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Abstract 

Quantifying the similarity between two networks is critical in many applications. A number of 

algorithms have been proposed to compute graph similarity, mainly based on the properties of nodes 

and edges. Interestingly, most of these algorithms ignore the physical location of the nodes, which is a 

key factor in the context of brain networks involving spatially defined functional areas. In this paper, 

we present a novel algorithm called “SimiNet” for measuring similarity between two graphs whose 

nodes are defined a priori within a 3D coordinate system. SimiNet provides a quantified index (ranging 

from 0 to 1) that accounts for node, edge and spatiality features. Complex graphs were simulated to 

evaluate the performance of SimiNet that is compared with eight state-of-art methods. Results show 

that SimiNet is able to detect weak spatial variations in compared graphs in addition to computing 

similarity using both nodes and edges. SimiNet was also applied to real brain networks obtained during 

a visual recognition task. The algorithm shows high performance to detect spatial variation of brain 

networks obtained during a naming task of two categories of visual stimuli: animals and tools. A 

perspective to this work is a better understanding of object categorization in the human brain. 

Index Terms— Graph similarity, brain networks, spatial information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 

The brain is a large-scale network in which distant interconnected neural assemblies continuously synchronize 

and desynchronize to process information. Over the past decade, considerable progress has been achieved in neu-

roimaging techniques that are now able to identify brain networks from structural and/or functional data. In most 

cases, these networks are represented as graphs in which the nodes denote brain areas and the edges describe the 

connectivity among these areas (Bullmore and Sporns, 2009). This graph representation allows for application of 

graph theory algorithms in order to assess statistical and/or topological properties of networks reconstructed from 

data. From a theoretical viewpoint, the application of these algorithms on functional, as well as on structural 

connectivity matrices, has revealed many properties about brain networks, such as small-worldness (Achard et 

al., 2006; Bassett and Bullmore, 2006), modularity (Bassett et al., 2011; Meunier et al., 2010), hubs (Hagmann et 

al., 2008), and rich-club configurations (van den Heuvel and Sporns, 2011). From an application viewpoint, 

graph theory based analysis has been widely used to characterize normal (Bressler and Menon, 2010) and patho-

logical (Fornito et al., 2015) brain activities from several modalities (fMRI, EEG, MEG). In particular, it has led 

to the identification of network alterations in aging (Gong et al., 2009), Alzheimer’s disease (Stam et al., 2007), 

schizophrenia (Liu et al., 2008) and autism(Guye et al., 2010). 

In contrast with the large number of methods aiming at characterizing graph properties (Costa et al., 2007), less 

attention has been paid to methods able to quantitatively compare graphs and extract similarities while taking 

into account the spatial location of the graph nodes. Reported methods make use of graph kernels (Borgwardt 

and Kriegel, 2005; Shervashidze et al., 2011; Vishwanathan et al., 2010), graphs and subgraphs isomorphism 

(Cordella et al., 2004), graph edit distance (Gao et al., 2010) and Levenshtein distance (Cao et al., 2013) in order 

to measure graph similarity. However, in the context of brain networks, the spatial location of nodes is a key fac-

tor for the graph comparison (Pineda-Pardo et al., 2014). The intuitive idea is that two networks with strictly 

identical statistical properties but interconnecting different brain areas should be considered to have low similari-

ty. Conversely, two graphs with partly dissimilar properties but interconnecting the same brain regions should be 

considered as exhibiting high similarity. 



 

 In this paper, we propose a new algorithm to solve this issue. This algorithm is able to measure the similarity 

between two graphs based on the node and edge properties but under a spatial constraint related to the physical 

location of nodes. To our knowledge, this approach has never been followed in the problem of measuring a for-

mal distance between brain networks. The performance of the proposed algorithm was evaluated using simulated 

graphs as well as real brain networks estimated from dense-electroencephalographic (EEG) signals during a pic-

ture naming task involving two categories of stimuli: tools and animals. The paper is organized as follows. Sec-

tion II.A provides the notations and definitions. The problem statement is then introduced in section II.B fol-

lowed by the description, in section II.C, of the proposed method for measuring graphs similarity. A comparative 

study is then achieved with respect to already-published methods briefly presented in section II.D. Results ob-

tained on simulated networks as well as on real networks are given in section III. Finally, these results are dis-

cussed according to the performance and potential applications of the proposed algorithm in the context of brain 

connectivity research. 

Materiels and Methods 

A. Notations and definitions 

A graph G is denoted by ( , )G V E where V  denotes the set of nodes (with known Cartesian coordinates) and V

is the order of the graph (number of nodes).  E V V  defines the edges and E  is the number of edges in G . We 

denote by 
1 2,

G

v vW the weight of the edge between nodes 1v and 2v . The graph is said to be simple if there is no edge 

linking a node with itself, and it is said to be undirected if the adjacency matrix is symmetric. We denote by 

1 2( , )sim G G  the similarity measure between two graphs 1G and 2G . All graphs considered in this work are assumed 

to be simple, undirected, weighted graphs. Defined quantities and notations are listed in Table 1. 

B. Problem statement 

Let us define two graphs 1 1 1( , )G V E  and 2 2 2( , )G V E . The nodes of 1G  and 2G  are distributed onto a square grid of 

side length T . Cells in the grid are indexed from 1 to 2T  line by line starting from the first line. We suppose that 

each grid cell contains at most one node with Cartesian coordinates ( ,x y ). Consequently, we index nodes using 



 

the corresponding grid cell index: (( 1) )   v v vK x y T  where  1,vx T  and  1,vy T . The problem is two-fold: i) 

to elaborate a distance 1 2( , )d G G that accounts for the positions of nodes respectively in 1G  and 2G  as well as for 

statistical properties (number of nodes, number and weights of edges, density). ii) To devise a normalized index 

 1 2( , ) 0,1sim G G  that globally reflects the similarity of compared graphs 1G  and 2G , the similarity index to be 

elaborated should take values in  0,1 . 

 

Lowest values denote highly different graphs whereas values close to 1 denote almost identical graphs, in terms 

of statistical and spatial properties (position of nodes). 

C. Proposed method 

In order to solve the above stated problem, we propose a new algorithm called SimiNet (described in Fig.1) 

which calculates a distance between 1G  and 2G  (Fig. 1A). This distance is based on i) the cost of a sequence of 

cost-based changes (substitution, insertion, deletion) on nodes that are necessary to map 1G  onto 2G  and ii) the 

computation of the difference of edge weights between 1G  and 2G . 

 The proposed algorithm includes four main steps, as illustrated in Fig. 1, B-E: 

Step 1: Node substitution 

To start with, the nodes common to 1G  and 2G that have the same spatial location are detected (these nodes have 

the same index value vK  in 1G  and 2G ). In the example of Fig. 1B-i, we observe three nodes of 1G  having the 

same spatial position as three nodes of 2G . For the remaining nodes, we define a spatial neighborhood   (disk 

with radius R =1.5 as depicted in Fig. 1B-ii). The idea is to shift a neighbor node 1
v  included in 1

V  to the spatial 

position of 2
v  included in 2

V  if 1
v is located in   (the defined spatial neighborhood of 2

v ). In the case where 

there are  >1 nodes of graph 1G  located in , the nearest node to 2
v

 
is shifted. The cost of shifting is equal to the 

Euclidian distance between the two shifted nodes ( 1
v  and 2

v ). The node distance ( ND ) is updated by the Euclidi-

an distance between 1
v and 2

v  (e.g. ND  = 1 in Fig. 1B-ii). 



 

Step 2: Node Insertion 

In step 2, the insertion operation is used to add a new node in 1G  at the same position of node 2
v in the case where 

no node exists in the defined spatial neighborhood   for each node 2
v

 
of 2

V . The cost of insertion must be higher 

than the cost of substitution. In the example of Fig. 1C, the cost of insertion was chosen equal to disk with radius 

R =1.5. In this case, the node distance ( ND ) is updated to 1+1.5=2.5 

Step 3: Node deletion 

At the end of step 2, all the nodes that are included in 2G are also included in 1G  (Fig. 1D). In step 3, the remain-

ing nodes of 1G  are then deleted. The cost of deletion for one node is equal to the insertion cost. The node dis-

tance between 1G  and 2G  is updated accordingly, as exemplified in Fig. 1D where ND =2.5 + 3 = 5.5 since two 

nodes are deleted. At this stage, 1G  and 2G have the same number of nodes located at the same positions on the 

grid. 

Step 4: Edge distance 

In step 4, the edge distance ( ED ) for 1G  and 2G at the initial state is computed from the difference of edge 

weights between 1G  and 2G , using (1): 

         1 2 1 2

1 2 1 21 2 1 2, , , ,
( , )  p p p pk k k k

G G G G

v v v v v v v v
diff W W W W                     (1) 

In a binary graph, the 1 2

1 21 2, ,
( , )p pk k

G G

v v v v
diff W W  score  0,1  where 1 means that the edge linking 1

pv and 1

kv  does exist in 1G   

but does not exist in 2G  for the corresponding nodes 2

pv   and 2

kv . Conversely, a difference equal to 0 means that 

this edge exists in both graphs. The total ED  is then calculated using (2): 

 

          1 2

1 21 2

1

, ,1 1
( , )



  
  p pk k

T T G G

v v v vk p k
ED diff W W               (2) 

Finally, the distance between 1G  and 2G  is calculated by summing up the node distance ( ND from step 3) and the 

edge distance ( ED  from step 4) 

 

                         
1 2

( , )d G G ND ED                          (3) 



 

In the example of Fig. 1, the edge distance ( ED ) is equal to 9. The distance d between 1G  and 2G  is calculated by 

the equation 3:   
1 2

( , )d G G ND ED=5.5+9=14.5. 

Finally, the distance 1 2( , )d G G  is scaled to a similarity index 1 2( , )SimiNetsim G G  via the formula (1/ (1 ))
SimiNet

sim d  . As 

depicted, the proposed similarity index  0,1  where 0 means that 1G  and 2G  are totally dissimilar, while 1 means 

that 1G  and 2G are identical. 

The pseudo-code of this algorithm is provided in Fig. 2. 

D. Other reported algorithms 

In section 2.5, SimiNet is compared with eight state-of-art methods able to measure similarity between graphs. 

These eight methods are briefly described hereafter. 

Graph edit distance (GED) (Bunke et al., 2007) 

This distance is based on the transformation of one graph to the other using elementary operations. The elemen-

tary operations consist in suppressions and insertions of nodes. 

             
1 2 1 2 1 2

1 2 1 2

( , ) | | | | 2 | |

| | | | 2 | |

    

  

GEDd G G V V V V

E E E E
 

This distance is normalized between 1 and 0 via the formula 1 2 1 2
( , ) (1/ (1 ( , ))) 

GED GED
sim G G d G G . 

DeltaCon method (Koutra et al., 2013) 

This algorithm assesses the similarity between two graphs on the same nodes. The concept of this method is to 

compute the pairwise node affinities in the first graph and to compare them with the ones in the second graph. 

Then, it measures the differences of nodes affinity scores of the two graphs and reports the similarity score. 

Readers may refer to (Koutra et al., 2013) for details about the DeltaCon algorithm main steps and implementa-

tion. This algorithm also provides a normalized similarity index 1 2
( , )

DeltaCon
sim G G  ranging from 0 (dissimilar 

graphs) to 1 (identical graphs). 

 

 

 



 

Vertex/Edge Overlap method (VEO) (Papadimitriou et al., 2010). 

The principle of this method is that two graphs are similar if they share many vertices (i.e. nodes) and edges. 

Thus, the similarity between two graphs 1 1 1( , )G V E  and 2 2 2( , )G V E  is defined as: 

         1 2 1 2

1 2

1 2 1 2

| | | |
( , )

| | | | | | | |

  


  
VEO

V V E E
sim G G

V V E E
 

This measure of similarity is computed by scanning all nodes of 1G  and by checking if each occurs in 2V , the set 

of nodes of 2G . 

λ-distance method (Lambda distance) (Wilson and Zhu, 2008) 

Let 1| |

1 1( ) 

V

l l  and 2| |

2 1( ) 

V

l l  be the eigenvalues of two adjacency matrices respectively associated with two graphs 1G  

and 2G . The λ-distance is given by: 

                  2

1 2 1 21
( , ) ( )


 

L

l ll
d G G    

where L  is 1 2max(| |,| |)V V . For the sake of comparison, this distance is also normalized between 1 and 0 via the 

formula
1 2 1 2

( , ) (1/ (1 ( , )))sim G G d G G
 

   

Graph Kernel  

The kernel function is a popular method to find different types of relations between datasets. A graph kernel is 

the application of the kernel function to graphs where the objective is to find relationships (similarity) between 

two graphs. Several graph kernels algorithms have been proposed to measure network similarity such as random 

walks, shortest paths and Weisfeiler-Lehman. These methods are briefly described hereafter: 

- Random walk (RWkernel )(Vishwanathan et al., 2010): given two graphs
1G  and

2G , a random walk kernel 

counts the number of matching labeled random walks. The matching between two nodes is determined by 

comparing their attribute values. The measure of similarity between two random walks is then the product of 

the kernel values corresponding to the nodes encountered along the walk. 

- Shortest path kernel (spKernel)(Borgwardt and Kriegel, 2005): compute the shortest path kernel for a set of 

graphs by exact matching of shortest path lengths. The Floyd-Warshall algorithm (Floyd, 1962) is usually 



 

used to calculate all the pairs-shortest-paths in 1G  and 2G . The shortest path kernel is then defined by com-

paring all the pairs of the shortest path lengths among nodes in 1G  and 2G .  

- Weisfeiler-Lehman(WL)(Shervashidze et al., 2011): compute h-step Weisfeiler-Lehman kernel for a set of 

graphs. The main idea of this algorithm is to increase the node labels by the sorted set of node labels of 

neighboring nodes, and compress these increased labels into new shorted labels. These steps are repeated un-

til the node label sets of 1G and 2G differ or the number of iterations reaches h.  

- Weisfeiler-Lehman shortest path kernel (WLspdelta)(Shervashidze et al., 2011): compute the h-step 

Weisfeiler-Lehman shortest path delta kernel between the compared graphs 
1G  and

2G .  

E. Comparative analysis 

In order to compare the proposed algorithm with the state-of-art methods, we analyzed the performance of the 

nine methods using graphs subject to three types of alterations, namely changes in the edge weights, insertion of 

nodes and shifts in their spatial location. In practice, a random graph 
1G  with 20 nodes located onto a grid 

(20 20)Gr  was generated. This graph was altered to get a graph 
2G  and the five similarity indexes (

1 2
( , )

SimiNet
sim G G ,

1 2
( , )

GED
sim G G ,

1 2
( , )

DeltaCon
sim G G ,

1 2
( , )

VEO
sim G G ,

1 2
( , )sim G G


,

ker 1 2
( , )

RW nel
sim G G ,

1 2
( , )

WL
sim G G ,

ker 1 2
( , )

sp nel
sim G G and

1 2
( , )

WLspdelta
sim G G

) between the initial graph 
1G  and the altered version 

2G  of 
1G  were computed for various levels of alteration. 

Regarding the edge weight, a uniform random number ([0, 50]) was added to the initial weight of 
1G  edges. For 

node insertion, the alteration level was defined as the number of nodes added to
1G . Finally, for the spatial loca-

tion, the alteration level was defined as a random shift of each node of the altered graph 
2G  to one the possible 

surrounding positions, either close to (low alteration level) or farther from (high alteration level) the correspond-

ing node in the initial graph 
1G . 

These steps were applied 1000 times for each type of alteration and results were averaged for each method. 

F. Real data 

In order to evaluate the performance of SimiNet on real data, we used brain networks identified during a visual 

task. Dense electroencephalographic (EEG) data were recorded when subjects named pictures presented on a 



 

screen. Pictures were selected from the Snodgrass database (ALARIO AND FERRAND, 1999). Two categories of 

visual stimuli were shown: tools and animals. The number of pictures for each category was chosen equal (n=37) 

and several psycholinguistic parameters were controlled to get equivalent datasets (name agreement, image 

agreement, age of acquisition as well as linguistic parameters like oral frequency, written frequency, let-

ters/phonemes/syllables and morphemes numbers, see supplementary materials Fig. S1 and Table S1). The rec-

orded signals were then processed using an EEG source connectivity method recently developed to identify cor-

tical brain networks from scalp EEG data (Hassan et al., 2015a; Hassan et al., 2014; Kabbara et al., 2017). Fol-

lowing this method, brain networks reconstructed from EEG signals (filtered in the gamma frequency band) and 

corresponding to each category were obtained for twenty one participants (11 women: mean age 28 year; min: 

19, max: 40 and 10 men: age 23 years; min: 19, max: 33). For the purpose of this work, we analyzed the net-

works identified at two different time windows corresponding to two distinct steps of the cognitive process: visu-

al processing (1-119 ms) and access to memory (151-190 ms). These windows were obtained using a clustering 

algorithm allowing for segmentation of the cognitive process (from picture display to naming) (Mheich et al., 

2015). During the first window, (1-119 ms), we expect that the similarity index between brain networks of the 

two categories of pictures will be high for two reasons, at least. First, it has been shown with fMRI that the pri-

mary visual cortex (along with the sensory motor cortex) is certainly the less variable region when functional 

connectivity is measured between individuals (Mueller et al., 2013). The authors demonstrated that variability of 

functional connectivity increases from unimodal cortices to multimodal association cortices and correlates posi-

tively with the proportion of long range functional links. These results were shown both in their own analysis and 

in a meta-analysis they ran while grouping 15 studies measuring functional connectivity with fMRI. The second 

reason why variability should increase with time across different periods of the cognitive process is linked to the 

interference of semantic judgment on brain processing. During the very first steps of visual processing of picture, 

semantic has little or nothing to do with the brain operations aiming at reconstructing the image. Moreover, the 

picture naming task does not require the participants to make a choice from the stimulus (like in a go/no-go task) 

or to categorize animals or faces which could have led to strong semantic interference around 70 to 80 ms post 

onset (Vanrullen and Thorpe, 2001). In consequence, this should result in stronger similarity indices for the first 



 

period (visual processing) as compared with the second one (access to memory). In addition, we expect a lower 

similarity index between networks during the second window during which the participants are able to con-

sciously manipulate the concepts shared by the pictures (see the discussion for more detail). The five similarity 

indexes were calculated between the networks obtained over the two time windows when tools or animals where 

named by subjects. We evaluated whether SimiNet (compared to other algorithms) was able to discriminate the 2 

categories. This study was approved by the Committee for the Protection of Persons (CPP) and a local Ethics 

committee, (conneXion study, agreement number 2012-A01227-36, promoter: Rennes University Hospital). In 

this application graph G  is defined as a set nodes V  representing the brain regions segmented from a Destrieux 

Atlas (Destrieux et al., 1998) and the edges E  represent the functional connectivity between regional time series. 

In the case of brain networks, the geodesic distance was preferred to the Euclidean distance (used in 2D simula-

tions) as it is more suited to the folded brain surface (presence of gyri and sulci). The “Fast-Marching-Toolbox” 

(Sethian, 1999) was used to compute the geodesic distance. 

 

 

Results 

Simulated data 

Results obtained from the comparison of the different algorithms (GED, VEO, DeltaCon, Lambda-distance, and 

SimiNet) on simulated graphs are shown in Fig. 3. First, regarding the evolution of the similarity indexes (

1 2
( , )

SimiNet
sim G G ,

1 2
( , )

GED
sim G G ,

1 2
( , )sim G G


, 

1 2
( , )

VEO
sim G G and 

1 2
( , )

DeltaCon
sim G G ) with respect to gradually-increasing al-

terations of the edge weights (Fig. 3A), results confirmed that algorithms GED and VEO do not show any change 

with regard to alterations of the edge weights (similarity=1 for both methods at all alteration levels). This result 

was expected as both algorithms are based on quantifying common nodes and edges between graphs and they do 

not take into account the edge weights to measure the similarity. In contrast, the curves obtained for DeltaCon 

and Lambda-distance decreased dramatically for increasing level of alteration of the edge weight (DeltaCon: 



 

from 1.0 to 0.27 ± 0.07, Lambda distance: from 1 to 0.05 ± 0.02). This result is explained by the fact that the in-

crease of the edge weight results in i) an increase of the eigenvalues for the adjacency matrix of compared graphs 

and thus ii) a smaller value of
1 2

( , )sim G G


. For DeltaCon algorithm, the increase of edge weight will increase the 

affinity scores between nodes and then the distance between graphs will increase making 
1 2

( , )
DeltaCon

sim G G smaller. 

Interestingly, and in contrast with the previous methods, the SimiNet algorithm disclosed a gradually decreasing 

similarity index 
1 2

( , )
SimiNet

sim G G  for gradual alteration of the edge weight. 

In Fig. 3B, we show the evolution of the five similarity indexes with respect to gradual insertion of nodes in the 

altered graph.  Typical examples of the simulated networks are also shown (Fig. 3.B, bottom) for the initial graph 

1G  and for altered versions 2G  at level 10 and 18. Results indicate that the five similarity indexes all decreased 

with the increase of the number of inserted nodes. DeltaCon and VEO showed fairly similar results with a rela-

tively slow decrease rate (VEO: 0.9705 ± 0.01 at level 4 to 0.91 ± 0.02 at level 20; DeltaCon: 0.95 ± 0.004 at 

level 4 to 0.9028 ± 0.005 at level 20). For the same alteration levels, SimiNet showed a more pronounced de-

crease of the similarity index (level 4: 0.947 ±0.006, level 20: = 0.73 ± 0.005). In the case of Lambda distance, 

1 2
( , )sim G G


 values changed from 0.83 ± 0.06 (level 4) to 0.51 ± 0.06 (level 20).  Interestingly, for the four above-

described algorithms, a linear decrease of the similarity index was observed. Finally, 
1 2

( , )
GED

sim G G showed the 

most marked decrease (nonlinear in this case, GED: 0.28 ± 0.06 at level 4 to 0.09 ± 0.01 at level 20). 

In Fig. 3C, the evolution of the similarity index values with respect to alterations in the node positions is present-

ed. Results confirmed that SimiNet is the only algorithm showing sensitivity to this factor. Indeed, values de-

creased dramatically with the alteration level (level 1: 0.7825 ± 0.05, level 9: 0.095 ± 0.007). Results indicated 

that similarity indexes computed from the four other algorithms exhibit different values (DeltaCon:  0.397 ± 

0.001; GED: 0.042 ± 0.003; Lambda distance: 0.15 ± 0.012; VEO: 0.02 ± 0.01) that did not change with the level 

of alteration as expected.  Results obtained from the comparison with the graph kernel algorithms (Random Walk 

kernel, shortest path kernel, Weisfeiler-Lehman, Weisfeiler-Lehman shortest path kernel and SimiNet) are shown 

in Fig. 4. First, regarding the evolution of the similarity indexes (
ker 1 2

( , )
RW nel

sim G G ,
1 2

( , )
WL

sim G G ,
ker 1 2

( , )
sp nel

sim G G ,

1 2
( , )

SimiNet
sim G G and 1 2

( , )
WLspdelta

sim G G ) with respect to gradually-increasing alterations of the edge weights (Fig 4-A). 



 

Results confirmed that algorithms WL, spkernel and WLspdelta do not show any change with regard to altera-

tions of the edge weights (similarity=1 for both methods at all alterations levels). 

In return, the curve obtained for RWkernel decreased slowly for increasing level of iteration of the edge weight 

(from 1 to 0.941 ± 0.012).  

In Fig.4B we show the evolution of the graph kernels with respect to gradual insertion of nodes in the altered 

graph.  Results indicate that all similarity indexes decreased with the increase of the number of inserted nodes. 

Spkernel and RWkernel showed fairly similar results with a relatively slow decrease rate (spkernel: 0.96±0.03 at 

level 4 to 0.86±0.002 at level 20; RWkernel: 0.98±0.001 at level 4 to 0.82±0.001 at level 20).  

WL and Wlspdelta showed similar results with high marked decrease (WL: from 0.6218 ±0.001 to 0.282 ±0.001 

at level 20; WLspdelta: from 0.627 ±0.001 to 1.98 ±0.001). In Fig. 4C, the evolution of the similarity index val-

ues with respect to alterations in the node positions is presented. Results confirmed that similarity indexes com-

puted from the four kernel algorithms exhibit different values (spkernel:  0.917 ± 0.001; WL: 0.991 ± 0.013; 

WLspdelta: 0.932 ± 0.012; RWkernel: 0.99 ± 0.001) that did not change with the level of alteration as expected. 

Application to real data 

Results obtained from the application of SimiNet to real brain networks are presented in Fig. 5. The similarity 

scores between networks identified for the object and animal categories in each of the 21 subjects are represented 

as two  21×21  matrices where lines represent the brain networks (i.e. 
1

G  graphs) associated with object visual 

stimuli and where columns represent networks (i.e. 
2

G  graphs) associated with animal stimuli. As the similarity 

index 
1 2

( , )
SimiNet

sim G G  is symmetric, only the values of the upper triangle are displayed.  

As depicted, the first matrix (Fig. 5A, left) shows high similarity values during the first period corresponding to 

visual processing (1-119 ms). In contrast, lower similarity values (Fig. 5A, right) were observed during the sec-

ond period corresponding to memory access, (150-190 ms). Typical examples of brain networks with high simi-

larity values at the first period and low similarity values at the second period are illustrated in Fig. 5B where the 

node size represents the “strength value” a network measure defined as the sum of weights of edges connected to 

this node. For instance, during the visual processing period, a high similarity (
SimiNet

sim = 0.51) was measured be-



 

tween the network obtained when subject 14 was naming animal stimuli and the network obtained when subject 

13 was naming object stimuli. In contrast, during the memory access period, a low similarity index (
SimiNet

sim

=0.04) was computed between the network obtained when subject 16 was naming animal stimuli and that ob-

tained when subject 3 was naming object stimuli. Cells in the diagonal of the matrix represent the similarity indi-

ces when comparing objects and animals within subjects. Even in this case, 
SimiNet

sim  is higher during the first (av-

erage of similarity values in the diagonal: 0.1735) period than the second one (average of similarity values in the 

diagonal: 0.0914). Fig. 5C shows the boxplots of three similarity indexes (
1 2

( , )
SimiNet

sim G G ,
1 2

( , )
DeltaCon

sim G G ,

1 2
( , )

GED
sim G G ) obtained by the three corresponding methods (SimiNet, DeltaCon and GED) during the two peri-

ods (visual processing and memory access). The three methods indicate a decrease in the inter-conditions (ob-

jects vs. animals) similarity values. During visual processing (1-119 ms), median value of 0.1, 0.22 and 0.14 

were observed for SimiNet, DeltaCon and GED, respectively. As expected, these values decreased during the 

memory access period (151-190 ms) with median values of 0.03, 0.21 and 0.12 for the three methods, respective-

ly. However, and interestingly, SimiNet is the only method showing a statistically significant difference between 

the two periods (Wilcoxon test, p<0.01). 

 

 

 

 

 

 

 

 

 

 

 



 

Discussion 

A challenging issue in brain research is to measure the similarity between two spatially-defined networks. In 

this paper, a new algorithm, called SimiNet, was proposed to calculate the similarity between two graphs with 

known coordinates for nodes. The proposed algorithm is based on the calculation of i) a distance between nodes 

in the two graphs, itself based on a least cost sequence of changes (substitution, insertion and deletion of nodes) 

that are necessary to map one graph on the other and ii) the difference edge weights between the two graphs. The 

proposed algorithm was compared with eight previously-published graph similarity algorithms (GED, DeltaCon, 

-distance, Random Walk kernel, shortest path kernel, Weisfeiler-Lehman, Weisfeiler-Lehman shortest 

path kernel). SimiNet was shown to improve results in simulated situations involving a shifting of the location of 

nodes. SimiNet showed also a higher performance in comparing real brain networks obtained from dense EEG 

during a cognitive task consisting in naming items of two different categories (objects, animals). These findings 

are discussed hereafter. 

Network similarity under spatial constraint 

Measuring similarity among networks is a topic of increasing interest (Schieber et al., 2017; Shimada et al., 

2016; Van Wijk et al., 2010). Several approaches have been proposed to compare networks, in various applica-

tion domains (social networks, biology, bioinformatics...). The techniques used for comparing brain networks can 

be classified into three categories: i) global, consisting in comparing between global graph measures (degree, 

modularity, hubs…) computed from the two networks (Stam et al., 2009; Stam and Reijneveld, 2007), ii) node-

wise, consisting in computing graph metrics for each node of the networks such that multiple comparisons can be 

assessed (Supekar et al., 2009) and iii) edge-wise, consisting in comparing all the available edges in the net-

works, an approach called Network Based Statistics (NBS) (Zalesky et al., 2010). However, the spatial location 

of nodes is not accounted for in these approaches. Recently, the spatial constraint was considered in a new metric 

for computing graph measures in brain networks analysis (Pineda-Pardo et al., 2014). Authors showed that this 

metric could distinguish the global connectivity of structural networks from functional networks only when the 

physical locations of nodes are considered. Along the same line, we propose a new algorithm to measure the sim-



 

ilarity between graphs. The key feature of this algorithm is that it takes into account the physical locations of the 

network nodes. The results of SimiNet applied to real data confirmed the importance of including the physical 

location of nodes for assessing the (dis)similarity of brain networks involved into two distinct steps of a cognitive 

task.  

Other algorithms (baselines) investigated in this study showed lower performance in detecting the similarity 

when the two networks do not have the same number of nodes or the spatial location of the nodes is changing. 

Note that this does not detract the importance of these algorithms as they were developed for specific applica-

tions where the spatial location of graphs is a non-relevant factor. Nevertheless, a comparison between modified 

versions of the baselines (adding to each of the algorithm –if possible- the spatial information) and SimiNet is of 

interest and could be the subject of further investigation. 

Methodological considerations 

First, the distance used between nodes in the simulation case was assumed to be Euclidian. This distance is not 

fully appropriate in the real case as brain networks take place over a folded brain surface which consists of sulci 

and gyri. For this reason, the geodesic distance was preferred to the Euclidian distance. Second, a crucial parame-

ter to be tuned in SimiNet is the radius of the disk used to detect the neighbors of a given node. An increase of 

the radius R  will automatically lead to an increase of the similarity index between the two compared graphs.  

In the simulation case, R  was chosen to be equal to 1.5 as representing the minimal Euclidian distance between 

two nodes in the grid (example of Fig. 1). In the real case, R  was chosen as the average distance between all 

nodes. As we were aware about the effect of R on the similarity value, comparative analyses were performed for 

different values of R  (the minimal distance and the maximal distance between two nodes). The results (not 

shown here) indicated that the performance of SimiNet with respect to the other tested algorithms is preserved, 

whatever the value of R provided that the condition (Cost (substitution) < Cost (Insertion) + Cost (Deletion)) is 

preserved. 

Third, the current version of the developed algorithm can be applied only between two graphs if their nodes are 

in the same reference axis frame. Thus, the cost of the three operations: insertion, deletion and substitution of 

nodes in both graphs will be the same. In the case where the two graphs are not measured in the same axis frame, 



 

a transformation is needed as a preprocessing step before applying SimiNet. 

From the application viewpoint, brain networks are usually defined in the same spatial reference system. Corre-

sponding graphs are located on a predefined coordinate system, typically 3D mesh of the brain obtained from the 

subject’s structural magnetic resonance imaging (MRI) data.  Nevertheless, in some specific applications, brain 

graphs can be represented in different space. In a recently-published study, we dealt with this issue: in order to 

apply SimiNet to distinct graphs initially defined in two different coordinate systems (3D vs. 2D), we used a 

transformation (projection from volumetric to surface coordinates) to bring considered graphs in the same refer-

ential (Hassan et al., 2017; Hassan et al., 2016). 

Fourth, the main tackled issue in the proposed algorithm is to take into account the physical location of nodes 

when comparing two graphs. This is a crucial feature in the context where compared graphs correspond to brain 

networks. Consequently, the proposed algorithm first focuses on the coordinates of nodes (node distance) to 

match both graphs under comparison. In the second step (edge distance), the algorithm also accounts for the 

characteristics of edges (their weights), a feature that describes the degree of connectivity (weak to strong) 

among nodes (i.e.  brain areas). Interestingly, the proposed algorithm also considers another feature: the node 

neighborhood, more specifically, in the first step (node distance), SimiNet makes use of this neighborhood (de-

fined as a disk of radius R centered on the considered node) in order to select between the insertion, suppression 

or substitution operations. Nevertheless, we believe that taking into account other network measures into consid-

eration to match the two graphs could be of interest such as features dealing with the network segregation (local 

features such as clustering coefficient, node edge angles(Armiti and Gertz, 2014)) or integration (global features 

such as the ‘hubness’ of a node using its degree or its centrality). However, the objective would be different from 

that dealt in this paper, focused on topology. 

Fifth, there is an inter-subject variability in brain anatomy (size and shape for instance). To deal with this varia-

bility when comparing brain networks, two solutions can be considered depending on the context of the study 

(subject-specific or not),  in the case where structural MRI data is available for each subject, 3D brain meshes 

should be normalized before application of SimiNet. In the case when structural MRI is not available for each 

subject, a template (average brain) can be used for all subjects (which is the case in our study here). In both cas-



 

es, the processed brain networks are represented at the exact same scale and thus brain scaling effects are not 

encountered. 

Object categorization in the human brain: a network-based approach 

SimiNet was originally developed to analyze the similarity between brain networks involved in cognitive tasks. 

In this study, the EEG source connectivity analysis allowed us to identify brain networks at cortical level from 

dense-EEG scalp recordings (Hassan et al., 2015a). Different brain networks were identified for two different 

categories of stimuli (objects vs. animals). Our intent was to assess the capability of SimiNet and other tested 

methods to detect significant differences in identified networks. 

To our knowledge, this study constitutes the first attempt to assess object categorization in the human brain from 

a network-based approach using dense EEG source connectivity. During the picture naming task, we detected 

significant difference between networks identified during the time period associated with ‘visual processing’ and 

that related to the ‘access to memory’. During visual processing, the networks were mainly occipital involving 

the inferior occipital, the lateral occipito-temporal sulcus and occipital pole. This period was shown to be related 

to the visual feature extraction preceding the object category recognition (Thorpe et al., 1996; Vanrullen and 

Thorpe, 2001). In the present task that just consists in naming pictures overtly, we don’t ask the participant to 

detect animals or to categorize visual scene. As a consequence to this, influences from semantic information on 

earlier visual processes are low or have not started yet. Moreover, most of the period corresponding to the first 

time-window precedes the N1, a component of ERP studies that peaks around 150 ms well known to be the first 

component sensitive to semantic modulations.  Obviously some participants can be aware of viewing an animal 

as soon as 70 to 80 ms after the stimulus onset (Vanrullen and Thorpe, 2001) but it could remain unconscious 

until its features are mapped onto a memorized concept. These considerations explain the high similarity values 

observed between object and animal networks during this time period. For the second period, results showed a 

network involving the occipital regions but with an implication of the bilateral inferior temporal sulcus. This 

network is known to be related to semantic working memory system when someone tries to remind the name of 

the presented object (Martin and Chao, 2001). This period was considered as the first instant of categorization in 

the human brain (Vihla et al., 2006). More cautiously, this can explain the significantly lower similarity values 



 

between graphs for animals and objects which could then share different neural substrates. This latter result could 

also explain the statistical significant difference between the two periods; the similarity index of the second peri-

od being lower than the similarity index of the first one. 

Two less cognitive but more plausible explanations of these effects could be that i) variability in general increas-

es with time after stimulus onset: indeed, time response latencies, inter-subject differences and attentional level 

are known to fluctuate (the farther from the stimulus onset, the higher the variability is) and that ii) the second 

period is shorter in duration than the first period. During the stage of brain network identification, graphs that 

served to segment the period between 150ms and 190ms are less robust than those which allow identifying the 

first period. They poorly contribute to the global explained variance (49% vs 63% for the first period) despite 

remarkable good presence indexes (81% vs. 80 % for the first period). 

Apart from which of the previous explanations created these effects (similarity index changes and its significant 

decrease), both effects were captured by the SimiNet algorithm while the other algorithms failed. As the other 

algorithms showed no significant difference, we assume that the difference between the networks identified over 

the two periods is probably related to variations in the spatial location of the nodes, a feature taken into account 

only by SimiNet. 

Moreover, in this paper we evaluated the performance of SimiNet on two different categories: objects and ani-

mals. In line with the work of Gallant et al (Huth et al., 2012; Kay et al., 2008), these findings could be extended 

to build a ‘semantic space’ of the visual stimuli (human vs non-human, mobile vs immobile, social vs nonsocial 

…) based on the similarity index calculated using SimiNet. Because this interpretation remains quite speculative 

in this paper, we are currently addressing the question of early (not semantic) vs late processes (semantic) with a 

new dataset using different modalities (visual and auditory). This will allow us to get the reverse pattern of simi-

larity index from the first time period with very dissimilar graphs due to different modalities to the second time 

period with more similar graphs as the semantic system is shared between modalities. 

 

 



 

Conclusion 

In this paper, a new algorithm, called SimiNet, for quantifying the similarity between networks under a spatial 

constraint (position of nodes) was proposed. On simulated graphs, this algorithm showed higher performance 

than eight state-of-the-art algorithms in detecting some shifts in the node location. When applied to real EEG 

data, SimiNet could detect significant differences in brain networks associated with two different categories of 

pictures (objects and animals) used in a cognitive task. We believe that the proposed algorithm can be useful in 

pattern analysis problems involving a quantification of the similarity between graphs in which the physical loca-

tion of the nodes is a key parameter.  
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Fig. 1.  Illustration of SimiNet algorithm steps. A) Finding the similarity index between 

1
G and

2
G .  B) Step1-i: detection of nodes com-

mon to 
1

G and
2

G . B) Step1-ii: shifting the nearest neighbors located in the defined spatial neighborhood (disk with radius R =1.5), 

shifting cost equals 1. C) Step 2: insertion of new nodes when no neighbor is found within the neighborhood (cost of insertion = R

=1.5). D) Step 3: deletion of remaining nodes of  
1

G  (deletion cost = insertion cost =1.5). E) Step 4: computing the edge distance be-

tween 
1

G and
2

G . F) Final state: 
1

G matches
2

G  and 
1 2

d G G( , ) = ND+ED = 14.5. 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig.  2.  Pseudo-code of the proposed SimiNet algorithm 

  

     Algorithm SimiNet  

INPUT:
1GA ,

2GA  , R  

        // Node distance 

1:    Initialize ND =0  

2:    for each node 
2 2v V  

3:          if  
1 1 v V  / distance(

1 2
,v v ) < R  

4:          shifting   
2

v ← 
1

v  

5:          ND = ND + 
1 2an ( , )dist ce v v  

6:          else  

7:          // insertion a  node in 
1G  

8:          ND = ND + R  

9:         end if 

10:   end for each 

11:      delete the remained nodes in 1G  and update ND  

       // Edge distance 

12:  Initialize ED =0 

13:  for k =1→ T -1 

14:       for p = k +1→ T  

15:             ED = ED  + 1 2

1 21 2, ,
p pk k

G G

v v v v
W W  

16:        end for 

17:  end for 

18: d = ND + ED  

19: (1/ (1 )) sim d  

Return: sim 



 

 
Fig. 3.  Variation of similarity indexes computed from the 5 algorithms under evaluation with respect to three types of graph alterations: 

A) Increase of edge weights. B) Insertion of nodes C) Shifts in the spatial location of nodes. The dark color represents the average value 

of the similarity measures while the shadowed area represents the standard deviation. 

  



 

 

Fig.4: Variation of four graph kernel algorithms under evaluation with respect to three types of graph alterations: A) Increase of edge 

weights. B) Insertion of nodes C) Shifts in the spatial location of nodes. The dark color represents the average value of the similarity 

measures while the shadowed area represents the standard deviation 

  



 

 

Fig. 5. A- Inter-subject variability of the similarity index (
1 2

( , )
SimiNet

sim G G ) on real brain networks identified from EEG where 1
G  and 2

G

represent respectively the connectivity graphs of the subjects during tools and animals picture naming. Left: value of connectivity 

graphs in the first period (1-119ms).  Right: similarity values of connectivity graphs during the second period (151-190ms). B- The 

connectivity graphs: 3D representation for 2 different subjects. C- Boxplots show significant difference of similarity values between the 

two first periods of the cognitive process using SimiNet. Networks were obtained and visualized using EEGNET (Hassan et al., 2015b) 

. 

 

 

 



 

 
TABLE 1 

DESCRIPTION OF THE NOTATIONS USED IN THIS PAPER 

 

Notation Description 

,Gr T   Grid, total number of nodes 

,v vx y  Abscissa and ordinate for a node v  

  Spatial neighborhood  

G   Graph 
,V n   Set of nodes, number of nodes ( n T ) 
,E m   Set of edges , number of edges 

vK  Index of node v  

i
K

i
v

  Node of graph iG  with index 
ivK   

1 2( , )sim G G   Similarity index between 1G and 2G   

1 2( , )d G G   Distance between 1G and 2G  

R   Radius of   (when defined as a disk) 

GA   Adjacency matrix of graph G .  ,GA T T  

ED   Edge distance  

ND   Node distance (based on insertion, deletion, 

substitution costs) 

,

i
pk

i i

G

v v
W   Weight of the edge between the nodes 

,k p

i iv v  in iG  

1 2

1 21 2, ,
( , )p pk k

G G

v v v v
diff W W

 

Difference of edges weight between nodes 

1 1,p kv v  in  1G  and 2 2,p kv v  in 2G  
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