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Predictive Control Based on Nonlinear Observer for Muscular Force and Fatigue Model

The Functional Electrical Stimulation (FES) is used in the case of neurological disorders (paralyzed muscles) or the muscle reinforcement (sportsmen). A recent model was proposed coupling a force model and a fatigue model. Based on the specific structure of the model, we present a predictive control scheme using online estimation of the fatigue variables with a nonlinear observer. It is numerically tested in a preliminary study.

I. INTRODUCTION

Functional Electrical Stimulation (FES) consists of sending an electrical stimulation to the muscle in order to produce functional movements. FES can be used for muscular reinforcement or for muscles reeducation. In the case of paralysis, FES led to activate the paralyzed muscles to produce movements. However, current FES-system induces a muscular fatigue and imprecise movements [START_REF] Ding | Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries[END_REF].

The simplest models are force models of [START_REF] Bobet | A simple model of force generation by skeletal muscle during dynamic isometric contractions[END_REF], [START_REF] Law | Mathematical models of human paralyzed muscle after long-term training[END_REF] and a more sophisticated model was proposed by [START_REF] Ding | Two-step, predictive, isometric force model tested on data from human and rat muscles[END_REF], [START_REF] Ding | Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains[END_REF], [START_REF] Ding | A predictive model of fatigue in human skeletal muscles[END_REF], [START_REF] Ding | Mathematical models for fatigue minimization during functional electrical stimulation[END_REF] where the force model is coupled to the fatigue model. This led to a five dimensional set of differential equations where the input is a train of electrical stimulations whose aim is to produce a force response.

Only few works used Ding model to design an optimized train of pulses to control the force level. [START_REF] Ben Hmed | Controlling muscular force by functional electrical stimulation using intelligent pid[END_REF], [START_REF] Doll | Optimization of a stimulation train based on a predictive model of muscle force and fatigue[END_REF], [START_REF] Maillard | On the control of a muscular force model including muscular fatigue[END_REF] used a Model-Free Control (MFC), a predictive strategy (experimental case) and a nonlinear technique (input output linearization) to control the force level, respectively.

Our contribution is to make a preliminary analysis of the control problem in the frame of development of recent techniques in nonlinear control based on the design of a highgain nonlinear observer, adapting the technique of [START_REF] Gauthier | A simple observer for non linear systems application to bioreactors[END_REF] to our study to perform an inline fatigue parameters estimation. It is used to design a predictive control and improving the results of [START_REF] Maillard | On the control of a muscular force model including muscular fatigue[END_REF]. A sequence of preliminary numeric simulations is presented to validate the pertinence of the techniques.

The article is organized in 4 sections. In section 2, the force-fatigue model is presented and analyzed. In section 3, a prior estimation of the sensitivity of the fatigue variablesparameters are analyzed and used to the design of the highgain nonlinear observer. The predictive control scheme is presented. The final section 4 is devoted to the numerical study of the force control problem to bring the force to 1 Univ. Bourgogne Franche-Comté, Le2i Laboratory UMR 6306, CNRS, Arts et Métiers, Dijon, France (e-mail: toufik.bakir@u-bourgogne.fr).
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II. MATHEMATICAL FORCE-FATIGUE MODEL

We consider the force-fatigue model developed by [START_REF] Ding | A predictive model of fatigue in human skeletal muscles[END_REF], [START_REF] Ding | Mathematical models for fatigue minimization during functional electrical stimulation[END_REF], this model could be decomposed in two subsystems. The first system is the force model, where the force is controlled using the C N variable which takes into account the calcium kinetics and the calcium-troponin interaction during the muscle activation. It can be written as:

dC N dt = E s (t) - C N τ c (1) 
dF dt = A C N K m + C N - F τ 1 + τ 2 CN Km+CN . (2) 
Where in Eq. ( 1), A, τ 1 and K m are the variables of the fatigue model. The function E s (t) represents the control variables consisting to electrical stimulations:

E s (t) = 1 τ c n i=1 η i H(t -t i )R i exp(- t -t i τ c ) (3) 
associated to n pulses 0 = t 1 < t 2 < ... < t n < T over the period. H(t -t i ) is the Heaviside step function: = 0, t < t i , = 1, t ≥ t i Table I gives definition and details of the symbols used in the above equations, R i in Eq. ( 1) is a scaling term that accounts for the nonlinear summation of the calcium transient in response to two consecutive pulses, and is given by:

R i = 1 f or i = 1 1 + (R 0 -1) exp(-ti-ti-1 τc ) f or i > 1. (4) 
Note that in Eq. (3) appear the (discrete) control variables which consist into:

• The interpulse:

I i := t i -t i-1 for i > 1.
If fixed, it is denoted I. • The scaling factor η i which is the tuning factor of the applied electric intensity. The second part of the model is the additional fatigue model which describes the changes of parameters (A, K m , τ 1 ) in the force model during the fatigue conditions, it consists into the three differential equations Eqs. ( 5)- [START_REF] Ding | Mathematical models for fatigue minimization during functional electrical stimulation[END_REF]:

dA dt = - A -A rest τ f at + α A F (5) 
dK m dt = - K m -K m,rest τ f at + α Km F (6) 
dτ 1 dt = - τ 1 -τ 1,rest τ f at + α τ1 F. (7) 
Where again we refer to Table I for the definitions and details of the symbols of the fatigue model. Concerning the force model, a first useful result is the following: Proposition 1. Assuming A, K m and τ 1 be fixed, the force model can be integrated by quadrature using a time reparameterization.

Proof. Eq. ( 2) can be written as:

dF (t) dt = a(t) + b(t)F (t) (8) 
where a(t) and b(t) are obtained by integrating Eq. ( 1). Since b(t) is = 0, Eq. ( 8) can be written as:

dF (t) b(t)dt = c(t) + F (t), (9) 
and by setting

ds = b(t)dt (10) 
the integration of Eq. ( 9) is straightforward.

FES stimulation: clearly the electrical stimulation E s (t): 0 = t 1 < t 2 < ... < t n < T decomposes into a period of stimulation 0 = t 1 < ... < t k followed by a period of rest. Fig. 1 represents the stimulation pulses with I = 50ms, η i = 0.8 during a stimulation period of 1s t 1 → t 20 and η i = 0 during a rest period of 1s t 21 → t 40 . In practice, period of stimulation and period of rest are repeated many times. Fig. 1.

Stimulation pulses example (amplitude η i = 0.8 during the stimulation time of 1s and η i = 0 during the rest time of 1s with a constant interpulse I = 50ms) 

III. ESTIMATION OF THE STATE VARIABLES OF THE FORCE FATIGUE MODEL

The model used for this study (five state variables) is based on force measurements collected from a set of subjects. Thus, the accuracy of the calculated parameters is directly related to these persons. In this study, we suppose that initial conditions are different following the subject under study. That is why, we need to estimate some of these five initial conditions. Indeed, from a first analysis we can deduce that the rest values C N (t 1 ) = 0 and F (t 1 ) = 0 of C N and F respectively are realistic and don't need any estimation. The remaining parameters are A rest , K m,rest and τ 1,rest . Concerning K m,rest , a sensibility study is realized in order to determine its effect on the force variation.

A. Sensibility study of the force versus state variables 1) Sensibility study of the force versus K m : The force evolution is compared for K m,rest and different values K ′ m,rest (±30% of error) for I = 10ms, 50ms and 100ms (see Fig. 2 for I = 10ms). In the case of I = 10ms, the maximum force error is of -0.3%. Following Interpulse value, the maximum force error is obtained for I = 100ms (-1.3%) which means that a tolerance of ±30% gives force evolution with good accuracy.

2) Sensibility study of the force versus a part of A and τ 1 derivatives: We compare the derivative of A and τ 1 (Eq. ( 5) and Eq. ( 7), respectively) with the "simplified" following derivatives (we assume a maximum stimulation time of 20s):

dA dt = α A F ( 11 
)
dτ 1 dt = α τ1 F. (12) 
Using (Eq. ( 5) and Eq. ( 7)) and (Eq. ( 11) and Eq. ( 12)), the force error was computed in the cases of η = 0.1, 0.5 and 1 with I = 10ms, 100ms (during 10 stimulation-rest periods of 2s).

The figures (Fig. 4), (Fig. 5) and (Fig. 6) represent the relative error for A, τ 1 and F , respectively. The worst case is obtained for η i = 1, I = 100ms where the relative error reaches 5.4%. The figure (Fig. 7) shows the force evolution for the two cases. From this, we can define a "simplified model" (Eq. ( 1), Eq. ( 2), Eq. (3), Eq. ( 4), Eq. ( 6), Eq. ( 11) and Eq. ( 12)). This simplified model will be used to calculate the correction term of the observer (see the following section). B. High-gain observer synthesis for the estimation of A and τ 1

In this section, we design a modified version of the standard high-gain observer given in [START_REF] Gauthier | A simple observer for non linear systems application to bioreactors[END_REF] taking into account the specific structure of the problem. The system defined by the force equation Eq. ( 2) and the fatigue model (Eq. ( 5) and Eq. ( 7)) can be rewritten as the single input-output system:

ẋ(t) = β m (t, E s (t))f (x(t), E s (t)) y(t) = h(x(t)) = F (t), (13) 
with x = (F, A, τ 1 ) ∈ R 3 , y ∈ R, E s ∈ R. β = C N C N + K m , 0 < β < 1. ( 14 
)
Note that in Eq. ( 13)), K m is not a state variable thanks to the robustness of the solution with respect to this variable (see Sensibility study of the force versus K m ). We introduce the change of variables φ:

φ : R 3 → R 3 x → φ(x) = [h(x), L f1 (h(x)), L 2 f1 (h(x))] (15) 
f 1 (x(t), E s (t)) being the simplified expression of f (x(t), E s (t)) and calculated from the simplified model (( 2), ( 11) and ( 12)). The simplification allows to avoid the ill-conditioning of ( ∂φ ∂x (x(t)) -1 . The modified high-gain observer is defined as:

ẋ(t) =β m f (x(t), E s (t)) -β m ( ∂φ ∂x (x(t)) -1 S -1 θ C T (C x(t) -y(t)) ( 16 
)
with m is a positive integer. S θ is a symmetric positive definite matrix given by the following Lyapunov equation:

θS θ (t) + A S θ (t) + S θ (t)A = C T C ( 17 
)
where θ is a tuning parameter,

A =   0 1 0 0 0 1 0 0 0   ,C = 1 0 0 .
The terms of this matrix S θ = [S θ (l, k)] 1≤l,k≤3 have the following form:

S θ (l, k) = (-1) l+k l + k -2 k -1 θ -(l+k-1) , n k = n! (n-k)!k!
In the particular case of the force fatigue model, β(t) is piecewise smooth, the lack of regularity is numerically bypassed by the choice of the integer m. For example, for I = 10ms, m = 3 is sufficient to estimate the whole variables. However, for I = 25ms, m must be at least equal to 5 (see observer simulations below).

C. Muscular force control

The estimation of the state variables vector is used as an initial variables vector to perform a predictive strategy (over an horizon of HOR equal interpulse intervals) to bring the mean force value F mean over HOR (see procedure below) to a force reference (see [START_REF] Wang | Model predictive control system design and implementation using matlab[END_REF]). The interpulse I is fixed and η i is the control variable.

We use a numerical integration time called Step int , and for a fixed horizon HOR, define Data F by:

Data F = HOR * I step int (18)
1) Algorithm:

1) Give F inal t (I is a submultiple of F inal t ), k = 1 2) C N (t k ), F (t k ), Â(t k ), τ1 (t k ), K m (t k ) 3) F mean = 1 DataF DataF i=1 F (t k + i * Step int , E s ) with: E s = 1 τ c k+(HOR-1) i=1 (η i H(t HOR -t i ) * R i exp(- t HOR -t i τ c )) (19) 
and:

η i = η k for i = k, k + 1, ..., k + (HOR -1), t HOR = (k + HOR) × I 4) ηk = η(t k ) = argmin η k ∈[0,1] (F mean -F ref ) 2 5) Compute Â(t), τ1 (t), t ∈]t k , t k+1 ] 6) if t k+1 = F inal t ⇒ stop, else, k = k + 1, back to 2
In this case (fixed I and HOR), only I = 10ms(100Hz) is considered for the computation of the predictive control.

IV. SIMULATION RESULTS

MATLAB/SIMULINK software was used to perform the different simulations with Runge-Kutta solver and an integration time step int 0 = 1ms. The force-fatigue model depends on six free model parameters (τ c , A, τ 1 , τ 2 , R 0 , and K m ). The values of these parameters were computed in the case of a typical subject.

A. Observer and control simulation Results for HOR=10

For estimation simulation, we consider the worst case of +30% of error of K m . 16) are the force response and the control (pulses amplitudes) applied to bring F mean to 250N , respectively. It can be observed that starting from the 4 th period, the pulses amplitudes saturate at 1 which means that the FES is reaching its maximum value to counteract the fatigue effect. Our study aims to present control-observer techniques into the FES control of the force-fatigue model of Ding. The proposed observer deals with the specific case of a continuous system with a discrete control. The correction term is related to the applied interpulse. The used nonlinear MPC technique to control the force level depends on the optimum search space which is not necessary convex. Despite the fact that the found minimum could not be a global minimum, appropriate receding horizon allowed to reach the force reference. Numerical simulations validate these techniques. This work is the first step of a complete study in the frame of (closed loop) optimal control analysis of the problem.
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  Fig. (8) and Fig. (9) represents the A estimates for 100Hz(I = 10ms) and 40Hz(I = 25ms), respectively. Fig. (10) and Fig. (11) are the τ 1 estimates for 100Hz and 40Hz. Â converges after 50ms when I = 10ms and 100ms when I = 25ms. Concerning τ1 , it converges after 75ms when I = 10ms and 200ms when I = 25ms. Large I seems to delay the convergence of the observer.
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 12121314 Fig.[START_REF] Wang | Model predictive control system design and implementation using matlab[END_REF] represents the control strategy (for a prediction horizon HOR = 10) based on the proposed observer for I = 25ms and a mean force reference of 250N . It can be observed that the force mean value converges to the force reference after 200ms.
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