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Abstract

We consider translation-invariant splitting Gibbs measures (TISGMs) for the q-
state Potts model on a Cayley tree of order two. Recently a full description of the
TISGMs was obtained, and it was shown in particular that at sufficiently low temper-
atures their number is 2q − 1. In this paper for each TISGM µ we explicitly give the
set of boundary conditions such that limiting Gibbs measures with respect to these
boundary conditions coincide with µ.

Mathematics Subject Classifications (2010). 82B26; 60K35.
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1 Introduction.

The analysis of translational invariant splitting Gibbs measures of the q-state Potts model
on Cayley trees is based on the classification of translation-invariant boundary laws which
are in one-to-one correspondence with the TISGMs. Recall that boundary laws are length-
q vectors which satisfy a non-linear fixed-point equation (tree recursion).

It has been known for a long time that for the anti-ferromagnetic Potts model there
exists a unique TISGM [11] and for the ferromagnetic Potts model at sufficiently low
temperatures there are at least q + 1 translation-invariant Gibbs measures [4], [5].

One of the q + 1 well-known measures mentioned above is obtained as infinite-volume
limit of the finite-dimensional Gibbs measures with free boundary condition and each of the
remaining q measures is obtained as the corresponding limit with the boundary conditions
of homogeneous (constant) spin-configurations. While the q measures with homogeneous
boundary conditions are always extremal in the set of all Gibbs measures [4], [5], for the
free boundary condition measure there is a temperature, denoted by T0, which is below
the transition temperature, such that the measure is an extremal Gibbs measure if T ≥ T0

and loses its extremality for even lower temperatures [10, Theorem 5.6.].
Recently, in [7] all TISGMs for the Potts model were found on the Cayley tree of order

k ≥ 2, and it is shown that at sufficiently low temperatures their number is 2q − 1. We
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note that the number of TISGMs does not depend on k ≥ 2. In the case k = 2 the explicit
formulae for the critical temperatures and all TISGMs are given.

In [8] some regions for the temperature ensuring that a given TISGM is (non-)extreme
in the set of all Gibbs measures are found. In particular the existence of a temperature
interval is shown for which there are at least 2q−1 + q extremal TISGMs.

The fact that these measures can never be nontrivial convex combinations of each other
(i.e., they are extremal in the set of all TIGMs) is almost automatic (see [7, Theorem 2]).
However it is not clear what kind of boundary conditions are needed to get the remaining
2q − q − 2 TISGMs as corresponding limits with the boundary conditions. In this paper
we shall answer this question. It is non-trivial problem since the number of TISGMs (i.e.,
2q−1) is larger than the number (i.e., q) of translation-invariant configurations. Therefore
one expects to need non-translation-invariant boundary conditions for some TISGMs.
Concerning the Ising model, the dependence of TISGMs on boundary conditions has been
studied in [9].

The paper is organized as follows. Section 2 contains preliminaries (necessary defini-
tions and facts). In section 3 we will show how to connect boundary laws with boundary
conditions, moreover we shall give the list of known TISGMs. Section 4 contains our main
result, namely given any TISGM µ, we show how to compute explicitly a set of boundary
conditions such that the limiting Gibbs measures with respect to these boundary condi-
tions coincide with µ. In the last section we construct concrete boundary conditions.

2 Definitions

Let Γk = (V,L) be the regular Cayley tree, where each vertex has k+ 1 neighbors with V
being the set of vertices and L the set of edges.

Two vertices t, s ∈ V, (t 6= s) are called neighbors if they are connected by an edge. In
this case we write 〈s, t〉. Each vertex of Γk has k + 1 neighbors.

Fix an origin 0 of Γk. We write s→ t, if t 6= s and the path connecting 0 and t passes
through s. If s→ t and s, t are neighbors, then t is called a direct successor of s and this
we write as s→1 t.

For any finite A ⊂ V , the boundary ∂A of A is

∂A = {t ∈ V \A : ∃x ∈ A, 〈x, t〉}.

For every A ⊂ V , let ΩA = {1, 2, ..., q}A be the set of all possible spin configurations
on A. For brevity we write Ω instead of ΩV .

For every A ⊂ V we define the σ-algebra BA by

BA = theσ − algebra generated by {Xt, t ∈ A},

where Xt(σ) = σ(t) for all t ∈ A, σ ∈ Ω. For brevity we write B instead of BV .
Let A be a finite subset of V , ω ∈ Ω and σ ∈ ΩA. We define Potts interaction energy

on A given the inner configuration σ and the boundary condition ω by

EωA(σ) = −J
∑
t,s∈A:
〈t,s〉

δσ(t)σ(s) − J
∑

t∈A, s∈∂A:
〈t,s〉

δσ(t)ω(s), (2.1)

where J ∈ R and δ is the Kronecker’s delta.
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A finite Gibbs measure PωA on ΩA corresponding to EωA is defined by

PωA(σ) = [ZωA]−1 exp[−EωA(σ)], σ ∈ ΩA, (2.2)

where ZωA =
∑

σ̂∈ΩA
exp[−EωA(σ̂)]. As usual PωA can be considered as a probability measure

on (Ω,B).
For fixed J , if there is an increasing sequence of finite subsets {Vn} such that Vn ↗ V

as n → ∞ and Pω = w − limn→∞ P
ω
Vn

(the weak convergence of measures) exists for
suitable fixed ω ∈ Ω, then Pω is called a limiting Gibbs measure with boundary condition
ω for J . On the other hand, a Gibbs measure P for J is defined as a probability measure
on (Ω,B) such that for every M in BA

P (M |BAc)(ω) = PωA(M). a.s.(P ) (2.3)

It is known ( [6], [9]) that the set =(J) of all Gibbs measures for a fixed J is a non-
empty, compact convex set. A limiting Gibbs measure is a Gibbs measure for the same
J . Conversely, every extremal point of =(J) is a limiting Gibbs measure with a suitable
boundary condition for the same J . It is known (see page 241 of [6]) that any extreme
Gibbs measure of a Hamiltonian with nearest-neighbor interactions is a splitting Gibbs
measure (which is equivalently called a tree-indexed Markov chain [6]). Consequently, any
non-splitting Gibbs measure is not extreme. However, any splitting Gibbs measure (not
necessary extreme) is a limiting Gibbs measure, because it corresponds to a (generalized)1

boundary condition satisfying a compatibility (tree recursion) condition of Kolmogorov’s
theorem. In [1] it was shown that for non-extremal Gibbs measures on Zd a Gibbs measure
need not be a limiting Gibbs measure (see [1] and [2] for more details).

3 Translation-invariant limiting Gibbs measures

Let |t| denote the distance between 0 and t ∈ V , i.e. |t| = n if there exists a chain
0→1 u1 →1 u2 →1 u3 →1 ...→1 un−1 →1 t. We only consider the sequence of boxes

Vn = {t ∈ V : |t| ≤ n}, n ≥ 1.

For every s ∈ V we define

Γks = {s} ∪ {t ∈ V : s→ t}, and Vn,s = Γks ∩ Vn, n ≥ 1.

Elements of the set V1 \ {0} are the nearest neighbors of the origin 0, since this set
contains k+1 elements, we number them by 1, 2, . . . , k+1. We note that the subtrees Vn,i,
i = 1, 2, . . . , k + 1 are similar to each other, i.e., for any i, j ∈ {1, . . . , k + 1} the subtree
Vn,i can be obtained from the Vn,j by a rotation around 0. Moreover we have

Vn = {0} ∪
k+1⋃
i=1

Vn,i, and Vn,i = {i} ∪
⋃

j:i→1j

Vn−1,j . (3.1)

Using (3.1), from (2.1) we get

EωVn(σ) =

k+1∑
i=1

(
EωVn,i

(σ)− Jδσ(0)σ(i)

)
. (3.2)

1Adding a boundary field at each site of the boundary is called a generalized boundary condition [3] or
boundary law [6]
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For every ω ∈ Ω, s ∈ V \ {0} and n ≥ |s| define

Wω
n,s(l) =

∑
σ∈ΩVn,s :σ(s)=l

exp[−EωVn,s
(σ)− Jδlω(t)], l = 1, 2, ..., q, (3.3)

Rln,s(ω) =
Wω
n,s(l)

Wω
n,s(q)

, l = 1, 2, ..., q, (3.4)

here t is the unique vertex such that t→1 s.
Now by (2.2) and (3.2)-(3.4) we get

PωVn(σ(0) = l)

PωVn(σ(0) = q)
=

∑
σ:σ(0)=l exp

(
−EωVn(σ)

)∑
σ:σ(0)=q exp

(
−EωVn(σ)

)
=

k+1∏
i=1

(exp(J)− 1)Rln,i(ω) +
∑q−1

p=1R
p
n,i(ω) + 1

exp(J) +
∑q−1

p=1R
p
n,i(ω)

, l = 1, 2, ..., q, (3.5)

By (3.1) and (3.3) we obtain

Wω
n,s(l) =

∏
u:s→1u

[(exp(J)− 1)Wω
n,u(l) +

q∑
p=1

Wω
n,u(p)], l = 1, 2, ..., q, (3.6)

and for n > m, η ∈ ΩVm , we get

PωVn({σ(s) = η(s), s ∈ Vm}) =
exp[−EηVm−1

(η)]
∏
s∈∂Vm−1

Wω
n,s(η(s))∑

ξ∈ΩVm
exp[−EξVm−1

(ξ)]
∏
s∈∂Vm−1

Wω
n,s(ξ(s))

. (3.7)

From the above equalities we obtain the following

Lemma 1. Let ω ∈ Ω be given. If there is N > 0 such that Rln,s(ω) converges as n→∞
for every s ∈ V \ VN and for every l = 1, ..., q, then Pω = w− limn→∞ P

ω
Vn

exists.

For n ≥ 1, p = 1, 2, ...q, i = 1, ..., k + 1 we denote

An = {t ∈ V : |t| = n}, N
(p)
n,i(σ) = |{x ∈ An ∩ Vn,i : σ(x) = p}|.

Lemma 2. Let l = 1, . . . , q and ω be a configuration such that2

cl(ω) =
∑
s:t→1s

δlω(s)

is independent of t ∈ V \ {0}. Then Rln,i(ω) = Rln,j(ω) for any i, j = 1, 2, ..., k + 1.

Proof. Since Rln,i(ω) =
Wω

n,i(l)

Wω
n,i(q)

, it suffices to prove that Wω
n,i(l) = Wω

n,j(l) for any i, j =

1, 2, ..., k + 1.
For the Hamiltonian we have

EωVn,i
(σ) = EσVn−1,i

(σ)− J
∑

x∈An∩Vn,i

∑
x→1y

δσ(x)ω(y). (3.8)

2The sum in the RHS of cl(ω) is taken over all direct successors of t, it should not be confused with the
sum over all neighbors of t, i.e.,

∑
s:〈t,s〉.
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By the condition of lemma 2 we obtain

EωVn,i
(σ) = EσVn−1,i

(σ)− J
∑

x∈An∩Vn,i

cσ(x)(ω) = EσVn−1,i
(σ)− J

q∑
p=1

N
(p)
n,i(σ)cp(ω).

For Wω
n,i(l) we have

Wω
n,i(l) =

∑
σ∈Vn,i:σ(i)=l

exp[EσVn−1,i
(σ)− J

q∑
p=1

N
(p)
n,i(σ)cp(ω)− Jδlω(t)].

Since Vn,i is similar to Vn,j , for any i, j ∈ {1, . . . , k + 1}, n ≥ 1, there is an one-to-one
correspondence γ between sets ΩVn,i and ΩVn,j , which can be obtained by a rotation of the
Vn,i on the set Vn,j . We note that the Potts interaction energy (2.1) is translation-invariant
and by the condition of the lemma the quantity cl(ω) also does not depend on vertices of
the tree. Therefore, if γ(σ) = ϕ then

EσVn−1,i
(σ) = E

γ(σ)
Vn−1,j

(γ(σ)) = EϕVn−1,j
(ϕ),

N
(p)
n,i(σ) = N

(p)
n,j(ϕ), ∀i, j = 1, . . . , k + 1, p = 1, . . . , q.

Using these equalities we get

Wω
n,i(l) =

∑
σ∈ΩVn,i

:σ(i)=l

exp[EσVn−1,i
(σ)− J

q∑
p=1

N
(p)
n,i(σ)cp(ω)− Jδlω(t)] =

∑
ϕ∈ΩVn,j

:ϕ(j)=l

exp[EϕVn−1,j
(ϕ)− J

q∑
p=1

N
(p)
n,j(ϕ)cp(ω)− Jδlω(t)] = Wω

n,j(l).

Thus Rln,i(ω) = Rln,j(ω) for any i, j = 1, 2, ..., k + 1.

From the above proof it follows that Rln,s(ω) depends only on n− |s|, i.e., we have

Rln,s(ω) = Rln−|s|+1(ω), l = 1, 2, ...q. (3.9)

Then from (3.6) we get the following

Y l
n(ω) = kFl(Y

1
n−1(ω), Y 2

n−1(ω), ..., Y q−1
n−1 (ω)), (3.10)

where l = 1, ..., q − 1, n ≥ 2, Y l
n(ω) = lnRln(ω) and F = (F1, ..., Fq−1) with coordinates

Fl(x
1, x2, ..., xq−1) = ln

(exp (J)− 1) exp (xl) +
∑q−1

p=1 exp (xp) + 1

exp (J) +
∑q−1

p=1 exp (xp)
. (3.11)

It is clear that if Y i(ω) is a limit point of Y i
n(ω), as n→∞ then by (3.10) we get

Y l(ω) = kFl(Y
1(ω), Y 2(ω), ..., Y q−1(ω)), l = 1, 2, .., q − 1. (3.12)

For convenience we denote

θ = exp(J), hl = Y l(ω), l = 1, 2, ...q − 1.
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Then the system (3.12) becomes

hi = k ln

(
(θ − 1)ehi +

∑q−1
j=1 e

hj + 1

θ +
∑q−1

j=1 e
hj

)
, i = 1, . . . , q − 1. (3.13)

In [7] it is proven that to each solution of (3.13) corresponds a unique Gibbs measure
which is called a translation-invariant splitting Gibbs measure (TISGM).

In [7] all solutions of the equation (3.13) are given. By these solutions the full set
of TISGMs is described. In particular, it is shown that any TISGM of the Potts model
corresponds to a solution of the following equation

h = fm(h) ≡ k ln

(
(θ +m− 1)eh + q −m
meh + q −m− 1 + θ

)
, (3.14)

for some m = 1, . . . , q − 1.
Denote

θm = 1 + 2
√
m(q −m), m = 1, . . . , q − 1. (3.15)

It is easy to see that

θm = θq−m and θ1 < θ2 < · · · < θb q
2
c−1 < θb q

2
c ≤ q + 1. (3.16)

Proposition 1. [7] Let k = 2, J > 0.

1. If θ < θ1 then there exists a unique TISGM;

2. If θm < θ < θm+1 for some m = 1, . . . , b q2c−1 then there are 1+2
∑m

s=1

(
q
s

)
TISGMs

which correspond to the solutions hi ≡ hi(θ, s) = 2 ln[xi(s, θ)], i = 1, 2 s = 1, . . . ,m
of (3.14), where

x1(s, θ) =
θ−1−
√

(θ−1)2−4s(q−s)
2s ,

x2(s, θ) =
θ−1+
√

(θ−1)2−4s(q−s)
2s .

(3.17)

3. If θb q
2
c < θ 6= q + 1 then there are 2q − 1 TISGMs;

4 If θ = q + 1 the number of TISGMs is as follows{
2q−1, if q is odd

2q−1 −
(q−1
q/2

)
, if q is even;

5. If θ = θm, m = 1, . . . , b q2c, (θb q
2
c 6= q + 1) then the number of TISGMs is

1 +

(
q

m

)
+ 2

m−1∑
s=1

(
q

s

)
.

The number of TISGMs does not depend on k ≥ 2 see [7, Theorem 1]. But for k ≥ 3
explicit formulas for the solutions are not known. Therefore in this paper we consider only
the case k = 2.

Following [7] we note that each TISGM corresponds to a solution of (3.14) with some
m ≤ b q2c. Moreover, for a given m ≤ b q2c, a fixed solution hi(θ,m) to (3.14) generates

(
q
m

)
6



vectors by permuting coordinates of the vector (hi, hi, . . . , hi︸ ︷︷ ︸
m

, 0, 0, . . . , 0︸ ︷︷ ︸
q−m

) and giving
(
q
m

)
TISGMs. Thus without loss of generality we can only consider the measure µi(θ,m) corre-
sponding to vector h(m, i) = (hi, hi, . . . , hi︸ ︷︷ ︸

m

, 0, 0, . . . , 0︸ ︷︷ ︸
q−m−1

), i.e., normalized on qth coordinate

(see Remark 2 and Corollary 2 of [7]). Denote by µ0 ≡ µ0(θ) the TISGM corresponding to
solution hi ≡ 0 and by µi ≡ µi(θ,m) the TISGM corresponding to the solution hi(θ,m),
i = 1, 2, m = 1, . . . , b q2c (given in Proposition 1). In this paper our aim is to obtain
measures µi by changing boundary conditions.

4 Boundary conditions for TISGMs

The following lemma can be proved by simple analysis.

Lemma 3. i. For k ≥ 2 and θ > 1 the function fm(h), h ∈ R defined in (3.14) has
the following properties:

a) {h : fm(h) = h} = {0, h1, h2}, if θ > θm,m ≤ [q/2];

b) a < fm(h) < A, with a = k ln q−m
q+θ−m−1 , A = k ln θ+m−1

m ;

c) d
dhfm(h) = k(θ−1)(θ+q−1)eh

(meh+θ+q−m−1)((θ+m−1)eh+q−m)
> 0;

ii. If k = 2 and m ≤ q/2 then for solutions h1 and h2 mentioned in Proposition 1 the
following statements hold

0 < h1 = h2, if θ = θm

0 < h1 < h2, if θm < θ < θc, with θc = q + 1

0 = h1 < h2, if θ = q + 1

h1 < 0 < h2, if q + 1 < θ.

For each solution hi(θ,m) we want to find ω = ω(hi) ∈ Ω, such that µi(θ,m) = Pω,
where Pω is defined in Lemma 1.

Consider the dynamical system (3.10) for k = 2. Denote G(h) = 2F (h). For a given

initial vector v(0) = (v
(0)
1 , . . . , v

(0)
q−1), we shall study the limit

lim
n→∞

G(n)(v(0)), (4.1)

here G(n)(v) = G(G(...G(v))...)︸ ︷︷ ︸
n

.

Figures 1-4 show the streamlines of the vector field G(n)(v) for k = 2, q = 3. These
figures also illustrate the limit points of (4.1).
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Denote
Im = {v ∈ Rq−1 : v1 = · · · = vm, vm+1 = · · · = vq−1 = 0}.

It is easy to see that the set Im is invariant with respect to G, i.e. G(Im) ⊂ Im.
The following lemma gives the limits of (4.1) on the invariant Im (compare with Fig.1-

4).

Lemma 4. 1) If θ = θm, for some m = 1, . . . , b q2c then

lim
n→∞

G(n)(v(0)) =

 h(m, 1), if v(0) ∈ Im and v
(0)
1 ≥ h1

(0, . . . , 0), if v(0) ∈ Im and v
(0)
1 < h1

(4.2)

2) If θm < θ < θc = q + 1 then

lim
n→∞

G(n)(v(0)) =


h(m, 2), if v(0) ∈ Im and v

(0)
1 > h1

h(m, 1), if v(0) ∈ Im and v
(0)
1 = h1

(0, . . . , 0), if v(0) ∈ Im and v
(0)
1 < h1

(4.3)

3) If θ = θc then

lim
n→∞

G(n)(v(0)) =

 h(m, 2), if v(0) ∈ Im and v
(0)
1 > 0

(0, . . . , 0), if v(0) ∈ Im and v
(0)
1 ≤ 0

(4.4)

4) If θ > θc then

lim
n→∞

G(n)(v(0)) =


h(m, 2), if v(0) ∈ Im and v

(0)
1 > 0

h(m, 1), if v(0) ∈ Im and v
(0)
1 < 0

(0, . . . , 0), if v(0) ∈ Im and v
(0)
1 = 0

(4.5)

Proof. Restrict function G(h) to Im, then we get the jth coordinate of G(h) (for any
j = 1, . . . ,m) is equal to fm(h) which is introduced in (3.14). Other coordinates of G(h)
are equal to 0. By Lemma 3 we have that fm is an increasing function. Here we consider
the case when the function fm has three fixed points 0, h1, h2. This proof is more simple for
cases when fm has two fixed points. We prove the part 2), other parts are similar. In case
2), by Lemma 3 we have that 0 < h1 < h2 and the point h1 is a repeller, i.e., f ′m(h1) > 1
and the points 0, h2 are attractive, i.e., f ′m(0) < 1, f ′m(h2) < 1. Now we shall take arbitrary
x0 > 0 and prove that xn = fm(xn−1), n ≥ 1 converges as n→∞. Consider the following
partition (−∞,+∞) = (−∞, 0) ∪ {0} ∪ (0, h1) ∪ {h1} ∪ (h1, h2) ∪ {h2} ∪ (h2,+∞). For
any x ∈ (−∞, 0) we have x < fm(x) < 0, since fm is an increasing function, from the
last inequalities we get x < fm(x) < f2

m(x) < fm(0) = 0. Iterating this argument we
obtain fn−1

m (x) < fnm(x) < 0, which for any x0 ∈ (−∞, 0) gives xn−1 < xn < 0, i.e., xn
converges and its limit is a fixed point of fm, since fm has unique fixed point 0 in (−∞, 0]
we conclude that the limit is 0. For x ∈ (0, h1) we have h1 > x > f(x) > 0, consequently
xn > xn+1, i.e., xn converges and its limit is again 0. Similarly, one can show that if
x0 > h1 then xn → h2 as n→∞.
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By (3.10) the asymptotic behavior of the vector Yn(ω) = (Y 1
n (ω), . . . , Y q−1

n (ω)) depends
only on the vector Y1(ω), where

Y l
1 (ω) = J

(
cl(ω)− cq(ω)

)
, l = 1, . . . , q − 1. (4.6)

For a given m ∈ {1, . . . , b q2c} and J > 0 we introduce the following sets of configura-
tions:

Bm = {ω ∈ Ω : c1(ω) = · · · = cm(ω), cm+1(ω) = · · · = cq−1(ω) = cq(ω)},

B+
m,0 = {ω ∈ Bm : c1(ω) > cq(ω)},

B0
m,0 = {ω ∈ Bm : c1(ω) = cq(ω)},

B−m,0 = {ω ∈ Bm : c1(ω) < cq(ω)},

B+
m,1 = {ω ∈ Bm : J

(
c1(ω)− cq(ω)

)
> h1},

B0
m,1 = {ω ∈ Bm : J

(
c1(ω)− cq(ω)

)
= h1},

B−m,1 = {ω ∈ Bm : J
(
c1(ω)− cq(ω)

)
< h1}.

Now taking the coordinates of an initial vector as in (4.6) by Lemma 1 and Lemma 4
we get the following

Theorem 1. 1) If θ = θm, for some m = 1, . . . , b q2c then

Pω =

{
µ1(θ,m), if ω ∈ B+

m,1 ∪ B0
m,1

µ0(θ), if ω ∈ B−m,1
(4.7)

2) If θm < θ < θc = q + 1 then

Pω =


µ2(θ,m), if ω ∈ B+

m,1

µ1(θ,m), if ω ∈ B0
m,1

µ0(θ), if ω ∈ B−m,1

(4.8)

3) If θ = θc then

Pω =

{
µ2(θ,m), if ω ∈ B+

m,0

µ0(θ), if ω ∈ B−m,0 ∪ B0
m,0

(4.9)

4) If θ > θc then

Pω =


µ2(θ,m), if ω ∈ B+

m,0

µ1(θ,m), if ω ∈ B−m,0
µ0(θ), if ω ∈ B0

m,0

. (4.10)

In the next section we use Theorem 1 to construct some concrete boundary conditions.
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5 Construction of boundary conditions

In this section for k = 2, J > 0, q ≥ 3 and m ∈ {1, . . . , b q2c} we shall give examples of
boundary configurations.

For k = 2 by Proposition 1 there are up to 2q − 1 TISGMs . We shall consider only
µ0(θ) corresponding to h = (0, 0, . . . , 0) and µi(θ,m) corresponding to vector h(m, i) =
(hi, hi, . . . , hi︸ ︷︷ ︸

m

, 0, 0, . . . , 0︸ ︷︷ ︸
q−m−1

), i = 1, 2 with

h1 = 2 ln
θ−1−
√

(θ−1)2−4m(q−m)

2m ,

h2 = 2 ln
θ−1+
√

(θ−1)2−4m(q−m)

2m .

(5.1)

Using Theorem 1 we shall give some boundary conditions for each measure µi. Boundary
conditions for the remaining measures can be obtained by using the permutation symmetry
of the Potts model.

Case µ0. If θ < θ1 then µ0 is a unique measure, and one can take any boundary
configuration ω to have Pω = µ0. But for θ ≥ θ1 one has to check the conditions of
Theorem 1 to have the limiting measure equal to µ0.

For example, if θ = θm < q+1 for some m ∈ {1, . . . , b q2c} then we must take ω ∈ B−m,1,
i.e.

J(c1(ω)− cq(ω)) < h1, c1(ω) = · · · = cm(ω), cm+1(ω) = · · · = cq(ω). (5.2)

Remark 1. For a given TISGM to find its boundary condition one has to construct
configurations ω which satisfy the system (like (5.2)) derived by corresponding sufficient
conditions of Theorem 1. Below we give several examples of such configurations. It will
be clear from our examples that some TISGM may have an infinite set of boundary con-
figurations3.

Since h1 > 0 (see Lemma 3), the system (5.2) is satisfied, for example, if ω satisfies
one of the following

• ci(ω) = 0, i = 1, 2, . . . ,m, i.e., if ω(x) = i, then on direct successors x1, x2 of x
one has ω(x1) 6= i, ω(x2) 6= i; and cj(ω) = 1 for each j = m + 1, . . . , q, i.e., if
ω(x) = j then one has ω(x1) = j but ω(x2) 6= j. See Fig.5 for an example of such a
configuration for q = 5 and m = 2.

• ci(ω) = 1, i = 1, 2, . . . ,m, i.e., if ω(x) = i then ω(x1) = i but ω(x2) 6= i and it
contains j ∈ {m+ 1, . . . , q} in such a way that if ω(x) = j then on direct successors
x1, x2 of x one has ω(x1) = ω(x2) = j. In this case ci(ω) = 2 for each i = m+1, . . . , q.
See Fig.6 for an example of such a configuration for q = 15 and m = 3.

Case µ1. This measure exists for θ ≥ θm.
Subcase θ = θm. By Theorem 1 for µ1 we have the condition ω ∈ B+

m,1 ∪ B0
m,1, i.e.

J(c1(ω)− cq(ω)) ≥ h1, c1(ω) = · · · = cm(ω), cm+1(ω) = · · · = cq(ω). (5.3)

Note that J = ln θ. Assume ln θm ≥ h1 = 2 ln θm−1
2m which is equivalent to the following

2m
√
m2 + 1(

√
m2 + 1−m) ≤ q ≤ 2m

√
m2 + 1(

√
m2 + 1 +m). (5.4)

3This remark and some examples below are added corresponding to a suggestion of a reviewer.
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Under condition (5.4) the system (5.3) is satisfied for example, if m ≥ 1 and ω is such that
ci(ω) = 1, i = 1, . . . ,m and cj(ω) = 0, i = m+ 1, . . . , q. See Fig.7 for an example of such
a configuration for q = 5 and m = 2 and Fig.8 for configuration in case q = 10, m = 4.

Subcase θm < θ < q + 1. From Theorem 1 for µ1 we have the condition

J(c1(ω)− cq(ω)) = h1, c1(ω) = · · · = cm(ω), cm+1(ω) = · · · = cq(ω). (5.5)

Assume θ is a solution to the equation ln θ = h1. Computer analysis shows that this
equation has a solution if for example q = 17, m = 1 or q = 55, m = 2. So assuming
existence of such a solution θ = θ∗ one can take a boundary condition configuration as in
the previous case (like in Fig.7)

Subcase θ = q + 1. In this case we have µ1 = µ0. Therefore the boundary condition
can be taken as in Case µ0.

Subcase θ > q + 1. For µ1 we should have

c1(ω)− cq(ω) < 0, c1(ω) = · · · = cm(ω), cm+1(ω) = · · · = cq(ω). (5.6)

we can take a configuration ω such that ci(ω) = 0, i = 1, . . . ,m and cj(ω) = 1, j =
m+ 1, . . . , q. (See Fig.5 for such a configuration).

Remark 2. From above examples one can see that depending on the temperature (equiv-
alently depending on the parameter θ) a configuration may be the boundary condition for
different TISGMs. For example, the configuration given in Fig.5 is a boundary condition
for TISGM µ0 if θ = θ2 < q + 1, but the same configuration is the boundary condition for
TISGM µ1 if θ > q + 1.

Case µ2. Check the conditions of Theorem 1:
Subcase θ = θm. In this case we have µ2 = µ1, i.e. the boundary condition is con-

structed in the previous case.
Subcase θm < θ < q + 1. From Theorem 1 for µ2 we have the condition

J(c1(ω)− cq(ω)) > h1, c1(ω) = · · · = cm(ω), cm+1(ω) = · · · = cq(ω). (5.7)

If ln θ > h1 then it is easy to see that ω satisfies the condition (5.7) if m ≥ 1 and ω is such
that ci(ω) = 1, i ∈ {1, . . . ,m} and cj(ω) = 0, i ∈ {m+ 1, . . . , q} (like in Fig.7)

Subcase θ ≥ q + 1. For µ2 we should have

c1(ω)− cq(ω) > 0, c1(ω) = · · · = cm(ω), cm+1(ω) = · · · = cq(ω). (5.8)

Condition (5.8) is easily checkable. For example, configurations shown in Fig. 7 and Fig.8
satisfy this condition.
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Figure 1: Here and in Figures 2-4 the streamlines of the vector field G(n)(v) for k = 2,
q = 3 are shown. These figures also illustrate the limit points of (4.1). The plane is
formed by a horizontal v1-axis, and a vertical v2-axis. This figure applies for the case
θ = θ1 = 1 + 2

√
2. Four fixed points. The origin is an attractor. There are 3 saddle fixed

points.
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Figure 2: θ = 3.9 > θ1. Seven fixed points. Four of them (black dots) are attractors.
Three (rectangular dots) points are saddles coming from the saddle points of Fig.1.
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Figure 3: θ = 4. Four fixed points. The origin is a repeller point. Other fixed points are
attractors.
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Figure 4: θ = 4.5. Seven fixed points. The origin is a repeller, other rectangular dots are
saddles. The black dots are attractors.
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Figure 5: An example of a boundary condition for the TISGM µ0, q = 5, m = 2. Here
c1(ω) = c2(ω) = 0, c3(ω) = c4(ω) = c5(ω) = 1. Note that the values 1, 2 occur sufficiently
often keeping the conditions c1(ω) = c2(ω) = 0.
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Figure 6: An example of a boundary condition for the TISGM µ0, for q = 15, m = 3.
Here we have ci(ω) = 1, i = 1, 2, 3 and cj(ω) = 2, j = 4, 5, . . . , 15.

.
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Figure 7: An example of a boundary condition for the TISGM µ1, q = 5, m = 2. Here we
have c1(ω) = c2(ω) = 1, c3(ω) = c4(ω) = c5(ω) = 0.
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Figure 8: An example of a boundary condition for the TISGM µ1, q = 10, m = 4. Here
we have ci(ω) = 1, i = 1, 2, 3, 4; cj(ω) = 0, j = 5, . . . , 10.
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