by such a system, its verification is
a critical concern. In addition to the safety, an interlocking
must also ensure that availability properties, stating that no
train would be stopped forever in a station, are satisfied. Most
of the research dealing with this verification relies on model
checking. However, due to the state space explosion problem,
this approach does not scale for large stations. More recently,
a discrete event simulation approach limiting the verification to
a set of likely scenarios, was proposed. The simulation enables
the verification of larger stations, but with no proof that all the
interesting scenarios are covered by the simulation. In this paper,
we apply an intermediate statistical model checking approach,
offering both the advantages of model checking and simulation.
Even if exhaustiveness is not obtained, statistical model checking
evaluates with a parametrizable confidence the reliability and the
availability of the entire system.

I. INTRODUCTION

An interlocking is a system that controls the train traffic
by acting as an interface between the trains and the railway
track components. The track components are for example,
the signals that allow the train to proceed, or the points that
guide the trains from one track to another. The paths followed
by the trains are called routes. Modern interlockings are
computerized systems that are composed of generic software
and application data. The generic software implements the
signalling principles that are applicable to the railway domain.
The development and the validation of that generic software
follow the highest safety standards applicable to the domain.
On the other hand the application data are specific to each
station controlled by the interlocking. The ability of the
interlocking to avoid critical situations, like train collisions,
relies on the safety level achieved by the combination of
the generic software and of the application data. Beyond the
safety, an interlocking must also ensure that no train will
be stopped too long in the station in order to maintain the
availability of the station. It is why availability properties
must also be considered. Most of the time, the validation

of the application data is performed through testing on a
physical simulator that reproduces the environment of the
interlocking. This process is costly and error-prone. Moreover
manual testing does not always cover all the scenarios that
could possibly end up in an unsafe situation.

Until now, most of the research targeting the verification
of the application data is based on model checking ([1],
[2], [3]) even if other approaches based on formal methods
exist [4]. First, the signalling principles and the application
data are translated into a model. Secondly, the dangerous
situations that the interlocking must avoid are translated
into safety properties. Finally, a model checker tool unrolls
the state space of the model and verifies that none of
the reachable states violates the properties. Following this
approach, Busard et al. [5] designed a verification model
for Belgian interlockings. The principle of verification is
simple but suffers from the so-called state space explosion
problem. In other words, the number of states is so large that
its creation and exploration take exponential time. Different
methods have been studied to limit this problem. Based on
model checking, Winter and al. [6] proposed to relax the
verification process by reducing the complexity and the size
of the model. Furthermore, different optimisations and new
algorithms ([7], [8], [9]) aiming to accelerate the verification
were also proposed.

A different approach, introduced by Cappart et al.
[10] consists of performing the verification by a discrete
event simulation. The idea is to simulate the behaviour of an
interlocking as described in its application data and to observe
if any unwanted scenario occurs. Unlike model checking
where all the states are considered, this approach mainly
considers scenarios that are likely to happen in practice.
However, simulation provides no guarantee whatsoever that
all such scenarios will be detected.

In this paper, we propose a method to automatically verify
an interlocking using simulation and statistical model check-
ing. The contributions of this paper are as follows:
• The introduction of two availability properties that an

interlocking must face in order to ensure that no train will

be stuck in a station. Concretely, we verify that each route
can be released after being set and that no component is
locked forever.

• The formalisation of availability and safety properties of
[10] in a bounded linear temporal logic (BLTL) [11].
Such a logic is used in order to bound the simulation
time.

• An extension of the simulation model described in [10] so
that it can be automatically built from the application data
and the topology of a station. The model has also been
extended in order to support its verification for properties
expressed in a bounded linear temporal logic and using
statistical model checking algorithms.

• The use of statistical model checking [12] algorithms
such as Monte Carlo, Chernoff’s bound and importance
splitting, for verifying this model. Using both statistical
model checking and BLTL, we can now detect errors that
could not be detected in [10]. These errors are related
to availability properties. More generally, verification of
any properties expressed in BLTL can now be performed,
whereas the simulator of Cappart et al. could only support
verification of invariants.

This paper uses a typical medium-sized Belgian station as
a case study. The next section introduces the case study and
describes how it is managed by an interlocking. In Section
3, we explain how the problem is modelled. Its verification
is discussed in Section 4. Finally, in Section 5, we analyse
the performances of the verification and its reliability through
experimental results.

II. INTERLOCKING PRINCIPLES

The case study targets Braine l’Alleud Station, a medium
size railway station of the Belgian network. A representation
of its track layout is shown in Figure 1 (the names of
some components are not written). We consider the following
physical components:
• The points (e.g. P 01BC) are the track components

which guide the train from one track to another. Accord-
ing to the Belgian convention, they can be in a normal
position (left) or in a reverse position (right).

• The signals (e.g CC) are the interface between the
interlocking and the trains. They display a proceed state
(green) when it is safe for a train to proceed on the station.

• The track segments (e.g T 01BC) are the tracks where
a train can be detected. They can be either occupied by
a train or clear. They are delimited by the joints.

Besides the physical components, an interlocking also uses
the notion of route. A route is the path that a train must follow
inside a station. A route is named according to its origin and
destination point. For instance, Route R CC 102 starts from
Signal CC and ends on Track 102. When a train is approaching
a station, a signalman will perform a route request to the
interlocking in order to ask if the route can be commanded
for this train. The interlocking will handle this request and
will accept or reject it according to the station state. To do

so, an interlocking uses logical components like the subroutes
or the immobilisation zones, materialising the availability of
some physical components. Such components are locked or
released if they are not requested. Braine l’Alleud Station is
controlled by a unique interlocking composed of 32 routes, 12
signals, 17 track segments, and 12 points.

III. MODEL OF AN INTERLOCKING SYSTEM

In this section, we present how we model an interlocking.
The objective pursued is to build a tool that automatically
verifies the application data correctness of an interlocking
system. To do so, our tool requires three inputs:
• The application data, that describes the behaviour of the

interlocking system.
• The track layout, that describes the geographic disposi-

tion of the physical components in the station.
• The properties that the interlocking must satisfy. They are

twofold: on the one hand, the safety properties, which
state that no issue such as a collision or a derailment oc-
curs in the station, and on the other hand, the availability
properties that forbid the interlocking to block trains for
too long.

From these inputs, our tool provides statistics about the
correctness of the model according to the properties defined.
The verification process is divided into four steps:

1) Generating an interlocking model combining the applica-
tion data and the track layout of the related station. This
is done using two translators that parse and aggregate
both data sources into a single model.

2) Stating all the safety and availability properties that must
be satisfied. Properties have been formalised in BLTL.
This logic requires that linear temporal operators have
bounds. These bounds guarantee that a property can be
decided on a finite length simulation.

3) Simulating the behaviour of the obtained model with a
discrete event simulator. A set of traces summarizing the
different actions that occurred during the simulation is
obtained through this process. The simulation is based on
the verification tool introduced and developed by Cappart
et al. [10].

4) Evaluating the probability that the simulations satisfy the
properties. To this end, we use a statistical model checker.
This tool has been implemented using PLASMA Lab
[13] which is a platform for statistical model checking
of stochastic models.

The data flow diagram presented on Figure 2 resumes
the approach. All this process is entirely automatised. Next
subsections describe in more details the different steps.

A. Translation of the input data

The first step is to build from the input data a model
reflecting the behaviour of an interlocking applied to its
station. Two data types are involved in this process, the
application data and the track layout.

091

092

011

012

UP DN

DXC

EC IC

CC

CGC

CXC

JC KXC

KCJXCDC

FC

101

102

103

104

011
Joint

Track number

Signal

P_01AC P_02BC

P_01BC P_02AC

P_03C

P_04C

P_07AC P_08BC

P_07BC P_08AC
P_09C

P_10C

T_01BCT_092

T_091

U_IR(10C)

U_IR(09C)

Immobilisation
Zone

20
C

19
C

Fig. 1. Layout of Braine l’Alleud Station

Fig. 2. Steps of our approach

The format considered for the application data is Solid State
Interlocking (SSI) [14], used by the Belgian railways since
1992. The methodology described in this paper can neverthe-
less be applied to other railway formats. The application data
describe the behaviour of an interlocking. The actions that the
interlocking can perform and the conditions under which they
can be executed are described inside. To do so, two logical
components are used:
• The subroutes: they represent the contiguous segments

that the trains must follow inside a route. When a
route is commanded for a train, a set of subroutes is
locked. When not requested, subroutes are in a free
state. In application data, they are defined by this syntax:
U origin destination.

• The immobilisation zones: they are the variables mate-
rialising the immobilisation of a set of points. When they
are locked, their attached points cannot be moved. They
are represented in the application data by the name U IR.

Other components are also present in the application data
but they are either not related to the safety/availability or
abstracted in our model. Using such components, an inter-
locking can control the train traffic by monitoring the station,
commanding routes, locking components and releasing them.
All the possible actions and their underlying conditions are

described in the application data. For instance, they contain
the following instructions:
• The route requests: they determine the conditions that

must be satisfied before commanding a route and the
actions that the interlocking must take to fulfil the request.
Listing 1 shows the definition of a request for Route
R CGC 011 from Signal CGC to Track 011. This route
can only be set if it is not already set (xs on line 2),
if some points are free to be commanded to the reverse
(cfr) or the normal (cfn) position (lines 3-4) and if some
immobilisation zones are free (f) to be used (line 5). If all
of these conditions are satisfied, the request is granted and
the route is set (s on line 6), the points are commanded
(cr and cn) to the requested positions (lines 7-8) and the
immobilisation zones (line 9) and some subroutes (line
10) are locked (l).

1 *Q_R(CGC_011)
2 if R_CGC_011 xs
3 P_09C cfr,
4 P_10C cfn, P_08AC cfn, P_08BC cfn
5 U_IR(10C) f, U_IR(09C) f
6 then R_CGC_011 s
7 P_09C cr,
8 P_10C cn, P_08AC cn, P_08BC cn,
9 U_IR(10C) l, U_IR(09C) l,

10 U_CGC_20C l, U_20C_KXC l

Listing 1. Request for setting route R CGC 011.

• The point commands: they determine the conditions that
must be satisfied before commanding a point. Listing 2
shows an instantiation of these rules for Point P 09C.
Typically, a point requires its immobilisation zone to be
free (f) for its command.

1 *P_09CN U_IR(09C) f // condition for normal (N)
position

2 *P_09CR U_IR(09C) f // condition for reverse (R)
position

Listing 2. Request for commanding Point P 09C.

• The releasing requests: they determine the conditions
that must be satisfied to release a component. Listing 3
states that Subroute U CGC 20C can only be released if

Routes R CGC 011 and R CGC 012 are not already set
(xs) and if there is no train (c) on Track segment T 10C.

1 U_CGC_20C f if R_CGC_011 xs, R_CGC_012 xs,
2 T_10C c

Listing 3. Request for releasing subroute U CGC 20C.

Such data describe the interlocking behaviour but contain
no information about the track layout of the considered
station. However, the correctness of an interlocking is also
dependent of its consistency with the track layout. It is why
a data source describing the track layout is necessary.

Based on a XML structure, the railway description language
called railML [15] provides a universal format that can be
used for diverse railway applications. Several schemas such
as the infrastructure, the timetables or the rolling stocks are
described inside. In our case, only the infrastructure schema
is necessary.

Our verification model is built from both SSI and railML
languages. It is done by two translators which automatically
parse both data and aggregate them. We use a graph structure,
implemented in Scala programming Language [16], to model
the station by using topology information present in the railML
file. Physical components such as the points, the signals or
the joints are represented by nodes and the portions of track
segments between them correspond to the edges. Each edge
belongs to a particular track segment. Trains move in the
station from edge to edge. Once the graph is built, application
data are then used to simulate the interlocking behaviour on
this graph. Detailed explanations on the simulator are provided
in the next section.

B. Simulation of the model

Once the model is obtained, the next step is to verify
its correctness. One common approach for that is model
checking. However, because of the state space explosion
problem, model checking does not scale for large stations.
To overcome this issue, Cappart et al. [10] introduced a
verification method based on a discrete event simulation. The
key idea is to reproduce the interlocking behaviour under a
realistic train traffic. If no issue occurred during simulations
covering enough time, we can have a high expectation that
the system is safe. The main difference with model checking
is that there is no guarantee that all the possible cases are
considered but only the cases that can potentially happen in
real situations.

The principles of our simulation is similar to the simulation
introduced in [10]. Two kinds of entities are involved: On the
one hand the trains, that are characterized by a direction and a
position (a track segment) and on the other hand the interlock-
ing active components, as described in the previous section.
Besides, entity states change according to the following events:
• The train arrivals: trains arrive randomly at a particular

start signal. In our simulation, a train arrival can occur

with a uniform probability on the interval [ta, ta + βa]
where ta is the time of the last train arrival (ta = 0 for
the first step) and βa is a predefined parameter. Besides,
after each event occurrence, a new event is triggered in
the interval [ta, ta + βa] with the updated ta.

• The route requests: route requests are performed for
trains waiting at a start signal. The request is accepted
only if all of its conditions are fulfilled. Otherwise, the
request is aborted. In case of acceptance, the route is set
and all the actions described in the request are executed.
Otherwise, no action is taken. A route request is an
event which can occur in the interval [tr, tr+βr] with tr
the time of the last request and βr a predefined parameter.

• The train movements: trains move through the station
from track to track by following the direction set by
the signals and the points. When a train reaches the
end of its route, it is removed from the station. The
first movement of a train x is triggered when its route
is accepted. The next movements occur in the interval
[tm(x), tm(x) + βm] with tm(x) the time of the last
movement done by x and βm a parameter. Each train
has thereby its own queue of events. By doing this, we
implicitly model the fact that the speed of the trains can
be different.

• The component releasing: after each event, the
interlocking verifies if components can be released. For
instance, if the conditions presented on Listing 3 are
fulfilled, Subroute U CGC 20C will be released.

Randomness is introduced for several events through the
parameters β. Their purpose is to allow the generation of
different scenarios at each simulation by defining a time
range on which the events can occur. Discussion about the
choice of this parameter is presented in [10].

A simulation of n steps provides a trace of n states. A
simulation state si with i ∈ [1, n] is defined as

si :
〈
nb, σp, σr, σs, σu, σt, σtr

〉
.

• nb is the number of trains that have moved in the station
so far. This variable is used to under approximate how
many real days the simulation has covered. Indeed, by
taking the extreme case of a busy station where there
is an incoming train every minute all the day long, we
can safely assume that the simulation has covered at least
one real day when 1440 trains have moved through the
station.

• σp : point → {normal,reverse} is a function
defining the position of a point.

• σr : route → {set,unset} is a function defining if
a route is set or unset.

• σs : subroute → {free,locked} is a function
defining if a subroute is free or locked.

• σu : uir → {free,locked} is a function defining if
an immobilisation zone is free or locked.

• σt : track→ N a function defining the number of trains
being on a track segment.

• σtr : train→ (track, {up,down}) a function defin-
ing the current position of a train and its direction.

• point, route, subroute,uir, track are the set of
the interlocking components defined in the application
data and train the set of trains in the station.

The simulator has been implemented using the discrete
event simulation package of OscaR [17], a Scala toolkit for
solving operations research problems. Furthermore, advanced
features have been added to the simulator engine in order to
use the algorithms presented in the next section. For instance,
we added the possibility to save a simulation state and use it
as an initial state for new simulations.

C. Definition of properties

Before verifying that no unwanted scenario occurs, we need
to define what is exactly an unwanted scenario. As previously
stated, the goal of an interlocking is to ensure a safe train
traffic in a station. To achieve this goal, an interlocking has
two requirements. On the one hand, it must ensure that it will
cause no accident in the station. It is a safety requirement.
Busard et al. [5] identified three safety requirements:
(1) A track cannot have two trains on it at the same time in

order to avoid collisions.
(2) A point cannot move if there is a train on it otherwise it

will derail.
(3) A point must always be set on a position allowing trains

to continue their path. Otherwise, the trains will derail.
On the other hand, an interlocking should not block trains

or components for too long. It is an availability requirement.
It can be refined into two requirements:
(4) A route could always be eventually set.
(5) Component could always be eventually released.

Eventually means that after any state of the system, there
exists at least another state where the property is satisfied.
These properties are expressed by mean of BLTL formulas.
The following formulas show an instantiation of these prop-
erties in BLTL:
(1) Gn T_01BC ≤ 1
(2) Gn T_01BC = 1 =⇒ P_02AC = next(P_02AC)
(3) Gn

(
T_092 = 1 ∧ T_01BC = 0

∧ next(T_092) = 0 ∧ next(T_01BC) = 1
)

=⇒
(
P_01BC = left ∧ next(P_01BC) = left

)
(4) (GF)n R_CC_101 = set
(5) (GF)n U_CGC_20C = free

Formula (1) states that for a simulation of n steps, at any
moment (G), at most one train can be on Track T_01BC.
Formula (2) states that if there is a train on Track T_01BC,
the direction on Point P_02AC cannot change at the next
state. Formula (3) states that if there is a train moving from

Track T_092 to Track T_01BC, Point P_01BC must be set
and stay to left. Such equations are related to the safety,
the next ones ensure the availability of the system. Formula
(4) ensures that after any state, there exists at least another
state where Route R_CC_101 could be set. Formula (5)
has the same idea by ensuring that Subroute U_CGC_20C
could always (GF), be released. Such equations illustrate the
properties that the model has to satisfy. There are similar
formulas for each component of the station.

Such a formalism is generally used when a finite time
domain is considered. In our case, a BLTL property of bound
n is satisfied when there is no state that violates the property
during the n first steps of the simulation. The property can
thus be decided after at most n steps of simulation. The
statistical reliability of the verification by simulation is then
highly dependent on the choice of this bound. Indeed, if the
bound is too low, the simulation time will be too short and
some scenarios will not be covered. It is why we require
that the bound must be sufficient to determine a simulation
time long enough to cover at least one complete scenario.
A complete scenario is a scenario going from a train arrival
to its departure in a station. The scenario is not complete if
the simulation is stopped when the train is still waiting or
moving into the station. For instance, a simulation of 1 hour
will not be sufficient because trains arriving in a station could
still be in the station after one hour. In our case, we assigned
a simulation time of one complete day. This value is chosen
under the reasonable assumption that a train would not stay
into the same station longer than one day. BLTL provides two
ways of specifying the bounds of temporal operators. The first
uses the number of steps while the second one relies on a time
unit defined in the model. In our case, we use the number nb
defined in the state of our model as the time unit. As explained
previously, using a bound of 1440 ensures that our simulation
covers at least a complete day.

IV. VERIFICATION BY STATISTICAL MODEL CHECKING

Now that the interlocking requirements have been stated,
the next step is to evaluate whether the interlocking satisfies
them. The key idea is to perform several simulations, get the
resulting traces, analyse them and verify that they contain no
state violating the requirement. A statistical model checker
[12] can be used for that. The aim of statistical model checking
is to approximate, in a controlled manner, the probability
of satisfaction or violation of a property. Unlike classical
model checking approaches where an exhaustive exploration
of the state space is conducted (Busard et al. [5] experimented
the limitation of this approach for SSI language), statistical
model checking only requires a sample of simulations. On this
section, we describe the statistical model checking algorithms
used in our approach.

Monte Carlo estimation: The first algorithm is based on
Monte Carlo method for estimating the probability γ of
satisfying a property ϕ. The principle is to generate N

Fig. 3. Importance splitting using three levels.

random simulations ρ1, . . . , ρN and to compute the following
estimation of γ:

γ̃ =
1

N

N∑
i=1

1(ρi |= ϕ) (1)

where 1 is an indicator function that returns 1 if ϕ is satisfied
in ρi and 0 otherwise.

Parameter N can be determined by the user according to
the number of simulation he wants to perform. Given that
property ϕ has bounded temporal operators, a simulation will
stop whenever the bound (n), or a state violating ϕ, is reached.

The parameter N can also be determined in order to obtain
a specific confidence on the probability obtained. For instance,
the Chernoff bound [18] determines the required number of
simulations to perform in order to have a confidence δ and a
precision ε on the value p obtained:

Pr(|γ − γ̃| < ε) ≥ 1− δ if N ≥
ln(2δ)

2ε2
(2)

This bound N guarantees that the probability that a property
is satisfied is included in the (1− δ)-[γ − ε, γ + ε] confidence
interval.

Importance splitting: Importance splitting [19], a technique
usually used for rare event detection, allows to increase the
probability of generating rare events and to speed up the
errors detection by decreasing the number of simulations
required to estimate the probability.

Importance splitting starts by splitting the rare property
in a sequence of temporal properties ϕk, with the logical
characteristic ϕ = ϕM ⇒ ϕM−1 ⇒ · · · ⇒ ϕ1. This defines
a set of levels, each associated to the conditional probability
Pr(ρ |= ϕk+1 | ρ |= ϕk) of reaching level k + 1 from
level k. Instead of trying to verify directly a rare property,
the importance splitting algorithm considers a set of sub-
properties easier to verify and which lead progressively to the
final property. An illustration of this process is presented on
Figure 3.

The next step is to embed the simulator, the BLTL properties
and the statistical model checking algorithms into a same
framework. Plasma Lab platform [13] is used for that. Plasma
Lab includes several statistical model checking algorithms and
a library to include new simulators and to define properties.
Simulators of systems or models can be reused with few im-
plementation work thanks to the existing libraries. Plasma Lab
already includes simulators for the Reactive Module Language
(Markov chains models as in the PRISM model-checker),
biological models, MATLAB/Simulink models, SystemC. In
our case, we have developed a new plug-in that implements
Plasma Lab library and creates an interface between Plasma
Lab and the simulator presented in the previous section.

V. EXPERIMENTS

The aim of this section is to analyse the validity of our
approach through experimental results. Indeed, now that we
have a model and a verification process, we need to ensure
that it will efficiently detect the errors leading to safety or
availability issues. For the first experiment, we introduced
several errors in the application data in order to test if they
will be detected through simulations:

a. Missing condition for moving a point in a route request.
b. Point moved to a wrong position when setting a route.
c. Subroute not properly locked when setting a route.
d. Condition missing for releasing a subroute.
e. Condition missing for releasing an immobilisation zone.
f. Irrelevant additional conditions for releasing a compo-

nent.
Monte Carlo estimations: Using Monte Carlo estimations,

we performed 100 simulations in order to cover 100 complete
days. Table 1 recaps the execution time and the probability to
detect issues violating the requirements formalised on Section
III-C when errors are introduced. Simulating the trace and
verifying all the requirements for a single simulation take
approximately 15 seconds.

TABLE I
EXECUTION TIME (IN SECONDS) AND PROBABILITY (IN PERCENT) OF
DETECTING AN ISSUE VIOLATING REQUIREMENTS OF SECTION III-C

WHEN ERRORS ARE INSERTED ON BRAINE L’ALLEUD APPLICATION DATA

Safety requirements Availability requirements Time (sec.)
(1) (2) (3) (4) (5)

a. 0 100 0 0 0 1424
b. 0 0 100 100 98 1086
c. 91 69 29 63 100 1348
d. 93 100 0 33 99 1845
e. 72 97 0 79 100 1199
f. 0 0 0 100 100 1652

A non-zero probability means that a safety or availability
issue occurred on at least one simulation. In this case, we have
then the certainty that the interlocking is not correct. As we
can see on Table 1, each error introduced in the application
causes the violation of at least one requirement which means
that all the errors have been detected through 100 simulations

of one day. Using these results, it is possible to analyse which
issues are caused by specific errors. For instance, injecting an
error of type f. only causes availability issues. Such an error
could not be detected in [10]. Concerning the execution time,
it remains similar in the different cases, and is consistent with
the time needed to execute a single simulation.

Chernoff’s bound: Besides the error detection, it is also
interesting to have guarantees about the correctness of
the model. Chernoff’s bound is used in order to obtain a
confidence interval on the probability that the requirements
are satisfied in the model. Using Equation (2), a (1 − δ)-
[γ − ε, γ + ε] confidence interval on γ with ε = 0.01
and δ = 0.01 can be obtained with 26 492 simulations.
Furthermore, refining δ by a factor 10 will increase the
number of required simulations by 11513 while refining ε by
the same factor will multiply this number by 100. Knowing
the execution time required to perform a 1-day simulation
(' 15 sec), we can deduce the expected time required to
obtain such confidence intervals. For ε = 0.01 and δ = 0.01,
the execution will take approximately 5 days and tightening δ
by a factor 10 will add 2 days of computation while refining
ε by the same factor will multiply the execution time by 100.

Even if poor confidence intervals can be obtained in a
reasonable time, more accurate intervals rapidly become too
long to obtain on a single processor. However, unlike model
checking which is difficult to parallelise, the simulations can
be executed in parallel without any overhead. An execution
on m processors will thus divide to total execution time by
m, which makes it possible to use in practice. Furthermore,
as shown in the first experiment, error detection requires gen-
erally far more less simulations than the number determined
by Chernoff’s bound.

Importance splitting for collision detection: The last
experiment deals with the safety requirement stating that no
collision can occur in the station (Formula (1)). As explained
in the previous section, importance splitting can be used to
speed up the errors detection. Furthermore, the no collision
requirement can easily be split in different levels. For these
reasons, we also employed the importance splitting algorithm
for this requirement.

The first step is to define the different levels. The first
level is reached when two conflictual routes are set together
in the station. Two routes are conflictual if they share at
least one common track segment. For instance, R CXC 102
and R DXC 091 in Figure 1 are conflictual. The next level
is reached when there is only one track segment between
two trains following conflictual routes if and only if no train
is beyond the track segment where the collision can occur.
According to the previous example, if the train following
Route R CXC 102 is on Track segment T 01BC and the
train following Route R DXC 091 on Track 102, there is
only a difference of one track segment. The third level is
the event that we want to detect: the collision. According to
importance splitting algorithm, simulations reaching a level

are recorded and then used as a new start point for next
simulations.

Once the levels are determined, importance splitting can
be used. Table 2 presents statistics for simulations of 1 day
with an error of type d. on the application data. Confidence
intervals are obtained using a normal distribution as suggested
in Section 5.2 of [20]. The number of experiments and the
number of simulations per experiment are chosen in order to
have the same total number of simulations for Monte Carlo and
importance splitting (1000 in that case). As we can see, even
for a medium size station such as Braine l’Alleud where errors
are rapidly detected with Monte Carlo, importance splitting
can give similar results much faster for a same number of
simulations.

TABLE II
COMPARISON BETWEEN MONTE CARLO AND IMPORTANCE SPLITTING

ALGORITHMS FOR COLLISION DETECTION WHEN AN ERROR OF TYPE F. IS
INTRODUCED ON BRAINE L’ALLEUD APPLICATION DATA

Statistics Importance splitting Monte Carlo
experiments 10 1

simulations per experiment 100 1000
Average execution time (sec) 257 1320
Average arithmetic mean (%) 93.9 93.94

Standard deviation (%) 1.21 0.75
99.9%-confidence interval (%) [92.71, 95.12] [91.43, 96.45]

VI. CONCLUSION

Automatic verification of an interlocking system is an
active field of investigation in the railway domain. Up to now,
most of the research dealing with this issue is based on model
checking or, more recently, on a discrete event simulation
approach. However, both of these approaches have drawbacks.
On the one hand, model checking suffers from the state space
explosion problem which complicates its utilisation for large
stations and on the other hand, discrete event simulation
does not provide a sufficient guarantee that the system is
correct. In this paper, we proposed an intermediate approach
based on statistical model checking that overcomes both
issues. The key idea is to perform several simulations and to
observe through hypothesis testing and other statistical tests
whether the results obtained provide a statistical evidence
that the system is correct. Safety and availability properties
have been formulated, and experimental results have shown
that our verification approach thoroughly detects violations
of the properties with a confidence interval on the verdict.
Furthermore, the importance splitting algorithm has been
used in order to speed up the detection of some safety issues.

Up to now, the simulation performed only considers sce-
narios where the interlocking manages a perfect train traffic.
Unexpected events, like a train failure or a faulty sensor, are
not taken into account and can be considered as rare events of
a simulation. As future work, we plan to extend the simulator
to cover such scenarios and to apply importance splitting in

order to detect such rare events. Furthermore, the next step
will be to apply our method on a larger station containing a
more complex interlocking and to analyse how the verification
and its performance are impacted.

ACKNOWLEDGEMENT

This research is financed by the Walloon Region as part of
the Logistics in Wallonia competitiveness pole.

REFERENCES

[1] A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. Torielli, and
P. Traverso, “Formal verification of a railway interlocking system using
model checking,” Formal Aspects of Computing, vol. 10, no. 4, pp. 361–
380, 1998.

[2] A. Fantechi, “Distributing the challenge of model checking interlocking
control tables,” in International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation. Springer, 2012, pp.
276–289.

[3] A. E. Haxthausen, J. Peleska, and R. Pinger, “Applied bounded model
checking for interlocking system designs,” in International Conference
on Software Engineering and Formal Methods. Springer, 2013, pp.
205–220.

[4] A. Fantechi, W. Fokkink, and A. Morzenti, “Some trends in formal
methods applications to railway signaling,” Formal methods for indus-
trial critical systems: a survey of applications. IEEE Computer Society
Press, Washington, DC, vol. 6, p. 167183, 2013.

[5] S. Busard, Q. Cappart, C. Limbrée, C. Pecheur, and P. Schaus,
“Verification of railway interlocking systems,” in Proceedings 4th
International Workshop on Engineering Safety and Security Systems,
ESSS 2015, Oslo, Norway, June 22, 2015., 2015, pp. 19–31. [Online].
Available: http://dx.doi.org/10.4204/EPTCS.184.2

[6] K. Winter, W. Johnston, P. Robinson, P. Strooper, and L. Van Den Berg,
“Tool support for checking railway interlocking designs,” in Proceedings
of the 10th Australian workshop on Safety critical systems and software-
Volume 55. Australian Computer Society, Inc., 2006, pp. 101–107.

[7] C. Eisner, “Using symbolic model checking to verify the railway stations
of hoorn-kersenboogerd and heerhugowaard,” in Correct Hardware
Design and Verification Methods. Springer, 1999, pp. 99–109.

[8] M. Huber and S. King, “Towards an integrated model checker for
railway signalling data,” in FME 2002: Formal MethodsGetting IT Right.
Springer, 2002, pp. 204–223.

[9] K. Winter, “Optimising ordering strategies for symbolic model check-
ing of railway interlockings,” in Leveraging Applications of Formal
Methods, Verification and Validation. Applications and Case Studies.
Springer, 2012, pp. 246–260.

[10] Q. Cappart, C. Limbrée, P. Schaus, and A. Legay, “Verification by
discrete simulation of interlocking systems,” in 29th Annual European
Simulation and Modelling Conference 2015, ESM 2015, 2015, pp. 402–
409.

[11] N. Kamide, “Bounded linear-time temporal logic: A proof-theoretic
investigation,” Annals of Pure and Applied Logic, vol. 163, no. 4, pp.
439–466, 2012.

[12] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model checking:
An overview,” in Runtime Verification. Springer, 2010, pp. 122–135.

[13] B. Boyer, K. Corre, A. Legay, and S. Sedwards, “Plasma-lab: A
flexible, distributable statistical model checking library,” in Quantitative
Evaluation of Systems. Springer, 2013, pp. 160–164.

[14] A. Cribbens, “Solid-state interlocking (SSI): an integrated electronic
signalling system for mainline railways,” in IEE Proceedings B (Electric
Power Applications), vol. 134, no. 3. IET, 1987, pp. 148–158.

[15] A. Nash, D. Huerlimann, J. Schütte, and V. P. Krauss, “Railml - a
standard data interface for railroad applications,” Publication of: WIT
Press, 2004.

[16] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger, “An overview of
the scala programming language,” Tech. Rep., 2004.

[17] OscaR Team, “OscaR: Scala in OR,” 2012, available from
https://bitbucket.org/oscarlib/oscar.

[18] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations,” The Annals of Mathematical
Statistics, pp. 493–507, 1952.

[19] C. Jégourel, A. Legay, and S. Sedwards, “Importance splitting
for statistical model checking rare properties,” in Computer Aided
Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, 2013, pp. 576–591.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-39799-8 38

[20] C. Jegourel, A. Legay, and S. Sedwards, “An effective heuristic for adap-
tive importance splitting in statistical model checking,” in Leveraging
Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications. Springer, 2014, pp. 143–159.

