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Predictive control based on nonlinear observer for muscular force and
fatigue model

T.Bakir1, B. Bonnard2 and S. Othman3

Abstract— The Functional Electrical Stimulation (FES) is
used in the case of neurological disorders (paralyzed muscles)
or the muscle reinforcement (sportsmen). A recent model
was proposed coupling a force model and a fatigue model.
Based on the specific structure of the model, we present a
predictive control scheme using online estimation of the fatigue
variables with a nonlinear observer. It is numerically tested in
a preliminary study.

I. INTRODUCTION

Functional Electrical Stimulation (FES) consists of send-
ing an electrical stimulation to the muscle in order to produce
functional movements. FES can be used for the muscular
reinforcement or for the reeducation of muscles. In the case
of paralysis, FES led to activate the paralyzed muscles to
produce movements. However, current FES-system induces
a muscular fatigue and imprecise movements [4].

The simplest models are force models of [2], [10] and a
more sophisticated model was proposed by [3], [5], [6], [7]
where the force model is coupled to the fatigue model and
this led to a five dimensional set of differential equations
which can be used to produce a train of electrical stimula-
tions whose aim is to produce a force response.

Only few works used Ding model to design an optimized
train of pulses to control the force level. [1], [8], [11]
used a Model-Free Control (MFC), a predictive strategy
(experimental case) and a nonlinear technique (input output
linearization) to control the force level, respectively.

Our contribution is to make a preliminary analysis of
the control problem in the frame of development of recent
techniques in nonlinear control based on the design of a high-
gain nonlinear observer, adapting the technique of [9] to our
study to perform an inline fatigue parameters estimation. It is
used to design a predictive control and improving the results
of [11]. A sequence of preliminary numeric simulations is
presented to validate the pertinence of the techniques.

The article is organized in 4 sections. In section 2, the
force-fatigue model is presented and analyzed. In section 3,
a prior estimation of the sensitivity of the fatigue variables-
parameters are analyzed and used to the design of the high-
gain nonlinear observer. The predictive control scheme is
presented. The final section 4 is devoted to the numerical
study of the force control problem to bring the force to
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the reference force based on the inline estimation of the
fatigue state variables. Note that it is a preliminary control
strategy aiming to test the validity of the observer to provide
more sophisticated optimal control strategy for this specific
problem.

II. MATHEMATICAL FORCE-FATIGUE MODEL

We consider the force-fatigue model developed by [6],
[7], this model could be decomposed in two subsystems.
The first system is the force model, where the force is
controlled using the CN variable which takes into account the
calcium kinetics and the calcium-troponin interaction during
the muscle activation. It can be written as:

dCN
dt

= Es(t)−
CN
τc

(1)

dF

dt
= A

CN
Km + CN

− F

τ1 + τ2
CN

Km+CN

. (2)

Where in Eq. (1), A, τ1 and Km are the variables of the
fatigue model. The function Es(t) represents the control
variables consisting to electrical stimulations:

Es(t) =
1

τc

n∑
i=1

ηiH(t− ti)Ri exp(− t− ti
τc

) (3)

associated to n pulses 0 = t1 < t2 < ... < tn < T
over the period. H(t − ti) is the Heaviside step function:
= 0, t < ti, = 1, t ≥ ti

Table I gives definition and details of the symbols used
in the above equations, Ri in Eq. (1) is a scaling term
that accounts for the nonlinear summation of the calcium
transient in response to two consecutive pulses, and is given
by:

Ri =

{
1 for i = 1

1 + (R0 − 1) exp(− ti−ti−1

τc
) for i > 1.

(4)

Note that in Eq. (3) appear the (discrete) control variables
which consist into:
• The interpulse: Ii := ti − ti−1 for i > 1. If fixed, it is

denoted I .
• The scaling factor ηi which is the tuning factor of the

applied electric intensity.
The second part of the model is the additional fa-

tigue model which describes the changes of parameters
(A, Km, τ1) in the force model during the fatigue con-
ditions, it consists into the three differential equations Eqs.
(5)–(7):

dA

dt
= −A−Arest

τfat
+ αAF (5)



dKm

dt
= −Km −Km,rest

τfat
+ αKm

F (6)

dτ1
dt

= −τ1 − τ1,rest
τfat

+ ατ1F. (7)

Where again we refer to Table I for the definitions and
details of the symbols of the fatigue model.
Concerning the force model, a first useful result is the
following:

Proposition 1. Assuming A, Km and τ1 be fixed, the
force model can be integrated by quadrature using a time
reparameterization.

Proof. Eq. (2) can be written as:

dF (t)

dt
= a(t) + b(t)F (t) (8)

where a(t) and b(t) are obtained by integrating Eq. (1). Since
b(t) is 6= 0, Eq. (8) can be written as:

dF (t)

b(t)dt
= c(t) + F (t), (9)

and by setting

ds = b(t)dt (10)

the integration of Eq. (9) is straightforward.

FES stimulation: clearly the electrical stimulation Es(t):
0 = t1 < t2 < ... < tn < T decomposes into a period of
stimulation 0 = t1 < ... < tk followed by a period of rest.
Fig. 1 represents the stimulation pulses with I = 50ms,
ηi = 0.8 during a stimulation period of 1s t1 → t20 and
ηi = 0 during a rest period of 1s t21 → t40. In practice,
period of stimulation and period of rest are repeated many
times.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1

Stimulation pulses

Time(ms)

t
2
=50ms

t
20

=950ms

t
21

=1s
t
40

=1950ms

t
41

=2s

t
1
=0s

Fig. 1. Stimulation pulses example (amplitude ηi = 0.8 during the
stimulation time of 1s and ηi = 0 during the rest time of 1s with a constant
interpulse I = 50ms)

TABLE I
MARGIN SETTINGS

Symbol Unit Value description
CN — — Normalized amount of

Ca2+-troponin complex
F N — Force generated by muscle
ti ms — Time of the ith pulse
n — — Total number of

the pulses before time t
i — — Stimulation pulse index
τc ms 20 Time constant that commands

the rise and the decay of CN
R0 — 1.143 Term of the enhancement

in CN from successive stimuli
A N

ms
— Scaling factor for the force and

the shortening velocity
of muscle

τ1 ms — Force decline time constant
when strongly bound
cross-bridges absent

τ2 ms 124.4 Force decline time constant
due to friction between actin
and myosin

Km — — Sensitivity of strongly bound
cross-bridges to CN

Arest
N
ms

3.009 Value of the parameter A
when muscle is not fatigued

Km,rest — 0.103 Value of the parameter Km
when muscle is not fatigued

τ1,rest ms 50.95 The value of the parameter τ1
when muscle is not fatigued

αA
1

ms2
−4.0 10−7 Coefficient for the force-model

parameter A in the fatigue
model

αKm
1

msN
1.9 10−8 Coefficient for the force-model

parameter Km in the fatigue
model

ατ1
1
N

2.1 10−5 Coefficient for force-model
parameter τ1 in the fatigue
model

τfat s 127 Time constant controlling the
recovery of (A, Km, τ1)

III. ESTIMATION OF THE STATE VARIABLES OF THE
FORCE FATIGUE MODEL

The model used for this study (five state variables) is
based on force measurements collected from a set of subjects.
Thus, the accuracy of the calculated parameters is directly
related to these persons. In this study, we suppose that initial
conditions are different following the subject under study.
That is why, we need to estimate some of these five initial
conditions. Indeed, from a first analysis we can deduce that
the rest values CN (t1) = 0 and F (t1) = 0 of CN and
F respectively are realistic and don’t need any estimation.
The remaining parameters are Arest, Km,rest and τ1,rest.
Concerning Km,rest, a sensibility study is realized in order
to determine its effect on the force variation.

A. Sensibility study of the force versus state variables

1) Sensibility study of the force versus Km:: The force
evolution is compared for Km,rest and different values
K
′

m,rest (±30% of error) for I = 10ms, 50ms and 100ms
(see Fig. 2 for I = 10ms). In the case of I = 10ms,
the maximum force error is of −0.3%. Following Interpulse
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Fig. 2. Evolution of Km for different initial conditions (case of I = 10ms)
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Fig. 3. Relative error of the force for a well known and erroneous Km
initial condition (case of I = 10ms)

value, the maximum force error is obtained for I = 100ms
(−1.3%) which means that a tolerance of ±30% gives force
evolution with good accuracy.

2) Sensibility study of the force versus a part of A and
τ1 derivatives:: We compare the derivative of A and τ1 (Eq.
(5) and Eq. (7), respectively) with the ”simplified” following
derivatives (we assume a maximum stimulation time of 20s):

dA

dt
= αAF (11)

dτ1
dt

= ατ1F. (12)

Using (Eq. (5) and Eq. (7)) and (Eq. (11) and Eq. (12)),
the force error was computed in the cases of η = 0.1, 0.5
and 1 with I = 10ms, 100ms (during 10 stimulation-rest
periods of 2s).

The figures (Fig. 4), (Fig. 5) and (Fig. 6) represent the
relative error for A, τ1 and F , respectively. The worst case
is obtained for ηi = 1, I = 100ms where the relative error
reaches 5.4%. The figure (Fig. 7) shows the force evolution
for the two cases.
From this, we can define a ”simplified model” (Eq. (1), Eq.
(2), Eq. (4), Eq. (6), Eq. (11) and Eq. (12)). This simplified
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Fig. 4. Relative error between A and its approximated value for different
stimulations
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Fig. 5. Relative error between τ1 and its approximated value for different
stimulations
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Fig. 7. The force evolution in the case of ηi = 1 and I = 10ms (force
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model will be used to calculate the correction term of the
observer (see the following section).

B. High-gain observer synthesis for the estimation of A and
τ1

In this section, we design a modified version of the
standard high-gain observer given in [9] taking into account
the specific structure of the problem.
The system defined by the force equation Eq. (2) and the
fatigue model (Eq. (5) and Eq. (7)) can be rewritten as the
single input-output system:{

ẋ(t) = βm(t, Es(t))f(x(t), Es(t))
y(t) = h(x(t)) = F (t),

(13)

with x = (F,A, τ1) ∈ R3, y ∈ R, Es ∈ R.

β =
CN

CN +Km
, 0 < β < 1. (14)

Note that in Eq. (13)), Km is not a state variable thanks to
the robustness of the solution with respect to this variable
(see Sensibility study of the force versus Km). We introduce
the change of variables φ:{

φ : R3 → R3

x→ φ(x) = [h(x), Lf1(h(x)), L2
f1

(h(x))]
(15)

f1(x(t), Es(t)) being the simplified expression of
f(x(t), Es(t)) and calculated from the simplified model
((2), (11) and (12)). The simplification allows to avoid the
ill-conditioning of (∂φ∂x (x̂(t))−1. The modified high-gain
observer is defined as:

˙̂x(t) = βmf(x̂(t), Es(t))− βm(
∂φ

∂x
(x̂(t))−1S−1θ CT (Cx̂(t)− y(t))

(16)

with m is a positive integer. Sθ is a symmetric positive
definite matrix given by the following Lyapunov equation:

θSθ(t) +ATSθ(t) + Sθ(t)A = CTC (17)

where θ is a tuning parameter,

A =

 0 1 0
0 0 1
0 0 0

,C =
(

1 0 0
)
.

The terms of this matrix Sθ = [Sθ(l, k)]1≤l,k≤3 have the
following form:

Sθ(l, k) = (−1)l+k
(
l + k − 2
k − 1

)
θ−(l+k−1) ,

(
n
k

)
=

n!
(n−k)!k!

C. Muscular force control

The estimation of the state variables vector is used as an
initial variables vector to perform a predictive strategy (over
an horizon of HOR equal interpulse intervals) to bring the
mean force value Fmean over HOR (see procedure below)
to a force reference (see [12]). The interpulse I is fixed and
ηi is the control variable.

We use a numerical integration time called Stepint, and
for a fixed horizon HOR, define DataF by:

DataF = HOR ∗ I

stepint
(18)

1) Algorithm:
1) Give Finalt, k = 1
2) CN (tk), F (tk), Â(tk), τ̂1(tk), Km(tk)
3)

Es =
1

τc

k+HOR∑
i=1

(ηiH(tk + i ∗ Stepint − ti)

∗Ri exp(− tk + i ∗ Stepint − ti
τc

))

(19)

4) Fmean = 1
DataF

∑DataF
i=1 F (tk + i ∗ Stepint, Es)

5) η̄k = η̄(tk) = argmin
ηk∈[0,1]

(Fmean − Fref )2

6) Compute Â(t), τ̂1(t), t ∈]tk, tk+1]
7) if tk+1 = Finalt ⇒ stop, else, k = k+ 1, back to 2

In this case (fixed I and HOR), only I = 10ms(100Hz)
is considered for the computation of the predictive control.

IV. SIMULATION RESULTS

MATLAB/SIMULINK software was used to perform
the different simulations with Runge-Kutta solver and an
integration time stepint0 = 1ms. The force-fatigue model
depends on six free model parameters (τc, A, τ1, τ2, R0,
and Km). The values of these parameters were computed in
the case of a typical subject.

A. Observer and control simulation Results for HOR=10

For estimation simulation, we consider the worst case of
+30% of error of Km. Fig. (8) and Fig. (9) represents the
A estimates for 100Hz(I = 10ms) and 40Hz(I = 25ms),
respectively. Fig. (10) and Fig. (11) are the τ1 estimates for
100Hz and 40Hz. Â converges after 50ms when I = 10ms



and 100ms when I = 25ms. Concerning τ̂1, it converges
after 75ms when I = 10ms and 200ms when I = 25ms.
Large I seems to delay the convergence of the observer.
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Fig. 8. Evolution of A and Â for I = 10, 30% error of Km
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Fig. 9. Evolution of A and Â for I = 25, 30% error of Km

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

350

400

Time (ms)

 

 

τ
1
 (interpulse=10ms, 30% error of Km)

estimated τ
1

0 50 100 150 200 250 300 350

49

50

51

52

53

54

55

56

57

 

 

Fig. 10. Evolution of τ1 and τ̂1 for I = 10, 30% error of Km
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Fig. 11. Evolution of τ1 and τ̂1 for I = 25, 30% error of Km

Fig. (12) represents the control strategy (for a prediction
horizon HOR = 10) based on the proposed observer for
I = 25ms and a mean force reference of 250N . It can be
observed that the force mean value converges to the force
reference after 200ms.
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Fig. 12. Evolution of F , F̂ and F mean value over I for I = 25, 30%
error of Km, Fref = 250N

B. Control simulation results

1) Control precision following the prediction horizon: :
The choice of HOR in Fig. (12) is motivated by different
tests (different stimulation frequencies and force reference
values). Fig. (13) and Fig. (14) represent control results for
(I = 10ms, Fref = 50N ) and (I = 50ms, Fref = 330N ).
In these two cases, the more adequate prediction horizon is
HOR = 10 to give short response time with a low overshoot.
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Fig. 13. Evolution of F for I = 10ms, Fref = 50N and different
prediction horizon lengths
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Fig. 14. Evolution of F for I = 50ms, Fref = 330N and different
prediction horizon lengths

2) Fatigue effect: : Fig. (15) and Fig. (16) are the force
response and the control (pulses amplitudes) applied to bring
Fmean to 250N , respectively. It can be observed that starting
from the 4th period, the pulses amplitudes saturate at 1
which means that the FES is reaching its maximum value
to counteract the fatigue effect.
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Fig. 15. Evolution of F for Fref = 210N and I = 100ms along 5
periods, HOR = 10
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V. CONCLUSION

Our study aims to present control-observer techniques
into the FES control of the force-fatigue model of Ding.
Numerical simulations validate these techniques. This work
is the first step of a complete study in the frame of (closed
loop) optimal control analysis of the problem.
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