[2+1] Cycloaddition Affording Methylene-and Vinylidenecyclopropane Derivatives: A Journey around the Reactivity of Metal- Phosphinito-Phosphinous Acid Complexes

Hervé Clavier, Gérard Buono

To cite this version:

Hervé Clavier, Gérard Buono. [2+1] Cycloaddition Affording Methylene-and Vinylidenecyclopropane Derivatives: A Journey around the Reactivity of Metal- Phosphinito-Phosphinous Acid Complexes .
Chemical Record, 2017, 17 (4), pp.399-414. 10.1002/tcr.201600081 . hal-01591163

HAL Id: hal-01591163
https://hal.science/hal-01591163
Submitted on 21 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
[2+1] Cycloaddition Affording
Methylene- and
Vinylidenecyclopropane
Derivatives: A Journey around the Reactivity of Metal-

Phosphinito-Phosphinous Acid

Complexes

Hervé Clavier* ${ }^{[a]}$ and Gérard Buono ${ }^{[a]}$

Abstract: Metal-phosphinito-phosphinous acid complexes are interesting catalysts exhibiting unique reactivities. In this account, we intend to provide a clear overview of palladium- and platinum- phosphinito-phosphinous acid complexes preparation starting from secondary phosphine oxides, and their applications in catalysis. They have been mainly used to develop [2+1] cycloadditions affording methylenecyclopropane derivatives using norbornenes and various alkynes as partners. As a function of the catalyst, the reaction conditions, or the nature of the reagents, different synthetic transformations have been observed: $[2+1]$ cycloadditions giving rise to either alkylidenecyclopropanes or vinylidenecyclopropanes, tandem $[2+1] /[3+2]$ cycloadditions... The mechanisms of these reactions have been studied to rationalize the different reactivities observed.

1. Introduction

Highly strained small molecules, such as cyclopropane derivatives, have always received a particular attention from the synthetic chemists community. Not only because their preparation represents a synthetic challenge but also as versatile synthons that can be used in a myriad of organic transformations. As subgroups of the class of cyclopropanes, methylenecyclopropane (MCP), alkylidenecyclopropane (ACP) and vinylidenecyclopropane (VDCP) derivatives have witnessed an ever-increasing number of applications in organic synthesis, in particular in late transition metal catalysis. ${ }^{1,2}$ Such interest was made possible thanks to the development of straightforward and efficient methodologies of preparation. Among the various strategies to prepare MCP derivatives, those based on [2+1] cycloadditions as key step are extremely powerful. The addition of carbenes to allenes or alkylidenecarbenes to alkenes represents the easiest routes for the synthesis of MCPs and ACPs, as highlighted by the numerous applications developed since 60's (Scheme 1). ${ }^{3}$ VDCPs are generally synthetized by the in-situ formation of a vinylidenecarbene intermediate - from diazoallenes or by the treatment of halogenoalkynes, halogenoallenes or polyhalogenocyclopropanes with a strong base - and its addition to alkenes.
Over the past decade, a significant part of our work has been dedicated to the investigation of the coordination chemistry of secondary phosphine oxides (SPOs) ${ }^{4}$ with transition metals ${ }^{5}$ and the use of the resulting complexes in new synthetic transformations. In the course for new applications in catalysis for phosphinito-phosphinous acid-containing palladium(II) complexes 2, they have been tested for the hydroalkynation of norbornadiene derivatives with alkyl- and aryl-substituted alkynes. Our group has thus reported that the Herrmann-Beller phosphapalladacycle 1a was a very powerful catalyst for this

[^0]

Scheme 1. [2+1] cycloaddition-based methodologies for the preparation of MCPs, ACPs and VDCPs.
reaction (Scheme 2). ${ }^{6}$ While surprisingly, with the same reactants, catalyst 2 led to the formation of alkylidenecyclopropane-containing products through a formal $[2+1]$ cycloaddition (Scheme 2). ${ }^{7}$ From these pioneering results, we further investigated the reactivity of phosphinito-phosphinous acid-containing palladium complexes and platinum-based analogues, and discovered several new transformations leading to s methylenecyclopropane derivatives as products but also as intermediates in the formation of more elaborate molecules.

Hydroalkynation

[2+1] Cycloaddition - ACP formation

Scheme 2. Hydroalkynation versus [2+1] cycloaddition: chemodivergent palladium-promoted transformations

This Account describes our group's contribution toward the preparation of alkylidene- and vinylidenecyclopropanes by [2+1] cycloaddition using metal-phosphinito-phosphinous acidpromoted catalyses and the associated reactivities of these useful synthons.

2. ACPs formation using palladium-phosphinito-phosphinous acid complexes

Hervé Clavier graduated from the Ecole Nationale Supérieure de Chimie de Rennes and received his M.Sc. in organic chemistry from the Université de Rennes where he completed his Ph.D. in 2005 under the supervision of Drs Jean-Claude Guillemin and Marc Mauduit. He then joined the research group of Prof. Steven Nolan as a post-doctoral fellow and followed him to the
 ICIQ in Tarragona. Early 2009, he moved to the School of Chemistry at the University of St Andrews to continue working with Prof. Nolan as a senior researcher. In October 2009, he was appointed Chargé de Recherche (CNRS) at Aix Marseille Université and obtained his habilitation in 2015. His scientific interests include coordination chemistry, transition metal catalysis and the development of new synthetic methodologies.

Gérard Buono is Emeritus professor of Ecole Central Marseille. He received a "Doctorat es Sciences Physiques" at the University AixMarseille in 1977 on the dynamic stereochemistry of pentacoordinate phosphorus. He became Professor of Organic Chemistry in 1987 at the University of Aix-Marseille and in 2003 at the Ecole
 Centrale Marseille. He headed the UMR CNRS "Synthesis Catalysis Chirality" (2000-2004) and the team "Chirosciences" (2008-2012) of the iSm2 UMR 7313. His research fields include asymmetric synthesis and catalysis, the design of chiral P stereogenic organophosphorus compounds and their applications in catalysis as ligands and lipase inhibitors. He has published over 170 research papers and book chapters as well as 10 patents. He supervised or co-supervised 40 PhD theses.

Palladium-based complexes bearing a phosphinito-phosphinous acid ligand were originally prepared by Dixon and Rattray from secondary phosphine oxides and $\mathrm{PdCl}_{4} \mathrm{~K}_{2} .{ }^{8}$ Early 2000's, the group of Li improved the synthetic procedure of complexes 5 using PdCl_{2} (cod) as palladium source and a subsequent treatment with triethylamine. ${ }^{9}$ Latter, Dai and Leung ${ }^{10}$ reported that upon treatment of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ with tertbutyl(phenyl)phosphine oxide 3c, complex 4c bearing two phosphinous acids was almost quantitatively formed (Scheme 3). ${ }^{11}$ In presence of triethylamine, $\mathbf{4 c}$ was converted into the chloro-bridged palladium dimer 5c bearing phosphinitophosphinous acid ligands. Unfortunately, 5c was found inefficient to catalyze $[2+1]$ cycloadditions between norbornene derivatives and alkynes. ${ }^{7}$ This lack of activity was attributed to the chlorine atoms which bind strongly palladium centers and prevent the release of a reaction site. However, by combining 5c to 4 equivalents of silver acetate, it was possible to isolate ACP 4 a with 15% yield after 24 h of reaction at $50^{\circ} \mathrm{C}$ (Scheme 4).
These results prompted us to develop new palladium-phosphinito-phosphinous acid complexes bearing acetate ligands. ${ }^{7}$ The treatment of $\mathrm{Pd}(\mathrm{OAc})_{2}$ with 2 equiv. of secondary

Scheme 3. Preparation of μ-chloro-bridged palladium dimer 5c bearing phosphinito-phosphinous acid ligands.

Scheme 4. [2+1] cycloaddition mediated by μ-chloro-bridged palladium dimer 5c
phosphine oxides (SPO) 3 at $60{ }^{\circ} \mathrm{C}$ for 2 h led to the coordination of two phosphinous acids while the released acetate trapped one proton from the phosphinous acid proton hence triggering the formation of the phosphinito-phosphinous acid ligand (Scheme 5). Dimeric μ-aceto-bridged species 2 were isolated in moderate to good yields according to the phosphorus substituents. Unfortunately, once isolated some of these complexes, for example 2a and $\mathbf{2 b}$ with phenyl and cyclohexyl P-substituents respectively, showed a low solubility in most organic solvents and did not allowed complete characterizations. Moreover, the catalytic activity of these well-defined complexes were found to be quite low. For example with $\mathbf{2 c}$, only 17% of $\mathbf{4 a}$ was isolated after 24 h of reaction at $50{ }^{\circ} \mathrm{C} .{ }^{7}$ Further studies demonstrated that addition of acetic acid in catalytic amounts enhanced the activity displayed by complexes 2. Instead of adding acid to the reaction media, the AcOH released upon insitu generation of the catalysts from $\mathrm{Pd}(\mathrm{OAc})_{2}$ can advantageously used for this purpose.

Scheme 5. Synthesis of μ-aceto-bridged palladium species bearing phosphinito-phosphinous acid ligands.

A thorough comparison between various SPO 3 highlighted the influence of the substituents on the phosphorus atom (Table 1). ${ }^{12}$ Whereas with SPO preligands 3 a and 3 c moderate activities were observed (entries 1 and 4), a better yield was reached with $\mathrm{PhBnP}(\mathrm{O}) \mathrm{H} 3 \mathrm{e}$ (entry 7). However the best results were obtained with cyclohexyl substituted SPOs 3b and 3d (entries 2 and 5). With these SPOs, it was even possible to carry out the reaction at room temperature and isolate ACP 4b in good yield (entries 3 and 6). The catalytic system with PhCyP(O)H 3d performed better in toluene. This SPO is generally the most efficient for this [2+1] cycloaddition and other reactivities which will be presented therein. Importantly, the [2+1] cycloaddition between norbornene derivatives and alkynes can be achieved only in presence of SPO preligands; no reaction occurred with triphenylphosphine, bidendate phosphorus-based ligands or phosphinic acid. Only ethyl phenylphosphinate $3 f$ allowed the formation of ACP but in low yield and along with many by-products (entry 8).

Table 1. SPO screening for the palladium-promoted [2+1] cycloaddition. ${ }^{[a]}$

[a] Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$), SPO ($12.5 \mathrm{~mol} \%$), norbornadiene (1 mmol), alkyne (0.5 mmol), $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(2.5 \mathrm{~mL}), 60^{\circ} \mathrm{C}$, 24 h . [b] Reaction performed at $20^{\circ} \mathrm{C}$. [c] Reaction carried out at $20^{\circ} \mathrm{C}$ in toluene.

Using the catalytic system $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{PhCyP}(\mathrm{O}) \mathrm{H}$ 3d, the scope of the [2+1] cycloaddition was found particularly broad. ${ }^{7,13}$ As depicted in Scheme 6, various alkylidenecyclopropanes could be prepared in moderate to quantitative yields. There is a good tolerance to various functional groups such as ethers, alcohols, sulfones, amines, nitriles, etc. Secondary propargyl
acetates or tertiary propargyl alcohols were also good alkyne partners (ACPs 4i and 4I). In addition of norbornadiene, many bicyclo[2.2.1]heptene compounds could be used: norbornene, benzonorbornadiene, dicyclopentadiene, bicyclic hydrazines and oxa-bridged [2.2.1] bicycles. However, the [2+1] cycloaddition could not be achieved with less reactive bicyclo[2.2.2]oct-7-ene derivatives.

Scheme 6. Selected scope of the [2+1] cycloaddition between norbornene derivatives and alkynes.

With electron-deficient alkynes such methyl propiolate, the expected ACP 4 was observed in the crude reaction mixture as well as a by-product. ${ }^{7}$ After silica gel chromatography, only the by-product was isolated in 56% and identified as the rearranged product 6q resulting from a valence isomerization process (Scheme 7). ${ }^{14}$

Scheme 7. $[2+1]$ cycloaddition with methylpropiolate as partner.

Since the carbon-carbon double bond configuration of $[2+1]$ cycloadducts 4 can be either E or Z, they exhibit a peculiar chirality called geometrical enantiomorphic isomerism (cis-trans enantiomerism or Z-E enantiomerism). ${ }^{15}$ Taking advantage of the SPO stereogenic center - when the two substituents R^{1} and R^{2} of the phosphorus atom are different - we were wondering if we could achieve the [2+1] cycloaddition in an enantioselective fashion. Several enantiopur SPOs were prepared according to the methodologies we developed ${ }^{16}$ and tested in catalysis using norbornadiene and phenylacetylene as benchmark substrates (Table 2). ${ }^{7,17}$ Despite moderate yields, phenyl tert-butyl substituted SPO 3c gave a promising asymmetric induction of 59% ee (entries 1 and 2). As expected, enantiopur SPO 3d performed better but led to a low ee (22%, entry 3). With other SPOs, almost no chiral induction was observed (entries 4-6). The absolute configuration of enantiopur (+)-4a was determined by vibrational circular dichroism (VCD) and assigned to the E isomer.
A closer examination of both the catalytic system and reaction conditions allowed the improvement of enantiomeric excesses. ${ }^{17}$ First, phosphinous acid-containing palladium complex 5c was found to be a more competent when it was associated to silver acetate. Especially since we discovered that the addition of chiral carboxylic acid boosted the enantiomeric induction (Table 3, entries 1 and 2). (S)-(+)-Mandelic acid gave the best results but no matched-mismatched effect was clearly demonstrated. Better ees were also reached when the reaction was performed in diethylether at $40^{\circ} \mathrm{C}$. The exemplification to other substrates showed that despite low yields in cycloadducts 4, high optical purities could be achieved (Table 3). For product $\mathbf{4 r}$, the
inversion of the ratio between the norbornadiene derivative and the alkyne even led to up to 95% ee (entry 5).

Table 2. SPO screening for the enantioselective formation of cycloadduct 4a. ${ }^{[\text {] }}$

Entry	SPO 3	Yield (\%)	ee (\%) ${ }^{[b]}$
1	$(S)-(-)-3 \mathbf{c}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=t \mathrm{Bu}$	40	58 (-)
2	$(\mathrm{R})-(+)-\mathbf{3 c}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=t \mathrm{Bu}$	42	$59(+)$
$3^{[c]}$	$(-)-3 \mathrm{~d}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Cy}$	80	22 (-)
4	$(-)-3 \mathrm{~g}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$	47	0
5	$(-)-3 \mathrm{~h}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n \mathrm{Bu}$	64	4 (-)
6	(-)-3i, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=2$-biphenyl	21	0

[a] Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$), SPO 3 (10 mol\%), norbornadiene (1 mmol), phenylacetylene (0.5 mmol), toluene (5 mL), $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$. [b] ee values were determined by chiral HPLC. [c] Reaction carried out at $25^{\circ} \mathrm{C}$ for 20 h .

Table 3. Selected examples of enantioselective [2+1] cycloadditions between norbornene derivatives and alkynes. ${ }^{[a]}$

		Ac, ive		
Entry	Additive	Product	Yield (\%)	ee (\%) ${ }^{[b]}$
1	none		72	58
2	(S)-(+)-Mandelic acid		65	70
3	(S)-(+)-Mandelic acid		26	67
4	(S)-(+)-Mandelic acid		28	80
$5^{[c]}$	(S)-(+)-Mandelic acid		21	95
6	(S)-(+)-Mandelic acid		25	72

[^1]

Scheme 8. Proposed mechanism for Pd-catalysed hydroalkynation and [2+1] cycloaddition reactions.

We were intrigued by the mechanism of the [2+1] cycloaddition especially since the use of a phosphapalladacycle, such as the Herrmann-Beller catalyst 1a, led a chemodivergent reaction with the formation of hydroalkynation products. ${ }^{6}$ Additional experimental results using acids or bases as additives showed that acidolyses are key steps in both catalytic cycles. Hydroalkynation is not influenced by the presence of acid but completely quenched in presence of base, whereas the [2+1] cycloaddition is favored by the addition of acid but indifferent to the presence of base. ${ }^{12}$ Mass spectrometry experiments, in particular collision-activated reactions (CAR) / collusion-induced dissociation (CID) allowed to gain insight into the reaction of alkynes with the catalyst and highlighted the formation of palladium-acetylide species. ${ }^{18}$ Then, a computational study was performed to rationalize the difference of reactivities between both catalytic systems (phosphapalladacycle vs. phosphinitophophinous acid palladium). ${ }^{12}$ The mechanisms depicted in Scheme 8 are based on density functional theory calculations and take into account experimental observations. For reader's convenience, palladium catalysts have been drawn on their monomeric form. Both reactions start with the η^{2}-coordination of the alkyne to catalyst \mathbf{A} to afford species \mathbf{B} which evolve to η^{1} coordination, so called palladium acetylide \mathbf{C}, with release of acetic acid. The insertion of the activated carbon-carbon double bond of the norbornene derivative into the Pd-carbon bond by a syn-carbometallation give the key intermediate \mathbf{D}. At this stage, with the Herrmann-Beller catalyst 1a $\left(\mathrm{Y}=\mathrm{CH}_{2}\right)$, the acidolysis step is fast and lead to the hydroalkynation product. However, with phosphinito-phophinous acid palladium complexes 2 ($\mathrm{Y}=$ PR^{\prime}), the carbon-carbon triple bond inserts into the palladiumcarbon bond to form a vinyl-palladium species E which after acidolysis afford the [2+1] cycloadduct. To explain that the second insertion occurs only with catalysts 2 , it was supposed that in the phosphinito-phosphinous acid ligand the two
phosphorus atoms are non-equivalent but interchangeable. As a result, the complex can adapt its geometry to favor the second insertion.

3. Phosphapalladacycle-Mediated Synthesis of ACPs

As aminomethylenecyclopropanes 7 are known to possess interesting biological activities, ${ }^{19}$ we studied the possibility to prepare them by $[2+1]$ cycloaddition using ynamides as partners. ${ }^{20}$ The reaction conditions and mainly the nature of the palladium-based catalyst were investigated using norbornadiene and N-phenyl- N-tosylynamide (Table 4). Whereas with combination of SPO 3c with $\mathrm{Pd}(\mathrm{OAc})_{2}$ gave no reaction, the use of the often more competent $\mathrm{PhCyP}(\mathrm{O}) \mathrm{H} 3 d$ allowed to isolate the expected cycloadduct 7 a with 44% after 24 h of reaction at $25^{\circ} \mathrm{C}$ (entries 1 and 2). Surprisingly, with the Herrmann-Beller catalyst 1a, the same ACP 7a was isolated and in a higher yield (66%, entry 3). This ability of phosphapalladacycles to promote the [2+1] cycloaddition with ynamides - and not the hydroalkynation - was tested with other catalysts 1b and 1c which gave ACP 7a in moderate yields (entries 4 and 5). Of note, with the more electron-rich phosphapallacycle 1c, the valence isomerized compound $8 \mathbf{8}$ was obtained as a by-product (entry 5). The scope of the phosphapalladacycle-mediated [2+1] cycloaddition was then explored with various ynamides and a range of norbornadiene and norbornene derivatives (Scheme 9). Overall, moderate to good yields were obtained in short reaction times. The catalyst system showed a good tolerance to various ynamides, 7 -substituted norbornadienes, benzonorbornadiene, norbornene, bicyclic hydrazines or oxa-bridged [2.2.1] bicycles. Due the E / Z geometry of the formed carbon-carbon double bond,
compound $7 \mathbf{i}$ was obtained as mixture of two diastereomers but with a low diastereoselectivity.

Table 4. Pd-mediated [2+1] cycloaddition of norbornadiene with ynamide. ${ }^{[a]}$

4		
Entry	Catalyst	Yield (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PhtBuP}(\mathrm{O}) \mathrm{H} \mathbf{3 c}$	0
2	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PhCyP}(\mathrm{O}) \mathrm{H} 3 \mathrm{~d}$	44
3	Phosphapalladacycle 1a	66
4	Phosphapalladacycle 1b	44
5	Phosphapalladacycle 1c	$48^{[\mathrm{b}]}$

[a] Reaction conditions: [Pd] (5 mol\%), SPO 3 (10 mol\%), norbornadiene (1 mmol), ynamide (0.5 mmol), $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(3 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$. [b] 18% of 8 a was also isolated.

8a
1a, $R=0$-Tol
1b, $R=P h$
1c, $R=C y$

$$
\left(81 \%-40^{\circ} \mathrm{C}, 2 \mathrm{~h}\right) \quad\left(61 \%-40^{\circ} \mathrm{C}, 6 \mathrm{~h}\right) \quad\left(54 \%-40^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)
$$

($73 \%-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$)

(77\%, dr = 1.3:1$40^{\circ} \mathrm{C}, 2 \mathrm{~h}$)

Scheme 9. Selected scope of the [2+1] cycloaddition between norbornene derivatives and ynamides.

To explain the formation ACPs 7 instead of hydroalkynation products, we believed that the strong polarization of the carboncarbon triple bond of ynamide induced by the nitrogen atom favored the second insertion into the carbon-palladium bond over the acidolysis (step from \mathbf{D} to \mathbf{E}, Scheme 8). This hypothesis was corroborated by the work of Ding and Hou, who reported the $[2+1]$ cycloaddition of norbornadiene derivatives with various propiolates (Scheme 10). ${ }^{21}$ In this reaction, 1a was found to be a good catalyst (43% yield) but after an optimization of the catalyst's structure, the binaphtyl-containing complex 1d exhibited higher efficiency (64\%). A further study of the reaction conditions showed that the addition of a substoichiometric amount of acid, such as p-methoxybenzoic acid, enhanced the catalytic activity. The scope of this reaction was found particularly broad and good yields were generally obtained (Scheme 10). Importantly, with norbornadiene, polycyclic structures equivalent to $\mathbf{6 q}$ (Scheme 7) and resulting from an isomerization process were obtained.

1d ($2.5 \mathrm{~mol} \%$)
$p-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$

Scheme 10. Phosphapallacycle-catalyzed [2+1] cycloaddition with propiolate derivatives.

The group of Hou investigated also ynones as partners in [2+1] cycloaddition. ${ }^{22}$ In this case, no ACP could be isolated since $[2+1]$ cycloadducts rearranged rapidly into polysubstituted furan derivatives 10 (Scheme 11). In this reaction, the biphenyl-based

Scheme 11. [2+1] cycloaddition with ynones followed by a rearrangement.
phosphapalladacycle 1e displayed a higher catalytic activity than the Herrmann-Beller complex 1a (64% vs. 34% at $50^{\circ} \mathrm{C}$). This transformation occurred under mild reaction conditions and its scope was found broad.
Our group having synthesized the enantiopure phosphapalladacycle 1f, ${ }^{23}$ we decided to evaluate it in asymmetric $[2+1]$ cycloaddition with ynamide and norbornadiene (Scheme 12). ${ }^{20} 1 \mathrm{f}$ displayed a good activity since the expected ACP 7a was obtained with a good yield of 80%. However, the chiral induction was found relatively modest (21% ee).

Scheme 12. Enantioselective [2+1] cycloaddition with ynamides.

4. Palladium-Phosphinito-Phosphinous Acid Catalyzed Formation of VDCPs

During the scope exploration of the [2+1] cycloaddition mediated by the $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{SPO} 3 d$ catalytic system, tertiary propargyl acetates were tested as partners. ${ }^{7}$ To our great surprise, the expected ACPs 4 were not obtained, but vinylidenecyclopropanes resulting from the release of acetic acid were isolated in low to good yield (64\% for VDCP 11a, Scheme 13).

Table 5. Influence of the reaction conditions on the [2+1] cycloadditions affording VDCPs 11. ${ }^{[a]}$
Entry
[a] Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, $\mathrm{SPO} 3 \mathrm{~d}(10 \mathrm{~mol} \%)$, norbornadiene (2 mmol), tertiary propargylacetate (1 mmol), toluene (5 mL), $48 \mathrm{~h} .[\mathrm{b}]$
determined by ${ }^{1} \mathrm{H}$ NMR. determined by ${ }^{1} \mathrm{H}$ NMR. H

Scheme 14. Pd-catalyzed ring-expansion of vinylidenecyclopropane.

This unusual tandem [2+1]/ring-expansion sequence was applied to several norbornene derivatives (Scheme 15). Compared to other products 12, bicyclo[3.2.1]octadienes 12d and 12e were obtained from benzonorbornadiene and 7substituted norbornadiene with similar yields but as a nearly single diastereomer: the exo.

12c (54\%, exolendo $=9: 1-24 \mathrm{~h})$

Scheme 15. Selected examples of tandem [2+1] cycloaddition/ring-expansion.

Recently, we reported a new methodology for the preparation of functionalized 7 -membered carbocycles based on the $[2+1]$ cycloaddition/ring-expansion sequence. ${ }^{25}$ Thus, starting from oxanorbornenes, this transformation would lead to the formation of oxa-bridged [3.2.1] bicycles and, after an appropriate cleavage of the temporary oxygen tether, interesting 7membered carbocycles will be obtained. Reaction parameters have been optimized for the formation of VDCP 13a (Table 6). First of all, oxa-bridged VDCP 13 were found less reactive than carba-bridged VDCP 12, despite analogous reactions conditions (toluene, $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$). No ring-expansion occurred; only VDCP 13a was obtained from the [2+1] cycloaddition. Once again, the key parameter of this transformation was found to be the nature
of the substituents on the phosphorus atom (Table 6). With diphenyl- and phenylbenzyl-substituted SPOs 3a and 3e good yields were reached (entries 1 and 5) but once more PhCyP(O)H 3d gave better results (76%, entry 4). Other SPOs afforded either complex mixture (entry 7) or low yieds (entries 2, 3 and 8). With triphenylphosphine or phosphite, no reaction occurred. Only with ethyl phenylphosphinate 3 f, it was possible to obtain the expected product 13a but in low yield and with various unidentified by-products (entry 6). This is due to the fact that a phosphinito-phosphinous acid ligand can also be formed from SPO 3 f.

Table 6. SPO screening for the palladium-promoted [2+1] cycloaddition affording VDCPs $13 .{ }^{\text {al }}$

Entry	SPO 3	Yield (\%)
1	3a, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}$	60
2	3b, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Cy}$	10
3	3c, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=t \mathrm{Bu}$	10
4	3d, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Cy}$	76
5	3e, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Bn}$	58
6	3f, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{OEt}$	18
7	3g, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$	Complex mixture
8	3h, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n \mathrm{Bu}$	32

[a] Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$), SPO 3 (12.5 mol\%), oxanorbornadiene (1 mmol), tertiary propargyl acetate (2 mmol), toluene (5 mL), $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

In order to demonstrate the specificity of the phosphinitophosphinous acid ligand, a control experiment was carried out with the 1,3-bis(diphenylphosphino)propane (dppp) which can be seen as a mimic of our bidendate ligand (Scheme 16). No VDCP could be detected, however several products were

Scheme 16. Control experiments using 1,3-bis(diphenylphosphino)propane (dppp) as ligand.
isolated: the vinylcyclopropane 14 a as the major product (44\%), the enone 15a (16\%) and substantial amounts of Hay-Glaser coupling product 16a (31\%).
The scope of the [2+1] cycloaddition affording VDCPs 13 was found particularly broad (Scheme 17). In addition of acetate, benzoate, pivalate or methylcarbonate could be used as leaving groups with a comparable efficiency. As long as the propargyl acetate was tertiary, various substituents were well tolerated; a moderate yield was only obtained for diphenyl-substituted VDCP 13c. When the two substituents of the propargyl acetate were different, the VDCP was isolated as a mixture of two diastereomers in an equimolar ratio such as for compound 13d.

13d ($\mathrm{dr}=1: 1.0,74 \%$)

Scheme 17. Survey of the [2+1] cycloaddition scope affording VDCPs 13.

As well, various functional groups were well tolerated, such as carbamates (13e), alcohols (13f and 13g), nitriles (13h) or tertiary amines (13i), and high yields were generally reached. On the other hand, the use of benzoxanorbornene as substrate led to a different outcome (Scheme 18). ${ }^{26}$ First, this compound exhibited a higher reactivity allowing to proceed at room temperature. Second, the expected VDCP 13j was isolated albeit in lower yield than usual (56%), due to the competitive formation of by-products 17 j and 18j. 17j resulted from a hydroalkynation followed by a β-alkoxyelimination. At first sight, 18j seemed to come from compound 17j though an intramolecular hydration of the carbon-carbon triple bond.

However, rising the reaction time to 3 days or the temperature to $60{ }^{\circ} \mathrm{C}$ did not change the ratio between the three products.
Oxa-bridged VDCPs 13 were less reactive for the ringexpansion than their carba-bridged counterparts (Table 7). ${ }^{25} \mathrm{By}$ increasing the reaction media concentration to 1 M , the ringexpansion could occur at $60^{\circ} \mathrm{C}$ without any catalyst, but only small quantities of the expected oxa-bridged [3.2.1] bicycle 19a were isolated (12%, entry 1). Under the same conditions, the use of the phosphinito-phosphinous acid ligand-containing palladium complex 2d allowed a slight enhancement of the yield (27\%, entry 2). A real breakthrough was achieved when $\mathrm{Pd}(\mathrm{OAc})_{2}$ was simply used as catalyst and 19 a could be obtained in 84% yield as a single diastereomer exo (entry 3). At lower concentration, the reaction performed more slowly (entry 4).

Table 7. Optimization of the ring-expansion of VDCP 13a giving rise to oxabridged [3.2.1] bicycle 19a. ${ }^{\text {a] }}$

[a] Reaction conditions: Catalyst ($5 \mathrm{~mol} \%$), VDCP (0.5 mmol), acetic acid (0.5 mmol), toluene ($0.5 \mathrm{~mL}, 1 \mathrm{M}$), $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$. [b] Reaction performed in 2.5 mL of toluene (0.2 M).

The ring-expansion was then broaden to several VDCPs 13 and various carboxylic acids. Selected examples are depicted in Scheme 19. This transformation worked well with functional groups such as carbamates or nitriles on VDCPs 13. In the same manner, a wide range of carboxylic acids, such as trifluoroacetic acid, chloroacetic acid, 2-acetamidoacrylic acid or salicylic acid, could be used. Overall, the expected oxabicyclo[3.2.1]oct-2-ene 19 were isolated in good yields and as single diastereomers.

Scheme 18. $[2+1]$ cycloaddition with benzoxanorbornene and tertiary propargyl acetate.

Scheme 19. Selected examples of ring-expansion of VDCPs 13.

5. Platinum-Phosphinito-Phosphinous Acid Promoted Synthesis of ACPs

Given the parallelism between the coordination chemistry of palladium and platinum, we attempted to prepare platinumbased complexes bearing a phosphinito-phosphinous acid ligand following the synthetic procedures developed for palladium. As depicted in Scheme 20, the reaction of $\mathrm{PtCl}_{2}(\mathrm{MeCN})_{2}$ with 2 equivalents of secondary phosphine oxides 3d required a thermal activation at $65^{\circ} \mathrm{C}$ to afford quantitatively the bis phosphinous acid platinum complex 20d as a 1:1 mixture of cis and trans isomers. ${ }^{27}$ A subsequent treatment of 20 d with 2 equivalents of silver acetate gave the desired phosphinitophosphinous acid platinum complex 21d in good yield. Of note, this complex was isolated under a monomeric form whereas in the palladium series only dimers were obtained. The compulsory thermal activation for the synthesis of 20d had an unexpected drawback with the partial racemization of the phosphorus stereogenic center when enantiopur SPOs were used. Therefore, the preparation of bis phosphinous acid platinum complexes 20 has been tested starting from other platinum salts.

Scheme 20. Preparation of platinum complex 21d bearing phosphinitophosphinous acid ligands from $\left[\mathrm{PtCl}_{2}(\mathrm{MeCN})_{2}\right]$.

The use of the more soluble PtCl_{2} (cod) allowed to carry out the reaction at room temperature and, after 2 days complex 20c was isolated in quantitative yield and as a 1:1 mixture of cis and trans isomers (Scheme 21). ${ }^{5 a, 27}$ In this case, no racemization of the phosphorus stereogenic center occurred. Addition of silver acetate led to the formation of complex 21c in 65% yield. Advantageously, with this procedure, the preparation of complexes 21 could be performed one pot from $\mathrm{PtCl}_{2}(\mathrm{cod})$ and SPO preligands.

Scheme 21. Synthesis of phosphinito-phosphinous acid platinum complex 21c starting from $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$.

The performances of complexes 20 and 21 were tested in the $[2+1]$ cycloaddition using norbornadiene and phenylacetylene as model substrates (Table 8). ${ }^{27}$ As anticipated, no reaction occurred in presence of the bis phosphinous acid platinum complex 20c (entry 1) but addition of AgOAc to trigger the formation of the phosphinito-phosphinous acid ligand allowed to isolate $4 \mathbf{a}$ in 65% (entry 2). Since the well-defined phosphinitophosphinous acid ligand-containing platinum complex 21c was found to display a lower catalytic activity (entry 3), we assumed that the presence of acetic acid - one equivalent is released during the formation of complexes 21 - was required to enhance the yield of $\mathbf{4 a}$. Thus, addition of $10 \mathrm{~mol} \%$ or up to 1 equiv. of AcOH boosted the formation of $\mathbf{4 a}$ (entries 4 and 5). The platinum-based system was found much more efficient than the analogous palladium catalyst (entries 5 and 6). A slight yield improvement and a cleaner reaction could even be obtained in reversing the ratio norbornadiene/phenylacetylene (entry 7). In this case, with the most efficient catalyst 21d (possessing phenyl and cyclohexyl substituents on the phosphorus atoms), we observed the formation of the dicycloadduct 22a in a 1:1.2 diastereomeric ratio along with the expected cycloadduct $4 \mathbf{a}$ (entry 8). ${ }^{27,28}$ Importantly, dicycloadducts 22 were never detected in the case of palladium-mediated [$2+1$] cycloadditions. Similarly to palladium, the platinum-catalyzed formation of ACPs was successfully widened to norbornene, benzonorbornene or diazabicyclic alkene (Scheme 22). For ACP 4t, the yield was found in the same range using either catalyst 21c or 21d. Cycloadduct $\mathbf{4 v}$ was isolated as a 1:1 mixture of diastereomers and the $\mathrm{N}-\mathrm{O}$ bond was subsequently cleaved with $\mathrm{Mo}(\mathrm{CO})_{6} / \mathrm{NaBH}_{4}$ to give the corresponding amidoalcohol.

Table 8. Optimization of the catalytic system for the Pt-mediated [2+1] cycloaddition. ${ }^{[a]}$

Entry	Catalytic system	Yield (\%)
1	20c (5 mol\%)	-
2	20c (5 mol\%), AgOAc (10 mol\%)	65
3	21c (5 mol\%)	29
4	21c (5 mol\%), AcOH (10 mol\%)	68
5	21c (5 mol\%), AcOH (1 equiv.)	80
6	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{SPO} 3 \mathrm{c}$ ($10 \mathrm{~mol} \%$)	42
$7^{[b]}$	21c ($5 \mathrm{~mol} \%$), AcOH (1 equiv.)	81
$8^{[b]}$	21d (5 mol\%), AcOH (1 equiv.)	$17^{[c]}$

[a] Reaction conditions: [Pt] (5 mol\%), norbornadiene (1 mmol), phenylacetylene (0.5 mmol), toluene (5 mL), $55^{\circ} \mathrm{C}, 20 \mathrm{~h} .[\mathrm{b}]$ Reactions performed with norbornadiene (0.5 mmol), phenylacetylene (1 mmol) [c] Dicycloadduct 22a was isolated as the major product (52%) in 1:1.2 ratio of diastereomers.

(51% with $21 \mathrm{~d}-14 \mathrm{~h}$) (68% with $21 \mathrm{c}-36 \mathrm{~h}) \quad(82 \%$ with $21 \mathrm{c}-36 \mathrm{~h})$

$$
\text { (97\% with 21d - } 14 \text { h) }
$$

($75 \%, \mathrm{dr}=1: 1$ with $21 \mathrm{~d}-38 \mathrm{~h}$)

From a mechanistic point of view, it seemed that the platinumcatalyzed $[2+1]$ cycloaddition differed from the palladium one. Indeed, combined mass spectrometry experiments (CollisionActivated Reaction (CAR)/Sustained Off-Resonance Irradiation
(SORI)) and density functional theory calculations suggested the formation of platinum-vinylidene species instead of palladiumacetylide intermediates \mathbf{C} (Scheme 8). ${ }^{29}$ The transformation would occur by a [2+2] cycloaddition between the platinumvinylidene and the olefin followed by a platinum extrusion. However these results have to be carefully considered since the ACPs formation works only with strained olefins.

6. Pt-Phosphinito-Phosphinous Acid Catalyzed [2+1]/[3+2] Cycloadditions

During the scope investigation of the platinum-catalyzed [2+1] cycloaddition, we observed the formation of an unexpected product when propargyl acetate was used as alkyne partner. ${ }^{28}$ As shown in table 9, entry 1, only small quantities of ACP 4w were isolated, while the tricyclic compound 23 w was the major product (62%). Compound 23 w was obtained as a single regioand stereoisomer, and its relative configuration was determined by NMR spectroscopies and X-ray diffraction analysis. Formation of $23 \mathbf{w}$ as single product upon increase of the reaction time to 3 days, suggested that $4 w$ is an intermediate in the formation of $23 w$ (entry 2). With catalyst 21c, both $4 w$ and 23w were observed albeit in much lower quantities (entry 3). On the same manner, in absence of acetic acid or using an in-situ generated catalyst from bis phosphinous acid platinum complex 20d, silver acetate and triethylamine, the catalytic activities were found very low even though 23 w was been always isolated as the major product (entries 4 and 5).

Table 9. Optimization of platinum-catalyzed tandem $[2+1] /[3+2]$ cycloaddition sequence. ${ }^{[a]}$

[a] Reaction conditions: [Pt] ($5 \mathrm{~mol} \%$), norbornadiene (0.5 mmol), propargyl acetate (1 mmol), toluene (5 mL), $55^{\circ} \mathrm{C}, 20 \mathrm{~h}$. [b] Reaction time: 72 h .

This unusual platinum-catalyzed tandem [2+1]/[3+2] cycloaddition sequence was successfully applied to various substrates at the condition that the alkyne partner possessed an oxygen atom on the propargylic carbon (Scheme 23). With alkynes containing either esters, ethers (alkyl-, aryl- and silylethers) or carbonates, the transformation occurred and tricyclic compounds $\mathbf{2 3}$ were isolated in fair to excellent yields.

Scheme 23. Selected examples of Pt-catalyzed $[2+1] /[3+2]$ cycloadditions.

In order to probe that ACP $\mathbf{4 w}$ is an intermediate in the formation of $23 \mathbf{w}$, we treated it with 2 equivalents of propargyl acetate under the optimized reaction conditions (Table 10, entry 1). Pleasingly, 23w was isolated as a single regio- and stereoisomer in 48% yield. With this result in hands, we further examined the scope of the [3+2] cycloaddition by setting reactions with 4 w and various alkynes (Table 10). This time, no requirement concerning the nature of the alkyne was observed and overall good yields of [3+2] cycloadducts 23 were obtained with propargylic alcohol, trimethylsilylacetylene, 1-hexyne, phtalimide- or sulfone-containing alkynes. Nevertheless, this transformation took place with the formation of by-products $\mathbf{2 4}$, which might result from the formation of a platinum π-allyl intermediate and incorporation of the alkyne moiety. Compounds 24 were isolated as exo isomers with yields up to 26%.
The necessity of the oxygen atom on the allylic carbon of alkylidenecyclopropane was confirmed by the reaction presented in Scheme 24. When ACP 4a was submitted to the conditions of the Pt-catalyzed $[2+1] /[3+2]$ cycloaddition sequence, no reaction took place on the ACP moiety. Instead
the carbon-carbon double bond of the norbornene reacted to afford the polycycle $\mathbf{2 5}$ a as a $1: 1$ mixture of diastereomers.

Table 10. Selected scope for the [3+2] cycloaddition. ${ }^{[\text {a] }]}$

[a] Reaction conditions: 21d ($5 \mathrm{~mol} \%$), ACP $\mathbf{4 w}$ (0.5 mmol), alkyne (1 $\mathrm{mmol}), \mathrm{AcOH}(1 \mathrm{mmol})$, toluene $(10 \mathrm{~mL}), 55^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

Scheme 24. Control experiment highlighting the necessity of the oxygen atom on the allylic carbon of ACPs.

In order to check whether the [3+2] cycloaddition could be achieved in the absence of the bicyclo[2.2.1]heptane moiety, an ethenolysis was performed on 4 w and after 4 days of reaction at $40{ }^{\circ} \mathrm{C}$ and regular addition of first generation Grubbs catalyst, ACP 26w was isolated in 74\% yield (Scheme 25). ${ }^{30}$ Compared to $\mathbf{4 w}, \mathbf{2 6 w}$ was less reactive and the reaction temperature had to be increased to $80^{\circ} \mathrm{C}$. Nonetheless, after a brief optimization (4 equivalents of phenylacetylene added dropwise for 16 hours), the expected tetrahydro-indene 27 w was obtained as a single diastereomer in good yield.

Scheme 25. Pt-catalyzed [3+2] cycloaddition in the absence of the norbornene structure.

A mechanism was proposed to rationalize both regio- and diastereoselectivities (Scheme 26). ${ }^{28}$ We assumed that the cationic platinum species \mathbf{F} coordinates both the alkyne and the carbon-carbon double bond of the ACP on its exo face and an oxidative coupling would form the platinacyclopentene \mathbf{H}. Due to steric interactions between substrates and ligands, \mathbf{H} would be obtained as a single regioisomer. For more clarity and to explain the diastereoselectivty, \mathbf{H} has been drawn as a single enantiomer I. The cyclopropane fragmentation would occur by a 1,2 shift of

[^2]

Scheme 28. Selected examples of reductive isomerization affording vinylcyclopropanes.

8. Conclusions and outlook

In summary, our group has developed straightforward and powerful synthetic routes to alkylidenecyclopropanes and vinylidenecyclopropanes from terminal acetylenic compounds and norbornadiene or oxanorbornadiene derivatives. These methods lie on $[2+1]$ cycloadditions which require the use of palladium- and platinum-based complexes bearing a phosphinito-phosphinous acid ligand. Only few exceptions have been noticed in the case of strongly polarized alkynes (ynamides, ynones, propiolates) for which [2 + 1] cycloaddition reactions could be achieved with phosphapalladacycles 1. Palladium and platinum complexes bearing phosphinito-phosphinous acid ligands can be easily prepared by treatment of appropriate metal salts with secondary phosphine oxides. The specificity of this ligand relies on the fact the two phosphorus atoms are nonequivalent but interchangeable and as a result, the electronic properties of the metal center can be finely adjusted.
With theses catalytic systems in hand, we investigated the reactivity of norbornene derivatives with terminal alkynes. As noted through this manuscript, this chemistry suffers from low predictive aspects but the serendipitous findings achieved make it extremely fascinating. Indeed, as a function of the catalyst, the reaction conditions, or the nature of the reagents, different synthetic transformations were discovered. With alkyl- and arylsubstituted alkynes, both palladium and platinum complexes gave rise to ACP derivatives. With alkyne partners possessing an oxygen atom on the propargylic carbon, platinum-based complexes catalyzed a $[2+1] /[3+2]$ cycloadditions sequence. With tertiary propargyl acetates, palladium-mediated [2+1] cycloadditions afforded VDCPs. The reaction of the latters was further investigated and an unusual ring expansion discovered.
Considering the unique catalytic properties of metal complexes bearing phosphinito-phosphinous acid ligands and the clearly under exploited enantioselective potential of these ligands - as highlighted by the interesting results presented therein - it can be confidently stated that they possess a bright future.

Acknowledgements

We would like to warmly thank all our collaborators who have contributed to this work over these years; their names are cited in the different references. We acknowledge Dr. Julie Broggi and Dr. Delphine Moraleda for useful comments on this manuscript.

Keywords: cycloaddition•palladium • platinum • secondary phosphine oxide • methylenecyclopropane
[1] For reviews on MCPs and ACPs, see: a) A. Brandi, A. Goti, Chem. Rev. 1998, 98, 589-636; b) I. Nakamura, Y. Yamamoto, Adv. Synth. Catal. 2002, 344, 111-129; c) M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117-3179; d) G. Audran, H. Pellissier, Adv. Synth. Catal. 2010, 352, 575-608; e) H. Pellissier, Tetrahedron 2010, 66, 8341-8375; f) A. Masarwa, I. Marek, Chem. Eur. J. 2010, 16, 9712-9721; g) L. Yu, R. Guo, Org. Prep. Proced. Int. 2011, 43, 209-259; h) M. Shi, J.-M. Lu, Y. Wei, L.-X. Shao, Acc. Chem. Res. 2012, 45, 641-652; i) A. Brandi, S. Cicchi, F. M. Cordero, A. Goti, Chem. Rev. 2014, 114, 7317-7420; j) H. Pellissier, Tetrahedron 2014, 70, 4991-5031.
[2] For reviews on VDCPs, see : a) J.-M. Lu, M. Shi, Tetrahedron 2006, 62, 9115-9122; b) M. Shi, L.-X. Shao, J.-M. Lu, Y. Wei, K. Mizuno, H. Maeda, Chem. Rev. 2010, 110, 5883-5913; c) D.-H. Zhang, X.-Y. Tang, M. Shi, Acc. Chem. Res. 2014, 47, 913-924.
[3] E. F. Ullman, W. J. Fanshawe, J. Am. Chem. Soc. 1961, 83, 23792383.
[4] For reviews on secondary phosphine oxides, see: a) L. Ackermann, Synthesis 2006, 1557-1571; b) L. Ackermann, R. Born, J. H. Spatz, A. Althammer, C. J. Gschrei, Pure Appl. Chem. 2006, 78, 209-214; c) L. Ackermann, Synlett 2007, 507-526; d) L. Ackermann In Phosphorus Ligands in Asymmetric Catalysis, Vol. 2 (Ed.: A. Börner), Wiley-VCH, Weinheim, 2008, pp. 831-847; e) T. M. Shaikh, C.-M. Weng, F.-E. Hong, Coord. Chem. Rev. 2012, 256, 771-803
[5] a) T. Achard, L. Giordano, A. Tenaglia, Y. Gimbert, G. Buono, Organometallics 2010, 29, 3936-3950; b) D. Martin, D. Moraleda, T. Achard, L. Giordano, G. Buono, Chem. Eur. J. 2011, 17, 12729-12740; c) L. V. Graux, M. Giorgi, G. Buono, H. Clavier, Organometallics 2015, 34, 1864-1871; d) L. V. Graux, M. Giorgi, G. Buono, H. Clavier, Dalton Trans. 2016, in press, DOI: 10.1039/C5DT04683A.
[6] a) A. Tenaglia, L. Giordano, G. Buono, Org. Lett. 2006, 8, 4315-4318; see also: b) A. Tenaglia, K. Le Jeune, L. Giordano, G. Buono, Org. Lett. 2011, 13, 636-639.
[7] J. Bigeault, L. Giordano, G. Buono, Angew. Chem. 2005, 117, 48314835; Angew. Chem. Int. Ed. 2005, 44, 4753-4757.
[8] K. R. Dixon, A. D. Rattray, Can. J. Chem. 1971, 49, 3997-4004.
[9] a) G. Y. Li, Angew. Chem. 2001, 113, 1561-1564; Angew. Chem. Int. Ed. 2001, 40, 1513-1516; b) G. Y. Li, G. Zheng, A. F. Noonan, J. Org. Chem. 2001, 66, 8677-8681; c) G. Y. Li, J. Org. Chem. 2002, 67, 36433650.
[10] a) W. Dai, K. K. Y. Yeung, W. H. Leung, K. K. Haynes, Tetrahedron: Asymmetry 2003, 14, 2821-2826; b) E. Y. Y. Chan, Q.-F. Zhang, Y.-K. Sau, S. M. F. Lo, H. H. Y. Sung, I. D. Williams, R. K. Haynes, W.-H. Leung, Inorg. Chem. 2004, 43, 4921-4926.
[11] For an early description of complex 4, see: R. B. Bedford, S. L. Hazelwood, M. E. Limmert, J. M. Brown, S. Ramdeehul, A. R. Cowley, S. J. Coles, M. B. Hursthouse, Organometallics 2003, 22, 1364-1371.
[12] P. Nava, H. Clavier, Y. Gimbert, L. Giordano, G. Buono, S Humbel, ChemCatChem, 2016, 7, 3848-3854.
[13] K. Le Jeune, S. Chevallier-Michaud, D. Gatineau, L. Giordano, A. Tenaglia, H. Clavier, J. Org. Chem. 2015, 80, 8821-8829.
$[14]$ a) H. Prinzbach, W. Eberbach, G. von Veh, Angew. Chem. 1965, 77, 545; Angew. Chem. Int. Ed. 1965, 4, 436-437; b) D. Aue, H. M. J. Meshishnek, J. Am. Chem. Soc. 1977, 99, 223-231; c) J. Krebs, D.

Guggisberg, U. Stämpfli, M. Neuenschwander, Helv. Chim. Acta 1986 69, 835-848; d) H. C. Volger, H. Hogeveen, M. M. P. Gaasbeek, J. Am. Chem. Soc. 1969, 91, 218-219; e) D. Kaufmann, H.-H. Fick, O Schallner, W. Spielmann, L.-M. Meyer, P. Gölitz, A. De Meijere, Chem. Ber. 1983, 116, 587-609.
[15] a) E. L. Eliel, S. H. Wilen, L. N. Mander, in Stereochemistry of Organic Compounds, Wiley: New York, 1994, pp. 1137-1138; b) R. E. Lyle, G. G. Lyle, J. Org. Chem. 1957, 22, 856; c) R. E. Lyle, G. G. Lyle, J. Org. Chem. 1959, 24, 1679-1684; d) G. G. Lyle, E. T. Pelosi, J. Am. Chem. Soc. 1966, 88, 5976-5279.
[16] a) A. Leyris, D. Nuel, L. Giordano, M. Achard, G. Buono, Tetrahedron Lett. 2005, 46, 8677-8680; b) D. Gatineau, D. H. Nguyen, D. Hérault, N. Vanthuyne, J. Leclaire, L. Giordano, G. Buono, J. Org. Chem. 2015, 80, 4132-4141.
[17] D. Gatineau, D. Moraleda, J.-V. Naubron, T. Bürgi, L. Giordano, G. Buono, Tetrahedron: Asymmetry 2009, 20, 1912-1917.
[18] R. Thota, D. Lesage, Y. Gimbert, L. Giordano, S. Humbel, A. Milet, G. Buono, J.-C. Tabet, Organometallics 2009, 28, 2735-2743.
$[19]$ a) A. G. Cook, S. B. Herscher, D. J. Schultz, J. A. Burke, J. Org. Chem. 1970, 35, 1550-1554; b) C. Cheng, T. Shimo, K. Somekawa, M. Kawaminami, Tetrahedron Lett. 1997, 38, 9005-9008; c) C. Cheng, T. Shimo, K. Somekawa, M. Baba, Tetrahedron 1998, 54, 2031-2040; d) Y.-L. Qiu, M. B. Ksebati, R. G. Ptak, B. Y. Fan, J. M. Breitenbach, J.-S Lin, Y.-C. Cheng, E. R. Kern, J. C. Drach, J. Zemlicka, J. Med. Chem. 1998, 41, 10-23; e) Y.-L. Qiu, J. Zemlicka, Synthesis 1998, 1447-1452;
f) M. Limbach, A. Lygin, M. Es-Sayed, A. de Meijere, Eur. J. Org. Chem. 2009, 1357-1364.
[20] H. Clavier, A. Lepronier, N. Bengobesse-Mintsa, D. Gatineau, H. Pellissier, L. Giordano, A. Tenaglia, G. Buono, Adv. Synth. Catal. 2013, 355, 403-408.
[21] D.-L. Mo, T. Yuan, C.-H. Ding, L.-X. Dai, X.-L. Hou, J. Org. Chem. 2013, 78, 11470-11476.
[22] G.-C. Ge, D.-L. Mo, C.-H. Ding, L.-X. Dai, X.-L. Hou, Org. Lett. 2012, 14, 5756-5759.
[23] D. Gatineau, L. Giordano, G. Buono, J. Am. Chem. Soc. 2011, 133, 10728-10731.
[24] J. Bigeault, I. De Riggi, Y. Gimbert, L. Giordano, G. Buono, Synlett 2008, 1071-1075.
[25] A. Lepronier, T. Achard, L. Giordano, A. Tenaglia, G. Buono, H. Clavier, Adv. Synth. Catal. 2016, 358, 631-642.
[26] A. Lepronier, G. Buono, H. Clavier, unpublished results.
[27] J. Bigeault, L. Giordano, I. De Riggi, Y. Gimbert, G. Buono, Org. Lett. 2007, 9, 3567-3570.
[28] T. Achard, A. Lepronier, Y. Gimbert, H. Clavier, L. Giordano, A. Tenaglia, G. Buono, Angew. Chem. 2011, 123, 3614-3618; Angew. Chem. Int. Ed. 2011, 50, 3352-3356.
[29] M. Karanik, D. Lesage, Y. Gimbert, P. Nava, S. Humbel, L. Giordano, G. Buono, J.-C. Tabet, Organometallics 2011, 30, 4814-482
[30] K. Le Jeune, L. Giordano, A. Tenaglia, H. Clavier, unpublished results.

Entry for the Table of Contents (Please choose one layout)

Layout 1:

PERSONAL ACCOUNT

This Account describes our group's contribution toward the preparation of alkylidene- and
vinylidenecyclopropanes by [2+1] cycloaddition using metal-phosphinitophosphinous acid-promoted catalyses and the associated reactivities of these useful synthons.

Hervé Clavier* and Gérard Buono
Page No. - Page No.
[2+1] Cycloaddition Affording Methylene- and
Vinylidenecyclopropane Derivatives: A Journey around the Reactivity of Metal-Phosphinito-Phosphinous Acid Complexes

[^0]: [a] Dr. H. Clavier and Prof. Dr. G. Buono Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
 E-mail: herve.clavier@univ-amu.fr

[^1]: [a] Reaction conditions: (S)-5c (5 mol\%), AgOAc (10 mol\%), norbornadiene derivative (2 mmol), alkyne (1 mmol), $\mathrm{Et}_{2} \mathrm{O}$ (5 mL). [b] ee values were determined by chiral HPLC. [c] Reaction carried out with norbornadiene (1 mmol) and alkyne (2 mmol).

[^2]: Scheme 27. Reductive cleavage of the nitrogen-nitrogen bond of cyclic hydrazine $\mathbf{4 n}$.

