
HAL Id: hal-01591161
https://hal.science/hal-01591161v1

Submitted on 20 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Holistic Monitoring Service for Fog/Edge
Infrastructures: a Foresight Study

Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard, Jerome Francois,
Adrien Lebre

To cite this version:
Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard, Jerome Francois, Adrien Lebre. A Holistic
Monitoring Service for Fog/Edge Infrastructures: a Foresight Study. The IEEE 5th International Con-
ference on Future Internet of Things and Cloud (FiCloud 2017), Aug 2017, Prague, Czech Republic.
pp.337-344, �10.1109/FiCloud.2017.30�. �hal-01591161�

https://hal.science/hal-01591161v1
https://hal.archives-ouvertes.fr

A Holistic Monitoring Service for Fog/Edge Infrastructures: a Foresight Study

Mohamed Abderrahim, Meryem Ouzzif and Karine Guillouard
Orange Labs, France

Email: firstname.lastname@orange.com

Jérôme Francois and Adrien Lebre
Inria, France

Email:firstname.lastname@inria.fr

Abstract—
Although academic and industry experts are now ad-

vocating for going from large-centralized Cloud Computing
infrastructures to smaller ones massively distributed at the
edge of the network, management systems to operate and use
such infrastructures are still missing.

In this paper, we focus on the monitoring service which
is a key element to any management system in charge of
operating a distributed infrastructure. Several solutions have
been proposed in the past for cluster, grid and cloud systems.
However, none is well appropriate to the Fog/Edge context.
Our goal in this study, is to pave the way towards a holistic
monitoring service for a Fog/Edge infrastructure hosting next
generation digital services. The contributions of our work are:
(i) the problem statement, (ii) a classification and a qualitative
analysis of major existing solutions, and (iii) a preliminary dis-
cussion on the impact of the deployment strategy of functions
composing the monitoring service.

1. Introduction

While the model of Cloud computing capabilities pro-
vided by a few mega data centers still prevails, the advent
of new usages related to Internet of Things applications
(IoT) [1], as well as the emergence of new technologies such
as Mobile Edge Computing (MEC) [2], Network Function
Virtualization (NFV) [3] and Software Defined Network
(SDN) [4] are today strongly challenging this model. As an
example, the projection regarding the number of connected
devices and applications that will consume Cloud services
and generate massive amounts of data is a severe scalability
challenge for the current model [5]. To cope with this
usage change, Cloud and network communities are now
advocating for going towards massively distributed small
sized infrastructures that are deployed at the edge of the
network, thus closer to end-users and their related devices,
and applications [6]. Referred to as the Fog/Edge paradigm,
this model is attracting growing interest as it also improves
services agility. For instance, IoT applications can benefit
from the deployment of edge nodes to perform real-time
analysis while preserving central data centers for in-depth
data analytics. Other applications include CDN (Content
Distribution Networks) or even augmented reality [7].

The drivers of such a (r)evolution lay in the development
of appropriate management systems that will enable, on the
first hand, an operator to aggregate, supervise and expose
such massively distributed resources and, on the other hand,
to implement new kinds of services that may be deployed
and managed by the operator itself or by third-party users.
However, designing a well-suited management system is a
challenging task because Fog/Edge infrastructures signifi-
cantly differ from traditional Cloud ones regarding hetero-
geneity, dynamicity and the potential massive distribution of
resources and networking environments.

In this paper, we focus on the monitoring service that is
a key element to management systems. These systems can
be the operator’s ones but also those deployed by third-party
users.

A few surveys on monitoring tools have been proposed
over the last years [8], [9], [10]. However, to our best
knowledge, none of them investigates the question from a
Fog/Edge Computing perspective. This is the goal of this
work.

The remainder of the article is as follows: Section 2
presents the target infrastructure specifics and the key prop-
erties its monitoring service should satisfy. Section 3 dis-
cusses the large analysis we conducted on existing monitor-
ing services. It evaluates how our approach fits the Fog/Edge
specifics. Section 4 gives some perspectives of this work.
Finally, Section 5 concludes the article.

2. Monitoring Requirements for Fog/Edge-
based Operator Infrastructures

2.1. Target Infrastructure Specifics

According to the view point of a network operator,
we propose to organize the envisioned infrastructure [11]
around four levels of resources, as depicted in Figure 1. In
the following, we refer to this platform as a Fog/Edge-based
operator infrastructure. These four levels of resources are as
follows:

• At the highest level, a few central (i.e., national or
international) points of presence (PoPs) including data
centers (DCs) infrastructures offer massive capacities
in terms of computation, storage and network services.
They may contain hundreds of high performance vir-
tualized general-purpose servers and specific network

Figure 1. Fog/Edge-based operator infrastructure

physical nodes to connect servers within clusters or to
external sites. Each node has capabilities in the range
of 32 to 64 of 2 GHz-cores, 64 to 128 GB of memory
and more than 1 TB of storage. It hosts either large
scale IT services (e.g., billing service), core control and
management network functions (e.g., Evolved Packet
Core functions), application platforms (e.g., messaging
applications) or a mix of them.

• At a lower level, tens of localized PoPs gather similar
servers to those of central PoPs in terms of perfor-
mance. However, the number of servers in each PoP
does not exceed fifty. Since such PoPs are closer to
end-users (up to 200-km radius areas), they may host
delay-sensitive services (e.g., user plane gateways) or
services causing significant localized data traffic (e.g.,
Content Delivery Networks) in order to improve the
user Quality of Experience (QoE). They are connected
to central PoPs through highly resilient fiber links
insuring latencies of a few hundreds of milliseconds.

• The access nodes (AN) level with a few thousands
elements offers neither compute nor storage capacity.
The role of the AN is limited to user connectivity only
(e.g., optical, radio access point) as they are designed
to be the most lightweight possible and therefore can
be installed on sites rent by the infrastructure operator
(e.g., public or private areas). Even the intelligent signal
processing function traditionally hosted on the AN
can be hosted on a higher level (such as localized
PoPs) thanks to virtualization techniques and a high
bandwidth of fiber over long distances.

• At the lowest level, the infrastructure operator may
use computational and network resources from a few
millions Edge Devices (ED) such as personal mobile
devices and home gateways. These devices have limited
capacity with CPU frequencies in the range of several
GHz, memory of several GB and storage up to tens or
hundreds GB. Moreover, this capacity is first dedicated
to the ED owner needs; the usage of the remaining

resources is mainly opportunistic, the operator may
have limited control over the resource availability and
the ED connectivity establishment. The number of
exploitable ED varies randomly. Such resources may
be invoked for temporary or event uses. They are
characterized by their volatility and a weak resilience
in terms of both computing and networking capacities.

The previous description shows that the Fog/Edge-based
operator infrastructure is widely different from a traditional
Cloud computing infrastructure. Three intrinsic characteris-
tics complicate its management:

• Large and massively distributed. While a traditional
Cloud basically relies on high performance servers and
networks placed on very few sites, a Fog/Edge-based
operator infrastructure is deployed across a significant
number of sites. The distance separating its resources
can reach hundreds of kilometers at the highest level.
To connect them, wired (e.g., copper or fiber) and
wireless (e.g., microwave or wifi) links are used. Both
the distance and the nature of the link affect the latency
as well as the bandwidth between the resources.

• Heterogeneous. The infrastructure is composed of sev-
eral heterogeneous resources: storage servers, compute
servers, specific routers, general-purpose switches, net-
work links, home gateways, user devices, application
platforms All those resources have different char-
acteristics in terms of capacity (e.g., high performance
servers vs. modest edge devices), reliability (dedicated
to the infrastructure like routers in PoPs or provisional
like an offered user terminal) and usage. Virtualiza-
tion introduces another level of heterogeneity since the
operated resources can be physical or virtual. This con-
cerns storage or compute resources as well as network
resources whose virtualization is possible thanks to
NFV [3].

• Highly dynamic. Fog/Edge-based operator infrastruc-
ture resources may be highly dynamic. Particularly,
jobs with short lifecycles are frequently instantiated and

migrated. This is also the case at the network level with
the recent Software Defined Network capabilities [12]
that enable the modification of network topology “on-
the-fly”. Finally, it also occurs at the lowest level
of the infrastructure where EDs may join and leave
the network permanently according to service usage,
failures, policies and maintenance operations.

2.2. Monitoring Fundaments

Today, infrastructure operators tend to automate as far
as possible network and data center operations relying on
management systems [13]. The complexity of the Fog/Edge-
based operator infrastructure described in Section 2.1 in-
creases the need for such a system. As depicted in Figure 2,
a management system may belong to the infrastructure oper-
ator itself, to an application hosted within the infrastructure
or to an infrastructure tenant. The monitoring service is a
key function to the management system. Furthermore, some
management systems may implement a MAPE (Monitoring,
Analyze, Planning, Execution) control loop which cannot be
carried out without a monitoring function [14]. However,
the monitoring function may be extracted from the MAPE
control loop. It may be shared among various management
systems leading to a more efficient use of the infrastructure.
It may also appear as a standalone service and represent a
commercial value like Amazon CloudWatch1, offered to the
clients of Amazon Web Services.

Next, such a monitoring service has to be highly avail-
able, as required by regulatory bodies [15]. For instance,
a temporal failure of the monitoring service may affect
management systems of time sensitive services or services
requiring high resiliency such as VoLTE (Voice over LTE, a
high-speed wireless communication for mobile phones). De-
signing such a highly available monitoring service becomes
more challenging due to the massive distribution, the large
heterogeneity and the highly dynamic characteristic of the
Fog/Edge-based operator infrastructure.

Figure 2. Monitoring service and functional decomposition

2.3. Monitoring Service Specification

A monitoring service fulfills different functions: obser-
vation of the monitored resources, data processing and data
exposition, as depicted in Figure 2. The processing function
may be further detailed into sub-operations such as measure-
ment aggregation (e.g., to adjust sampling), transformation

1. https://aws.amazon.com/cloudwatch/

of measurement into events, event processing and notifi-
cation management. To deploy such a monitoring service
on a Fog/Edge-based operator infrastructure with a high
availability, we claim the monitoring service must satisfy
the following properties:

• Scalability: The monitoring service should be able to
supervise a large number of resources. Moreover, it
should handle a sudden growth of load. That is, it
should adapt to an increase of request rate from the
different management systems and to an increase or a
decrease of the monitored resources without any impact
in terms of performance. The measurement sampling
may also have an impact on processing and network
capacity.

• Resilience to servers apparitions/removals: The mon-
itoring service cannot prevent the failure of the re-
sources hosting it. It should be designed to allow its
adaptation to any resource removal. That is particularly
important at the edge of the target infrastructure or
in the context of virtualized environments where the
resources are less reliable.

• Resilience to network changes/failures: The massively
distributed Fog/Edge-based operator infrastructure is
vulnerable to network failures particularly at the Edge
Devices level. Moreover, the monitoring service heavily
relies on the network to observe remote resources. For
instance, it should ensure the retransmission of data
lost in case of network failures.

One of the major challenges to meet all these properties
is the possibility of decomposing the monitoring service and
the possibility of distributing it geographically when needed.
Thus, we identify two other properties:

• Modularity: The heterogeneous resources of the
Fog/Edge-based operator infrastructure range from high
performance servers to modest performance user termi-
nals. To offer the monitoring service more choices of
deployments, its deployment should be made possible
on any type of these resources regardless of their
capacities.

• Locality: The monitoring service should ensure ade-
quate response delay regardless of the location of the
monitored resources which is particularly challenging
in the case of massively distributed infrastructures.
It may be required to deploy the monitoring service
nearest to its users, such as centralized management
systems, as well as to the monitored resources that may
be localized at the infrastructure edge level.

3. Qualitative Analysis of Monitoring Services

A huge number of monitoring services have been devel-
oped to monitor IT and network infrastructures. Using an
empirical approach to select the most appropriate monitoring
solution appears as a quite tricky task due to the large
heterogeneity, massive distribution and the highly dynamic
characteristic of the monitored resources: numerous test
scenarios should be conducted on each monitoring service

Figure 3. Monitoring Architectures Classification
Rows correspond to the decomposition granularity from no to fine-grained decomposition. Columns correspond to the software architecture model:

centralized, hierarchical and peer-to-peer.

to cover all possible combinations of deployment models,
metric natures, measurement load, failure occurrences, se-
curity threats . . .

We opt here for a qualitative approach. We identify nine
categories of monitoring architectures that differ from each
other according to their functional decomposition (none,
basic or fine-grained) and their architectural model (cen-
tralized, hierarchical or peer-to-peer). Figure 3 presents the
classification by illustrating each category. The following
section discusses how each of them responds to the moni-
toring service properties specified in Section 2.3.

3.1. Functional Decomposition

The monitoring service is implemented differently ac-
cording to the functional decomposition.

3.1.1. No Decomposition. In this category, the monitoring
function is performed entirely by a monolithic element. It
collects monitoring data from proprietary probes through
APIs, processes the observed measurements, and interfaces
with its own users. For instance, virtual network func-
tions usually embed ad-hoc probes and expose measurement
through their APIs. Physical probes installed in a data center
also expose environment parameters (temperature, humidity,
energy consumption. . .) through APIs. This model is really
minimalist and simple to carry out. However, the modular-
ity property is difficult to be attained, which is its main
drawback: executing such a monolithic monitoring function
requires significant execution resources. ED with restricted
capabilities may not be able to host it and to perform
intensive monitoring data processing tasks. Furthermore, in
case of network failures, the monitoring service may not

retrieve an anterior state of the monitored resources.

3.1.2. Basic Decomposition. In this category, the obser-
vation function is deployed on the monitored resource,
separately from the other monitoring functions (process-
ing and exposition). It enhances the resilience to network
failures. When possible, deploying an agent on the mon-
itored resource allows the monitoring service to adapt its
behavior to the infrastructure. For instance, it may adapt the
granularity of the reported measurements; it may also save
measurements locally in case of network failures. Regarding
modularity, this model remains insufficient.

3.1.3. Fine-grained Decomposition. In this last category,
the functional decomposition is higher. Each of the mon-
itoring functions may be deployed in separate servers or
devices. This model improves the modularity. In addition,
the risk of simultaneous failures of all the functions is re-
duced. The resilience to both servers removals and network
failures looks up.

3.2. Architectural Models

In this section, we discuss the centralized, hierarchical
and peer-to-peer models under the Fog/Edge perspective.

3.2.1. Centralized Model. In this model, only one instance
of each monitoring function is deployed except the obser-
vation function for which different instances may be locally
deployed on the resources (C2 and C3 cases).

This architectural model is quite intuitive. However, it
limits the monitoring service scalability as it cannot benefit
from additional resources to handle a peak of activity.
Furthermore, latencies between the monitoring service, the
resources to be monitored and the management systems may
be significant. Therefore, the locality property may not be
met easily.

3.2.2. Hierarchical Model. Unlike the centralized model,
the hierarchical model deploys a sufficient number of in-
stances of each monitoring function according to the size
of the infrastructure and the management systems’ require-
ments. Hence, the scalability is enhanced and latencies
between instances are reduced. The constraint is that those
instances should be hierarchically organized. A monitoring
instance offers its service to another one at a higher level.
The root instance has the most global view of the monitored
infrastructure and, by consequence, is the most suited for
interacting with management systems.

Consequently, the larger the infrastructure is, the more
complex and costlier is to maintain a hierarchical structure.
Each time a change occurs (either a server removal or a net-
work disconnection), the tree organization has to be rebuilt.
Moreover, the recovery may be time-consuming since it may
consist of an election process. Furthermore, each hierarchy
node may represent a single point of failure. In case of
failure, its interconnected nodes become unreachable. The
higher the level of the broken node is, the more significant

the failure impact is. Thus, even if the locality is improved,
it is still insufficient to satisfy the highly dynamic nature of
the target infrastructure.

3.2.3. Peer-to-peer Model. This last architecture model
allows the replication of instances without imposing any
specific structure organizing the relation between them. Any
instance may be connected to another one if needed. By
allowing multiple instances of a given function and commu-
nication between instances, this architectural model holds
the scalability property. In addition, it solves the expen-
sive structural maintenance issue by removing hierarchical
reliance between instances. As a result, this architectural
model copes with the highly dynamic feature of the target
infrastructure. Moreover, the resilience to server apparitions
and removals is further increased.

3.3. Overview

Table 1 summarizes how each category satisfies the
required properties. It shows that the functional decompo-
sition is a key parameter in the satisfaction of the specified
properties. C1, C2 and C3 are category examples having
the same architectural model. However, only C2 and C3
are resilient to network changes/failures and only C3 en-
ables the deployment of sub-functions on edge devices that
have limited capabilities (i.e., modularity) and improves
the resilience to server apparitions/removals. Similarly, the
architectural model is decisive in the assessment of the
architectures. For instance, the architectures C2, H2 and P2
have the same functional decomposition. However, H2 and
P2 bring scalability and only P2 offers locality. Considering
this logic, it is clear that the best architecture for a Fog/Edge-
based operator infrastructure is P3. In fact, unlike the cen-
tralized architectures, it has no constraint of single instance
element. Thus, it satisfies the scalability and locality criteria.
In addition, the adaptation of P3 in case of infrastructure
changes is not shackled by the tree structure of hierarchical
architectures. It offers the best level of resiliency to servers
apparitions/removals. Finally, P3 enables a finer functional
decomposition essential to the modularity property.

3.4. Classification of existing monitoring solutions

In this section, we present major solutions from the
literature and classify them according to the nine categories
as depicted in Table 1. For the sake of simplicity, we
arbitrarily chose to discuss them following the functional
decomposition axis.

3.4.1. No Decomposition. The C1 category is based on a
single element hosted by a resource which must be con-
nected to all the monitored resources. Many monitoring
solutions were built based on this architecture. For instance,
Collectd [16] is a general purpose monitoring solution which
gathers measurements sent by the monitored resources and

pushes them later to an external system. Near Field Moni-
toring [17] is intended to monitor Cloud computing infras-
tructures. It pulls the API of the hypervisor to determine the
state of the hosted VMs using introspection techniques. To
monitor SDN infrastructures, OpenNetMon [18] and Pay-
Less [19] rely on the monitoring feature of the OpenFlow
protocol.

The H1 category is based on a hierarchical architecture
such that the monolithic element can be deployed either on
the server or on the monitored resources. ASTROLABE [20]
was built based on this architecture. However, this solution
seems to be deprecated.

The P1 category is composed of a monitoring element
that can be hosted on a server or on a monitored resource.
Any element can be connected to another one without con-
straints. The monitoring solution which suits the most this
architecture is MonALISA [21]. It is composed basically of
autonomous agents called “MonALISA services” that can
be deployed on the servers or on the monitored resources
to observe, filter, aggregate and store the measurements,
trigger actions or notify the administrator about events.
To improve the performance of MonALISA, two types of
other components are used: “Proxy service” and “Lookup
service”. The "Proxy services" are used to access to the
monitoring solution. They store the measurements locally
to serve similar requests without increasing the load on the
monitored resources. The “Lookup services” are registers
where every element of MonALISA should identify to be
discovered by the other MonALISA services.

3.4.2. Basic Decomposition. In the C2 category, there is
a central server where the processing and the exposition
functions are executed. It is connected to all the monitored
resources where the element performing observation can be
deployed. Nagios [22], one of the most deployed solutions
to monitor enterprise infrastructure is designed according to
this architecture. Its agents called “Nagios sensors” should
be deployed in the resource to observe measurements. A
centralized element called “Nagios core service” pulls them
to collect, aggregate and store the observed measurements.
This monitoring solution was not developed initially to
monitor Cloud computing infrastructures. The monitoring
solution IaaSMon [23] targeted the adaptation of Nagios
to monitor IaaS infrastructure. It adds two specific agents
to handle the dynamic characteristic of Cloud computing
infrastructure. The first agent detects the modifications in
the management plane (such as VM creations or migrations).
The second one is adapted to VMs monitoring.

In the H2 category, the elements executing the monitor-
ing function are hierarchically structured. The observation is
hosted on the leaves and both the processing and the expo-
sition are hosted on the nodes. Ganglia [24] is a monitoring
solution which was designed based on this architecture. It
relies on two agents Ganglia monitoring daemon (gmond)
implementing the observation function and Ganglia meta
daemon (gmetad) implementing the exposition function.
The latter disposes of a data file where its data sources
(gmonds or gmetads) are identified by their IP addresses.

This file can be seen as a local view of the global tree. Each
gmetad in the tree polls its data sources periodically to get
the measurements. It aggregates them and exposes them to
gmetads in the higher level. It also stores the measurements
as time series data in a Round Robin database where they
are summarized to conserve a constant size.

In the P2 category, the observation is executed in the
monitored resources while the processing and the exposition
are executed in the hosting resources such that any instance
can be connected to any other one without constraints.
Hasselmeyer et al. [25] propose a solution following this
model. The observation function is performed by agents
that should be deployed on the monitored resource and
the exposition function is performed by a "filtering and
aggregation" engine. A data stream management system
ensures communication between them. In particular, it may
connect a "filtering and aggregation" engine to an other
"filtering and aggregation" engine according to the peer-
to-peer model. In addition to these elements, there are a
"configuration system", a "data store" and a "configuration
management" database. Unfortunately, the proof-of-concept
they implemented does not allow duplication between the
different instances.

3.4.3. Fine-grained Decomposition. In the C3 category,
the elementary functions of processing and exposition are
executed separately without being duplicated. They are con-
nected to each other according to their functional depen-
dency. Monasca [27] is designed according to this architec-
ture to offer monitoring as a service in Cloud computing
infrastructures. The communication between its processing
functions is ensured by topics according to the publish/-
subscribe paradigm. Its "Agents" elements execute the ob-
servation function. They send the observed measurements
to “API”. The latter publishes them in the topic "Metrics".
"Transform" consumes the measurements from this topic to
aggregate them and republish the aggregated measurements
in the same topic. "Threshold" consumes the aggregated
measurements from "Metrics" to check if an alarm should
be triggered. If it is the case, it publishes a message in the
"Alarm" topic. "Notification" is the element that executes the
exposition function. It consumes messages from the "Alarm"
topic to notify a user by sending an email or an SMS.

In the H3 category, we can identify two elementary
structures. The first one is a tree that connects each func-
tion to its duplicates according to the hierarchical model.
The second one connects different functions to each other
according to the functional dependency. To the best of our
knowledge, there is no monitoring solution that implements
this architecture.

In the P3 category, there is no constraint in the commu-
nication between the functions and their duplicates. As in
the case of H3, to the best of our knowledge, there is no
monitoring solution implementing this architecture.

Monitoring services Architecture Satisfaction of the required properties

Modularity Resilience to network
changes/failures

Resilience to servers
apparitions/removals Scalability Locality

NFM [17], Collectd [16], Statsd [26],
OpenNetMon [18], PayLess [19] C1 - - - - -

Nagios [22], IaaSMon [23] C2 - + - - -
Monasca [27] C3 + + - - -

ASTROLABE [20] H1 - - - + +
Ganglia [24] H2 - + - + +

- H3 + + - ++ +
MonALISA [21] P1 - - + + +

Hasselmeyer et al. [25] P2 - + + + +
- P3 + + ++ ++ +

TABLE 1. EVALUATION OF THE MONITORING ARCHITECTURES AND THE MONITORING SERVICES

4. Future Work

According to our analysis the monitoring solution should
enable a P3 architecture. In other words, it should enable a
fine-grained functional composition and a peer-to-peer archi-
tectural model. Unfortunately, there is no exiting monitoring
solution that satisfies both constraints. We have the possi-
bility to redesign a system from scratch or to revise one of
the available solutions, mitigating this way the engineering
effort. Based on our study, we noticed that MonALISA sat-
isfies the peer-to-peer communication model constraint and
Monasca satisfies the fine-grained functional composition
constraint. Considering the large developer community of
OpenStack, we believe that it is wiser to study how Monasca
can be revised to satisfy all Fog/Edge requirements.

However, revising Monasca in a peer-to-peer fashion
should be done carefully since it will increase significantly
the variety of deployment possibilities. This raises a new
question related to the deployment strategy. Indeed, each
deployment will lead to different performance as well as
high availability levels. As it has been underlined, each
hosting resource has different capabilities that determine
the performance of the hosted element. Moreover, the links
connecting the hosting resources induce different laten-
cies/bandwidths/reliability. The deployment should then rely
on those having the best properties. Similarly, the deploy-
ment strategy should take into account the network flows.
That is all on-going network exchanges that enable sharing
information between distant elements. For example, if an
aggregation of metrics is required between two PoPs, the
deployment strategy should find the best way to mitigate
communications with any other regional PoPs. This is crit-
ical to reduce the network overhead of the monitoring ser-
vice. Since network flows appear/disappear and the load on
each function can fluctuate according to applications’ needs,
it is obvious that the deployment of the different functions
composing the monitoring service should be dynamic. That
is the deployment strategy problem can be considered as
a general reconfiguration challenge where an engine is in
charge of finding the best trade-off between all aforemen-
tioned goals and reconfiguring “on-the-fly” the system.

As future work, we are going to formulate the problem
of the deployment strategy of the monitoring service in
the Fog/Edge-based operator infrastructure leveraging the

Monasca solution and its sub-components. Our starting
point will be the requirements of a set of representative
services. These requirements (e.g., the resources that should
be monitored, the frequency of measurement, the maximal
time allowed to receive notifications . . .) will be refined
into resource needs, i.e., compute, memory, storage and
network (latency, jitter and bandwidth). To guide us, we
will perform in-vivo experiments on top of the test bed
Grid’5000 [28]. By evaluating representative scenarios using
the ENOS [29] framework, we will get accurate estimates
of services’ requirements. These requirements as well as the
performance offered by the infrastructure will be the inputs
of a heuristic to output the optimal deployment.

5. Conclusion

Similarly to the key services that have been proposed in
the past for Cloud computing and that led to its success, our
community should propose building blocks for Fog/Edge
infrastructures. Those building blocks are mandatory (i)
to allow operators to supervise these massively distributed
heterogeneous and highly dynamic platforms and, (ii) to
favor the development of new kinds of geo-aware services.

In this article, we discussed a foresight study of the
monitoring service. We claimed it is an essential service
for a Fog/Edge-based operator infrastructure. In addition to
being used by other services of the system in charge of
the resources supervision, it may be also used by opera-
tors’ and third-party users’ services. After describing the
platform we considered and specifying key properties of a
Fog/Edge monitoring service, we analyzed major solutions
from the literature. This analysis enabled us to establish a
classification of the different monitoring architectures that
can be envisioned. We identified that relying on the peer-
to-peer architectural model as well as decomposing the
monitoring service are two important aspects because they
provide greater flexibility in the deployment possibilities.
Finally, we highlighted that the deployment strategy is also
an important challenge to deliver a highly-efficient and
highly-available monitoring service. Since a Fog/Edge-based
operator infrastructure is massively distributed and highly-
dynamic, it is critical to reconfigure the system in order to
satisfy applications’ needs while mitigating the monitoring
service overhead.

Future work will focus on the deployment strategy ac-
cording to the capabilities offered by the resources as well
as the requirements of the different services.

References

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,”
in 2016 10th International Conference on Intelligent Systems and
Control (ISCO), Jan 2016, pp. 1–8.

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 236–262, 2015.

[4] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1,
pp. 14–76, Jan. 2015.

[5] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. Lee, and J. Kubiatowicz, “The cloud is not enough:
Saving iot from the cloud,” in 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), 2015.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. ACM, 2012, pp.
13–16.

[7] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the Workshop on Mobile
Big Data, ser. Mobidata ’15. ACM, 2015.

[8] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitor-
ing: A survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115,
2013.

[9] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and
T. Lynn, “A survey of cloud monitoring tools: Taxonomy, capabil-
ities and objectives,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2918–2933, 2014.

[10] G. Da Cunha Rodrigues, R. N. Calheiros, V. T. Guimaraes, G. L. d.
Santos, M. B. de Carvalho, L. Z. Granville, L. M. R. Tarouco, and
R. Buyya, “Monitoring of cloud computing environments: concepts,
solutions, trends, and future directions,” in Proceedings of the 31st
Annual ACM Symposium on Applied Computing. ACM, 2016, pp.
378–383.

[11] B. Confais, A. Lèbre, and B. Parrein, “Performance Analysis of
Object Store Systems in a Fog/Edge Computing Infrastructures,” in
CloudCom, Luxembourg, Luxembourg, Dec. 2016.

[12] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

[13] K. Herrmann, G. Muhl, and K. Geihs, “Self management: the solution
to complexity or just another problem?” IEEE distributed systems
online, vol. 6, no. 1, 2005.

[14] A. Computing, “An architectural blueprint for autonomic computing,”
IBM Publication, 2003.

[15] ETSI Industry Specification Group (ISG) NFV, “ETSI GS NFV-REL
001 V1.1.1 : Network Functions Virtualisation (NFV); Resiliency
Requirements,” European Telecommunications Standards Institute,
Tech. Rep., January 2015.

[16] “collectd – the system statistics collection daemon, viewed january
10, 2017.” [Online]. Available: http://collectd.org

[17] S. Suneja, C. Isci, V. Bala, E. De Lara, and T. Mummert, “Non-
intrusive, out-of-band and out-of-the-box systems monitoring in
the cloud,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 42, no. 1. ACM, 2014, pp. 249–261.

[18] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in 2014
IEEE Network Operations and Management Symposium (NOMS).
IEEE, 2014, pp. 1–8.

[19] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless:
A low cost network monitoring framework for software defined
networks,” in 2014 IEEE Network Operations and Management Sym-
posium (NOMS). IEEE, 2014, pp. 1–9.

[20] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust
and scalable technology for distributed system monitoring, manage-
ment, and data mining,” ACM transactions on computer systems
(TOCS), vol. 21, no. 2, pp. 164–206, 2003.

[21] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, C. Dobre,
A. Muraru, A. Costan, M. Dediu, and C. Stratan, “Monalisa: An
agent based, dynamic service system to monitor, control and optimize
distributed systems,” Computer Physics Communications, vol. 180,
no. 12, pp. 2472–2498, 2009.

[22] E. Imamagic and D. Dobrenic, “Grid infrastructure monitoring system
based on nagios,” in Proceedings of the 2007 workshop on Grid
monitoring. ACM, 2007, pp. 23–28.

[23] J. Gutierrez-Aguado, J. M. A. Calero, and W. D. Villanueva, “Iaas-
mon: Monitoring architecture for public cloud computing data cen-
ters,” Journal of Grid Computing, vol. 14, no. 2, pp. 283–297, 2016.

[24] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817–840, 2004.

[25] P. Hasselmeyer and N. d’Heureuse, “Towards holistic multi-tenant
monitoring for virtual data centers,” in Network Operations and Man-
agement Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP.
IEEE, 2010, pp. 350–356.

[26] “statsd, github project, viewed january 10, 2017.” [Online]. Available:
https://github.com/etsy/statsd

[27] “Openstack monasca — wiki page, n.d., viewed january 10, 2017.”
[Online]. Available: https://wiki.openstack.org/wiki/Monasca

[28] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Comput-
ing and Services Science, ser. Communications in Computer and In-
formation Science, I. Ivanov, M. Sinderen, F. Leymann, and T. Shan,
Eds. Springer International Publishing, 2013, vol. 367, pp. 3–20.

[29] R.-A. Cherrueau, A. Lebre, D. Pertin, A. Simonet, and M. Simonin,
“Toward a Holistic Framework for Conducting Scientific Evaluations
of OpenStack,” in Proceedings of the 17th IEEE/ACM International
Symposium of Cluster, Grid and Cloud Computing (CCGRID 2017),
May 2017.

http://collectd.org
https://github.com/etsy/statsd
https://wiki.openstack.org/wiki/Monasca

