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Predictive Control Based on Nonlinear Observer for Muscular Force

and Fatigue Model

T.Bakir1, B. Bonnard2 and S. Othman3

Abstract— The Functional Electrical Stimulation (FES) is
used in the case of neurological disorders (paralyzed muscles)
or the muscle reinforcement (sportsmen). A recent model
was proposed coupling a force model and a fatigue model.
Based on the specific structure of the model, we present a
predictive control scheme using online estimation of the fatigue
variables with a nonlinear observer. It is numerically tested in
a preliminary study.

I. INTRODUCTION

Functional Electrical Stimulation (FES) consists of send-

ing an electrical stimulation to the muscle in order to pro-

duce functional movements. FES can be used for muscular

reinforcement or for muscles reeducation. In the case of

paralysis, FES led to activate the paralyzed muscles to

produce movements. However, current FES-system induces

a muscular fatigue and imprecise movements [1].

The simplest models are force models of [2], [3] and a

more sophisticated model was proposed by [4], [5], [6], [7]

where the force model is coupled to the fatigue model. This

led to a five dimensional set of differential equations where

the input is a train of electrical stimulations whose aim is to

produce a force response.

Only few works used Ding model to design an optimized

train of pulses to control the force level. [8], [9], [10]

used a Model-Free Control (MFC), a predictive strategy

(experimental case) and a nonlinear technique (input output

linearization) to control the force level, respectively.

Our contribution is to make a preliminary analysis of

the control problem in the frame of development of recent

techniques in nonlinear control based on the design of a high-

gain nonlinear observer, adapting the technique of [11] to our

study to perform an inline fatigue parameters estimation. It is

used to design a predictive control and improving the results

of [10]. A sequence of preliminary numeric simulations is

presented to validate the pertinence of the techniques.

The article is organized in 4 sections. In section 2, the

force-fatigue model is presented and analyzed. In section 3,

a prior estimation of the sensitivity of the fatigue variables-

parameters are analyzed and used to the design of the high-

gain nonlinear observer. The predictive control scheme is

presented. The final section 4 is devoted to the numerical

study of the force control problem to bring the force to
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2Univ. Bourgogne Franche-Comté, IMB Laboratory UMR CNRS 5584,
Dijon, and INRIA team Mc TAO, Sophia Antipolis, France (e-mail:
Bernard.Bonnard@u-bourgogne.fr)

3Univ. Claude Bernard Lyon1, LAGEP Laboratory UMR CNRS 5007,
Villeurbanne, France (sami.othman@univ-lyon1.fr)

the reference force based on the inline estimation of the

fatigue state variables. Note that it is a preliminary control

strategy aiming to test the validity of the observer to provide

more sophisticated optimal control strategy for this specific

problem.

II. MATHEMATICAL FORCE-FATIGUE MODEL

We consider the force-fatigue model developed by [6],

[7], this model could be decomposed in two subsystems.

The first system is the force model, where the force is

controlled using the CN variable which takes into account the

calcium kinetics and the calcium-troponin interaction during

the muscle activation. It can be written as:

dCN

dt
= Es(t)−

CN

τc
(1)

dF

dt
= A

CN

Km + CN

−
F

τ1 + τ2
CN

Km+CN

. (2)

Where in Eq. (1), A, τ1 and Km are the variables of the

fatigue model. The function Es(t) represents the control

variables consisting to electrical stimulations:

Es(t) =
1

τc

n
∑

i=1

ηiH(t− ti)Ri exp(−
t− ti

τc
) (3)

associated to n pulses 0 = t1 < t2 < ... < tn < T

over the period. H(t − ti) is the Heaviside step function:

= 0, t < ti, = 1, t ≥ ti
Table I gives definition and details of the symbols used

in the above equations, Ri in Eq. (1) is a scaling term

that accounts for the nonlinear summation of the calcium

transient in response to two consecutive pulses, and is given

by:

Ri =

{

1 for i = 1

1 + (R0 − 1) exp(− ti−ti−1

τc
) for i > 1.

(4)

Note that in Eq. (3) appear the (discrete) control variables

which consist into:

• The interpulse: Ii := ti − ti−1 for i > 1. If fixed, it is

denoted I .

• The scaling factor ηi which is the tuning factor of the

applied electric intensity.

The second part of the model is the additional fa-

tigue model which describes the changes of parameters

(A, Km, τ1) in the force model during the fatigue con-

ditions, it consists into the three differential equations Eqs.

(5)–(7):
dA

dt
= −

A−Arest

τfat
+ αAF (5)



dKm

dt
= −

Km −Km,rest

τfat
+ αKm

F (6)

dτ1

dt
= −

τ1 − τ1,rest

τfat
+ ατ1F. (7)

Where again we refer to Table I for the definitions and

details of the symbols of the fatigue model.

Concerning the force model, a first useful result is the

following:

Proposition 1. Assuming A, Km and τ1 be fixed, the

force model can be integrated by quadrature using a time

reparameterization.

Proof. Eq. (2) can be written as:

dF (t)

dt
= a(t) + b(t)F (t) (8)

where a(t) and b(t) are obtained by integrating Eq. (1). Since

b(t) is 6= 0, Eq. (8) can be written as:

dF (t)

b(t)dt
= c(t) + F (t), (9)

and by setting

ds = b(t)dt (10)

the integration of Eq. (9) is straightforward.

FES stimulation: clearly the electrical stimulation Es(t):
0 = t1 < t2 < ... < tn < T decomposes into a period of

stimulation 0 = t1 < ... < tk followed by a period of rest.

Fig. 1 represents the stimulation pulses with I = 50ms,

ηi = 0.8 during a stimulation period of 1s t1 → t20 and

ηi = 0 during a rest period of 1s t21 → t40. In practice,

period of stimulation and period of rest are repeated many

times.
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Fig. 1. Stimulation pulses example (amplitude ηi = 0.8 during the
stimulation time of 1s and ηi = 0 during the rest time of 1s with a constant
interpulse I = 50ms)

TABLE I

MARGIN SETTINGS

Symbol Unit Value description

CN — — Normalized amount of

Ca2+-troponin complex
F N — Force generated by muscle

ti ms — Time of the ith pulse
n — — Total number of

the pulses before time t
i — — Stimulation pulse index
τc ms 20 Time constant that commands

the rise and the decay of CN

R0 — 1.143 Term of the enhancement
in CN from successive stimuli

A N
ms

— Scaling factor for the force and

the shortening velocity
of muscle

τ1 ms — Force decline time constant
when strongly bound
cross-bridges absent

τ2 ms 124.4 Force decline time constant
due to friction between actin
and myosin

Km — — Sensitivity of strongly bound
cross-bridges to CN

Arest
N
ms

3.009 Value of the parameter A

when muscle is not fatigued
Km,rest — 0.103 Value of the parameter Km

when muscle is not fatigued
τ1,rest ms 50.95 The value of the parameter τ1

when muscle is not fatigued

αA
1

ms2
−4.0 10−7 Coefficient for the force-model

parameter A in the fatigue
model

αKm

1

msN
1.9 10−8 Coefficient for the force-model

parameter Km in the fatigue
model

ατ1
1

N
2.1 10−5 Coefficient for force-model

parameter τ1 in the fatigue
model

τfat s 127 Time constant controlling the
recovery of (A, Km, τ1)

III. ESTIMATION OF THE STATE VARIABLES OF THE

FORCE FATIGUE MODEL

The model used for this study (five state variables) is

based on force measurements collected from a set of subjects.

Thus, the accuracy of the calculated parameters is directly

related to these persons. In this study, we suppose that initial

conditions are different following the subject under study.

That is why, we need to estimate some of these five initial

conditions. Indeed, from a first analysis we can deduce that

the rest values CN (t1) = 0 and F (t1) = 0 of CN and

F respectively are realistic and don’t need any estimation.

The remaining parameters are Arest, Km,rest and τ1,rest.

Concerning Km,rest, a sensibility study is realized in order

to determine its effect on the force variation.

A. Sensibility study of the force versus state variables

1) Sensibility study of the force versus Km: The force

evolution is compared for Km,rest and different values

K
′

m,rest (±30% of error) for I = 10ms, 50ms and 100ms

(see Fig. 2 for I = 10ms). In the case of I = 10ms,

the maximum force error is of −0.3%. Following Interpulse



Fig. 2. Evolution of Km for different initial conditions (case of I = 10ms)
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Fig. 3. Relative error of the force for a well known and erroneous Km

initial condition (case of I = 10ms)

value, the maximum force error is obtained for I = 100ms

(−1.3%) which means that a tolerance of ±30% gives force

evolution with good accuracy.

2) Sensibility study of the force versus a part of A and

τ1 derivatives: We compare the derivative of A and τ1 (Eq.

(5) and Eq. (7), respectively) with the ”simplified” following

derivatives (we assume a maximum stimulation time of 20s):

dA

dt
= αAF (11)

dτ1

dt
= ατ1F. (12)

Using (Eq. (5) and Eq. (7)) and (Eq. (11) and Eq. (12)),

the force error was computed in the cases of η = 0.1, 0.5
and 1 with I = 10ms, 100ms (during 10 stimulation-rest

periods of 2s).

The figures (Fig. 4), (Fig. 5) and (Fig. 6) represent the

relative error for A, τ1 and F , respectively. The worst case

is obtained for ηi = 1, I = 100ms where the relative error

reaches 5.4%. The figure (Fig. 7) shows the force evolution

for the two cases.

From this, we can define a ”simplified model” (Eq. (1), Eq.

(2), Eq. (3), Eq. (4), Eq. (6), Eq. (11) and Eq. (12)). This

simplified model will be used to calculate the correction term

of the observer (see the following section).

Fig. 4. Relative error between A and its approximated value for different
stimulations

Fig. 5. Relative error between τ1 and its approximated value for different
stimulations

Fig. 6. Evolution of F and its approximated value for different stimulations
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Fig. 7. The force evolution in the case of ηi = 1 and I = 10ms (force
approximation worst case)



B. High-gain observer synthesis for the estimation of A and

τ1

In this section, we design a modified version of the

standard high-gain observer given in [11] taking into account

the specific structure of the problem.

The system defined by the force equation Eq. (2) and the

fatigue model (Eq. (5) and Eq. (7)) can be rewritten as the

single input-output system:

{

ẋ(t) = βm(t, Es(t))f(x(t), Es(t))
y(t) = h(x(t)) = F (t),

(13)

with x = (F,A, τ1) ∈ R
3, y ∈ R, Es ∈ R.

β =
CN

CN +Km

, 0 < β < 1. (14)

Note that in Eq. (13)), Km is not a state variable thanks to

the robustness of the solution with respect to this variable

(see Sensibility study of the force versus Km). We introduce

the change of variables φ:

{

φ : R3 → R
3

x → φ(x) = [h(x), Lf1(h(x)), L
2
f1
(h(x))]

(15)

f1(x(t), Es(t)) being the simplified expression of

f(x(t), Es(t)) and calculated from the simplified model

((2), (11) and (12)). The simplification allows to avoid the

ill-conditioning of (∂φ
∂x

(x̂(t))−1. The modified high-gain

observer is defined as:

˙̂x(t) =βmf(x̂(t), Es(t))

− βm(
∂φ

∂x
(x̂(t))−1S−1

θ CT (Cx̂(t)− y(t))
(16)

with m is a positive integer. Sθ is a symmetric positive

definite matrix given by the following Lyapunov equation:

θSθ(t) +ATSθ(t) + Sθ(t)A = CTC (17)

where θ is a tuning parameter,

A =





0 1 0
0 0 1
0 0 0



,C =
(

1 0 0
)

.

The terms of this matrix Sθ = [Sθ(l, k)]1≤l,k≤3 have the

following form:

Sθ(l, k) = (−1)l+k

(

l + k − 2
k − 1

)

θ−(l+k−1) ,

(

n

k

)

=

n!
(n−k)!k!

In the particular case of the force fatigue model, β(t)
is piecewise smooth, the lack of regularity is numerically

bypassed by the choice of the integer m. For example, for

I = 10ms, m = 3 is sufficient to estimate the whole

variables. However, for I = 25ms, m must be at least equal

to 5 (see observer simulations below).

C. Muscular force control

The estimation of the state variables vector is used as an

initial variables vector to perform a predictive strategy (over

an horizon of HOR equal interpulse intervals) to bring the

mean force value Fmean over HOR (see procedure below)

to a force reference (see [12]). The interpulse I is fixed and

ηi is the control variable.

We use a numerical integration time called Stepint, and

for a fixed horizon HOR, define DataF by:

DataF = HOR ∗
I

stepint
(18)

1) Algorithm:

1) Give Finalt (I is a submultiple of Finalt), k = 1
2) CN (tk), F (tk), Â(tk), τ̂1(tk), Km(tk)
3) Fmean = 1

DataF

∑DataF

i=1 F (tk + i ∗ Stepint, Es)
with:

Es =
1

τc

k+(HOR−1)
∑

i=1

(ηiH(tHOR − ti)

∗Ri exp(−
tHOR − ti

τc
))

(19)

and: ηi = ηk for i = k, k + 1, ..., k + (HOR − 1),
tHOR = (k +HOR)× I

4) η̄k = η̄(tk) = argmin
ηk∈[0,1]

(Fmean − Fref )
2

5) Compute Â(t), τ̂1(t), t ∈]tk, tk+1]
6) if tk+1 = Finalt ⇒ stop, else, k = k+1, back to 2

In this case (fixed I and HOR), only I = 10ms(100Hz)
is considered for the computation of the predictive control.

IV. SIMULATION RESULTS

MATLAB/SIMULINK software was used to perform

the different simulations with Runge-Kutta solver and an

integration time stepint0 = 1ms. The force-fatigue model

depends on six free model parameters (τc, A, τ1, τ2, R0,

and Km). The values of these parameters were computed in

the case of a typical subject.

A. Observer and control simulation Results for HOR=10

For estimation simulation, we consider the worst case of

+30% of error of Km. Fig. (8) and Fig. (9) represents the

A estimates for 100Hz(I = 10ms) and 40Hz(I = 25ms),

respectively. Fig. (10) and Fig. (11) are the τ1 estimates for

100Hz and 40Hz. Â converges after 50ms when I = 10ms

and 100ms when I = 25ms. Concerning τ̂1, it converges

after 75ms when I = 10ms and 200ms when I = 25ms.

Large I seems to delay the convergence of the observer.



0 500 1000 1500 2000 2500 3000 3500 4000

Time (ms)

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

A (interpulse=10ms, 30% error of Km)
estimated A

0 20 40 60 80
2.7

2.8

2.9

3

Fig. 8. Evolution of A and Â for I = 10, 30% error of Km
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Fig. (12) represents the control strategy (for a prediction

horizon HOR = 10) based on the proposed observer for

I = 25ms and a mean force reference of 250N . It can be

observed that the force mean value converges to the force

reference after 200ms.
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B. Control simulation results

1) Control precision following the prediction horizon:

The choice of HOR in Fig. (12) is motivated by different

tests (different stimulation frequencies and force reference

values). Fig. (13) and Fig. (14) represent control results for

(I = 10ms, Fref = 50N ) and (I = 50ms, Fref = 330N ).

In these two cases, the more adequate prediction horizon is

HOR = 10 to give short response time with a low overshoot.
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Fig. 13. Evolution of F for I = 10ms, Fref = 50N and different
prediction horizon lengths
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2) Fatigue effect: Fig. (15) and Fig. (16) are the force

response and the control (pulses amplitudes) applied to bring

Fmean to 250N , respectively. It can be observed that starting

from the 4th period, the pulses amplitudes saturate at 1

which means that the FES is reaching its maximum value

to counteract the fatigue effect.
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V. CONCLUSION

Our study aims to present control-observer techniques into

the FES control of the force-fatigue model of Ding. The

proposed observer deals with the specific case of a contin-

uous system with a discrete control. The correction term is

related to the applied interpulse. The used nonlinear MPC

technique to control the force level depends on the optimum

search space which is not necessary convex. Despite the fact

that the found minimum could not be a global minimum,

appropriate receding horizon allowed to reach the force

reference. Numerical simulations validate these techniques.

This work is the first step of a complete study in the frame

of (closed loop) optimal control analysis of the problem.
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