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Abstract

This paper studies the phenomenon of invasion for heterogeneous reaction-
diffusion equations in periodic domains with monostable and combustion reac-
tion terms. We give an answer to a question rised by Berestycki, Hamel and
Nadirashvili in [5] concerning the connection between the speed of invasion and
the speed of fronts. To do so, we extend the classical Freidlin-Gartner formula
to such equations, using a geometrical argument devised by Rossi in [17], and
derive some bounds on the speed of fronts using estimates on the heat kernel.

1 Introduction and results

1.1 Introduction

This paper deals with the spreading properties of the following reaction-diffusion
equation:{

∂tu = div(A(x)∇u) + q(x) · ∇u+ f(x, u), t > 0, x ∈ Ω,
ν · A(x)∇u = 0, t > 0, x ∈ ∂Ω.

(1)

In the whole paper, the domain Ω and the coefficients are assumed to be periodic.
Here, ν stands for the exterior normal. Reaction-diffusion equations arise in the
study of various phenomena in biology (propagation of genes, epidemics), physics
(combustion), and more recently in social sciences (rioting models). A particular
emphasis is given here to the case where the equation is homogeneous but the domain
is not the whole space:
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{
∂tu = ∆u+ f(u), t > 0, x ∈ Ω,
∂νu = 0, t > 0, x ∈ ∂Ω.

In such case, we provide an answer to a question asked by Berestycki, Hamel and
Nadirashvili in [5] concerning the relation between the speed of invasion and the speed
of fronts for this problem.

Reaction-diffusion equations were extensively studied since the seminal paper of
Kolmogorov, Petrovski and Piskunov [14]. There, the authors dealt the homogeneous
equation

∂tu = ∆u+ f(u), t > 0, x ∈ RN , (2)

with f(u) = u(1 − u). The results of [14] have been extended by Aronson and
Weinberger in [2] to more general reaction terms f . The basic assumption is that
f(0) = f(1) = 0, so that the constant states u ≡ 0 and u ≡ 1 are stationary solutions.
We shall pay a particular attention to the two following types of nonlinearities:

monostable f > 0 in (0, 1);

combustion ∃θ ∈ (0, 1), f = 0 in [0, θ], f > 0 in (θ, 1).

These two notions extend to the case where f can depend on x, see Definition 1
below. Two important features of reaction-diffusion equations have been derived in
[2]. First, equation (2) admits particular solutions called traveling fronts. These are
positive entire (i.e., defined for all t ∈ R) solutions of the form u(t, x) = φ(x · e− ct),
for some e ∈ SN−1, c ∈ R, φ decreasing and satisfying φ(s) → 1 as s → −∞ and
φ(s)→ 0 as s→ +∞. The unit vector e is the direction of propagation, c is the speed
of propagation and φ is the profile of the traveling front. More specifically, there
exists a quantity c? such that there are fronts with speed c, for every c ≥ c? if f is of
the monostable type, whereas there are traveling fronts only with speed c = c? if f is
of the combustion type. Of course, the homogeneity of equation (2) implies that the
quantity c? does not depend on the direction of the fronts e. We mention that, if f is
of the KPP type (i.e., if it is monostable and satisfies f ′(0) > 0 and f(u) ≤ f ′(0)u,
for u ∈ [0, 1]), then it is proven in [14] that c? = 2

√
f ′(0). The quantity c? is called

the critical (or minimal) speed of fronts. We consider this quantity in a more general
context in Section 1.2.

The second important feature is the property of invasion. If u(t, x) is the solution
of (2) emerging from a non-negative compactly supported initial datum u0, does it
converge to 1 as t goes to +∞ ? If this convergence holds (locally uniformly in x),
we say that invasion occurs for the initial datum u0. Of course, this depends on the
nonlinearity f . For instance, if f is of the combustion type, and if the compactly
supported non-negative initial datum verifies u0 ≤ θ, then the problem (2) boils down
to the heat equation, and then u(t, x) → 0 as t → +∞ uniformly in x. However, it
is shown in [2] that, for every η ∈ (θ, 1), there is R > 0 such that any initial datum
such that u0(x) ≥ η1BR (where BR is the ball of center 0 and of radius R) satisfies
the invasion property. In contrast, if f is of the KPP type, then invasion occurs for
any non-negative non-zero initial datum.
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Once we know that invasion occurs for some initial data, we can define the speed
of invasion. We say that w(e) > 0 is the speed of invasion for (2) in the direction
e ∈ SN−1 if, for any solution u(t, x) of (2) emerging from a compactly supported
non-negative initial datum which converges to 1 as t goes to +∞, locally uniformly
in x, the following holds:

∀c > w(e), u(t, x+ cte)→ 0 as t→ +∞,
∀c ∈ [0, w(e)), u(t, x+ cte)→ 1 as t→ +∞,

locally uniformly in x ∈ RN . Again, the homogeneity of equation (2) yields that the
speed of invasion is actually independent of the direction e. Moreover, if f is of the
KPP type, it is proven in [14] that w(e) = 2

√
f ′(0), ∀e ∈ SN−1. Hence, in this case

c? ≡ w.
One of the main motivation behind the present paper is to understand the con-

nections between the speed of fronts c? and the speed of invasion w in a more general
context. In order to state our main results, we first present how the notions of fronts
and invasion extend to the case of spatially periodic heterogeneous equations.

1.2 Pulsating traveling fronts

Berestycki and Hamel extend in [7] the notion of traveling fronts to the more general
framework of equation (1). Throughout the whole paper, we assume that A, q, f,Ω
are periodic, with the same period, i.e, there are L1, . . . , LN > 0 such that

∀k ∈
N∏
i=1

LiZ, Ω + {k} = Ω,

and

∀k ∈
N∏
i=1

LiZ, f(·+ k, ·) = f, q(·+ k) = q, A(·+ k) = A.

We shall denote C :=
∏N

i=1[0, Li) the periodicity cell. Typical examples of such
domains Ω are domains with “holes” : if K ⊂ RN is a smooth compact set, we can
define the periodic domain Ω :=

(
K + LZN

)c
, with L > 0 large enough so that the

resulting domain is smooth and connected. This domain can be seen as the whole
space with K-shaped “holes” periodically distributed.

To simplify the notations, unless otherwise stated, we shall assume that the period
is 1, i.e., L1 = . . . = LN = 1. In order to apply the results of [7], we make the following
assumptions on the domain:

Ω is a periodic, connected open subset of RNof class C3, (3)

and the following hypotheses on the coefficients:
A ∈ C3(Ω) is symmetric and uniformly elliptic and periodic,
q ∈ C1,α(Ω) for some α ∈ (0, 1), div q = 0,

´
C∩Ω

q = 0, q is periodic,
f : Ω× [0, 1] 7→ R is of class C1,α for some α ∈ (0, 1).

(4)
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We also assume that the nonlinearity f satisfies the following
∀x ∈ Ω, f(x, 0) = f(x, 1) = 0,
∃S ∈ (0, 1), ∀x ∈ Ω, f(x, ·) is nonincreasing in [S, 1] ,
∀s ∈ (0, 1), f(·, s) is periodic.

(5)

By analogy with the homogeneous case f = f(u), we define monostable, KPP
and combustion nonlinearities f(x, u):

Definition 1. We say that f is of the monostable type if

∀s ∈ (0, 1), min
x∈Ω

f(x, s) ≥ 0, max
x∈Ω

f(x, s) > 0. (6)

Among monostable nonlinearities, there is the special class of KPP nonlinearities.
In addition to being monostable, they satisfy

∀x ∈ Ω, ∀s ∈ [0, 1], f(x, s) ≤ ∂sf(x, 0)s. (7)

We say that f is of the combustion type if{
∃θ ∈ (0, 1), ∀(x, s) ∈ Ω× [0, θ] , f(x, s) = 0,
∀s ∈ (θ, 1), minx∈Ω f(x, s) ≥ 0, maxx∈Ω f(x, s) > 0.

(8)

The important difference between combustion and monostable nonlinearities
(from which stems the non-uniqueness of speeds of fronts for monostable equation)
is that, when f is of the combustion type,

∃θ ∈ (0, 1], ∀x ∈ Ω, f(x, ·) is nonincreasing in [0, θ] . (9)

In the periodic framework, the notion of traveling fronts can be generalized by
pulsating traveling fronts.

Definition 2. A pulsating traveling front in the direction e ∈ SN−1 of speed c ∈ R\{0}
connecting 1 to 0 is an entire (i.e., defined for all t ∈ R) solution v of (1) satisfying{

∀k ∈ ZN , ∀x ∈ Ω, v(t+ k·e
c
, x) = v(t, x− k),

v(t, x)→ 1 as x · e→ −∞, v(t, x)→ 0 as x · e→ +∞.

Such fronts are known to exist in several situations. For instance, it is proven
in [7] that, under hypotheses (4)-(5), for every e ∈ SN−1, there is c?(e) > 0, called
the critical (or minimal) speed of fronts in direction e, such that pulsating traveling
fronts in the direction e with speed c exists if, and only if, c ≥ c?(e) when f is of the
monostable type (6) or only if c = c?(e) when f is of the combustion type (8), see [7,
Theorems 1.13 - 1.14].
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1.3 The speed of invasion

The results of Kolmogorov, Petrovski, Piskunov [14] and Aronson and Weinberger [2]
concerning the invasion have also been extended to a more general framework than
the homogeneous one. First, consider the equation

∂tu = div(A(x)∇u) + q(x) · ∇u+ f(x, u), t > 0, x ∈ RN . (10)

Then, one can define the speed of invasion w as a function from the unit sphere
SN−1 to R+ such that, for every u solution of (1) arising from a compactly supported
non-negative initial datum which converges to 1 as t goes to +∞, locally uniformly
in x ∈ RN , we have, for e ∈ SN−1:

∀c > w(e), u(t, x+ cte)→ 0 as t→ +∞,
∀c ∈ [0, w(e)), u(t, x+ cte)→ 1 as t→ +∞,

locally uniformly in x ∈ RN .
Using probabilistic techniques, Freidlin and Gartner show in [12] the existence of

a speed of invasion for the equation (10) when f is of the KPP type (7) and A, q, f
are x−periodic. They show that invasion occurs for every non-negative non-null
compactly supported initial datum and prove what is now known as the Freidlin-
Gartner formula :

w(e) := min
ξ∈RN
e·ξ>0

k(ξ)

e · ξ
, (11)

where k(ξ) is the periodic principal eigenvalue of the operator

Lξu := div(A∇u)− 2ξ · A∇u+ q · ξu+ (−div(Aξ)− q · ξ + ξ · Aξ + ∂uf(x, 0))u.

This formula is also proved by Berestycki, Hamel and Nadin in [4] using a PDE
approach. Similar properties of spreading for heterogeneous reaction-diffusion equa-
tions are studied with other approaches : the viscosity solution/singular perturbation
method is adopted by Evans and Souganidis in [11] and Barles, Soner and Souganidis
in [3]. Weinberger uses an abstract discrete system approach in [19].

Berestycki, Hamel and Nadirashvili show in [5] that, if one considers KPP non-

linearities, the quantity c?(e) := minλ>0
k(λe)
λ

(where k is the principal eigenvalue
introduced before and e ∈ SN−1) coincides with the critical speed of pulsating travel-
ing fronts in the direction e for equation (10) (if the equation were set on a periodic
domain Ω instead of RN , this relation still holds true with k being the periodic prin-
cipal eigenvalue of the same operator but with the additional boundary condition
ν · A∇u = λ(ν · e)u on ∂Ω, see [5] for the details). Consequently, in the KPP case,
the Freidlin-Gartner formula (11) can be rewritten as

w(e) = min
e·ξ>0

c?(ξ)

e · ξ
. (12)

The fact that pulsating traveling fronts exist not only in the KPP case but also
for other reaction terms, and hence that the formula (12) could make sense in more
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general frameworks than the KPP one, led Rossi to extend in [17] the Freidlin-Gartner
formula to much more general equations in the whole space (essentially, all those for
which pulsating traveling fronts are known to exist).

In this paper, we deal with invasion in domains Ω that are not necessarily RN . In
this case, it is convenient to introduce the notion of asymptotic set of spreading.

Definition 3. Let W ⊂ RN be a closed set coinciding with the closure of its interior.
We say that W is the asymptotic set of spreading for a reaction-diffusion equation if,
for any bounded solution u(t, x) emerging from a non-negative compactly supported
initial datum such that u(t, x)→ 1 as t→ +∞, locally uniformly in x ∈ Ω, we have:

∀K compact, K ⊂ int(W), inf
x∈tK

u(t, x)→ 1 as t→ +∞, (13)

∀C closed, C ∩W = ∅, sup
x∈tC

u(t, x)→ 0 as t→ +∞. (14)

If only (13), respectively (14), holds,W is said to be an asymptotic subset, respectively
superset, of spreading.

The asymptotic set of spreading relates to the notion of speed of invasion previ-
ously described. Indeed, assume that W is an asymptotic set of spreading and that
we can write W =

{
rξ : ξ ∈ SN−1, 0 ≤ r ≤ w(ξ)

}
with w a continuous function.

Then, if Ω = RN , w(e) is the speed of spreading in the direction e, as defined before.
For example, if f is a KPP nonlinearity independent of x, then the asymptotic set of
spreading associated with the homogeneous equation (2) is the ball of center 0 and
of radius 2

√
f ′(0). We emphasize that this is somewhat stronger than saying that

the invasion speed is 2
√
f ′(0).

Observe that, for the definition of the asymptotic set of spreading to be meaning-
ful, it is necessary that there are compactly supported initial datum u0 for which the
invasion property holds. Rossi and the author give in [9] sufficient conditions to have
invasion for equation (1). In particular, we show there that, if f is of the monostable
or combustion type, in the sense of Definition 1, and if the drift term q is “not too
large” (see [9] for the details), then, denoting

θ := max
{
s ∈ [0, 1) : ∃x ∈ Ω, f(x, s) = 0

}
,

we have that, for all η ∈ (θ, 1), there is r > 0 such that any solution of (1) with an
initial datum u0 satisfying

u0 > η in Ω ∩Br,

converges to 1 as t goes to +∞, locally uniformly in x ∈ Ω.

1.4 Statement of the main results

One of the main motivation behind the present paper is to answer the following
question, raised by Berestycki, Hamel and Nadirashvili in [5]:

Question 1. Consider the homogeneous equation set on a periodic domain Ω
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{
∂tu−∆u = f(u), t > 0, x ∈ Ω,

∂νu = 0, t > 0, x ∈ ∂Ω.
(15)

Are there domains Ω such that c? 6≡ w ?

We recall that c? is the critical speed of pulsating traveling fronts and w is the
speed of invasion. Originally, this question was asked for f of KPP type (7), but it
also makes sense if f is a monostable (6) or a combustion (8) nonlinearity.

The speed of invasion and the critical speed of fronts for the homogeneous prob-
lem (2) in the whole space are actually independent of the direction thanks to the
homogeneity of the equation and of the domain, and are everywhere equal : c? ≡ w.
In the KPP case, as we mentioned earlier, both are equal to 2

√
f ′(0). If the domain

Ω is periodic, the speeds c?(e) and w(e) can depend on the direction e.
We mention that, if one considers the equation with general coefficients (1), it

is possible to have c? 6≡ w even if Ω = RN . The first example one can check is, in
dimension 2, when the Laplace operator is replaced by a∂2

xx + b∂2
yy with a, b > 0. In

this case, the exact values of c? and w can be computed, see [5, Remark 1.12], and
one can observe that, if a 6= b, then c? 6≡ w. This fact can also be deduced from our
Proposition 1 below. What was not known is whether the geometry of the domain
alone could entail that c? 6≡ w. We prove that this is the case.

Theorem 1. Let f be a monostable (6) or a combustion (8) nonlinearity independent
of x. There are smooth periodic domains Ω such that the critical speed of pulsating
traveling fronts c? and the invasion speed w for equation (15) do not coincide in every
direction.

This provides a positive answer to Question 1. When the nonlinearity f is of the
monostable or combustion type, then the domains we exhibit are L-periodic, with
L large enough. If f is a KPP nonlinearity, then we can build domains with any
periodicity.

As a preliminary step to prove Theorem 1, we show that the Freidlin-Gartner for-
mula (12) holds true for the general equation (1) in the periodic domain Ω, extending
then Rossi’s result to the case where the domain is not RN anymore. This is done in
Section 2. More precisely, we prove the following:

Theorem 2. Let A, q, f,Ω be periodic, satisfying (4)-(5). Assume that f is a monos-
table (6) or a combustion (8) nonlinearity. Then, equation (1) has the following
asymptotic set of spreading:

W =
{
rξ : ξ ∈ SN−1, 0 ≤ r ≤ w(ξ)

}
, (16)

where w(ξ) := infe·ξ>0
c?(e)
e·ξ , and c?(e) is the critical speed of pulsating traveling fronts

in the direction e.

Once Theorem 2 established, we employ it to derive a simple criterion ensuring
that c? 6≡ w : we show that, if c? ≡ w, then c? and w are necessarily constant, see
Proposition 1. To anwer Question 1 then tantamount to finding domains where w or
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c? are not constant. Intuitively, we may think that, if a domain is “very obstructed”
in a direction, then the speed should be small in this direction.

In order to make this intuition rigorous, we derive new estimates on the invasion
speed that do take into account the geometry of the domain. This is the subject of
Section 3.3. The main tool is an upper bound on the heat kernel in Ω. Once these
estimates at hand, we are able to build domains where c? and w are not constant,
hence different. This is done in Section 3.4, proving then Theorem 1.

Observe that, though we can build domains Ω where c? 6≡ w, there is at least one
direction e ∈ SN−1 such that c?(e) = w(e). Indeed, the Freidlin-Gartner formula (12)
given by Theorem 2 easily implies that, if emin is a direction that minimizes c? (which
is known to be a lower semi-continuous function, see [1, 17]), then c?(emin) = w(emin).
The only other characterization of directions e where c?(e) = w(e) we are aware of
is in the KPP case : it is proven in [5] that c?(einv) = w(einv) if Ω is invariant in the
direction einv ( i.e., Ω + {λeinv} = Ω, for all λ ∈ R), see [5].

We show in Section 3.5 that, if the domain Ω satisfies some geometrical hypotheses
and if u 7→ f(u)

u
is non-increasing (which implies in particular that f is KPP), then

there are directions that satisfy the equality between c? and w. More specifically, we
derive the following:

Theorem 3. Assume that f satisfies (4), (5) and u 7→ f(u)
u

is non-increasing. Let
c? and w be the critical speed of fronts and the speed of invasion for equation (15).
Then,

c?(e) = w(e)

in the following cases:

(i) If N = 2 and Ω is invariant with respect to the symmetry about the axis directed
by e, i.e., denoting S such a symmetry, if we have:

SΩ = Ω.

(ii) If N ≥ 3 and Ω is invariant with respect to the rotation around the axis directed
by e of angle π, i.e., denoting R such a rotation, if we have:

RΩ = Ω.

Let us conclude this section with some questions that are still open. The set W
given by (16) is sometimes called the Wulff shape associated with the surface tension
c?. It appears in crystallography and in isoperimetric problems. A natural question
is whether the function w parametrizing the boundary of W is regular. Rossi proves
in [17] that it is continuous. We are not aware of further regularity results. We
conjecture that, if c? is smooth (which is the case if f is of the KPP type), then, w
is smooth.

Theorem 1 states that there are domains Ω such that c? 6≡ w. One may wonder
on the contrary if there are periodic domains Ω 6= RN , such that c? ≡ w. Thanks to
our Proposition 1, this is equivalent to finding domains where c? is constant. As far
as we know, the existence of such domains is still open
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Remark 1. In addition to the monostable and combustion cases, there is another
class of reaction terms f that is widely studied in the literature, namely the bistable
nonlinearities. The prototype is f(u) = u(1−u)(u−a), with a ∈ (0, 1). In this paper,
we do not consider such nonlinearities : indeed, the main tool we use is the existence
of pulsating traveling fronts with positive speed. If Ω = RN , there are results in some
particular cases, see [10, 20, 21] for instance. If Ω 6= RN , the situation is yet to
explore, and the geometry of the domain can yield phenomena that do not appear in
the combustion or monostable case. For instance, Rossi and the author show in [9]
that invasion can occur in some direction but not in others. However, we mention
that the strategy used to derive Theorem 1 above still applies if, for every e ∈ SN ,
there are pulsating traveling fronts with positive speed, even is f is bistable.

2 Freidlin-Gartner formula for a periodic domain

This section is dedicated to the proof of Theorem 2, i.e., we show that the Freidlin-
Gartner formula (12) relating the speeds of fronts to the speed of invasion still holds
true when the domain is not RN but a periodic domain Ω and with monostable or
combustion nonlinearities. Our proof is based on the same strategy as the one used
by Rossi in [17]. We start to state some preliminary technical results. For simplicity,
we assume in this whole section that the domain and the coefficients are 1-periodic,
i.e., L1 = . . . = LN = 1.

2.1 Preliminary results

In the proof of Theorem 2, we will need some technical lemmas. They generalize
those of [17, Section 2.1] to the case where the domain is not RN anymore. The main
technical difficulty is that Ω is not invariant under translations in general. The proofs
follow the same lines as in [17], and can be found for completeness in the Appendix.
We say that u is a subsolution (respectively supersolution) if it satisfies (1) with the
the symbols = replaced by ≤ (respectively ≥).

The first lemma states that, every entire solution that is “large enough” in some
direction is actually “front-like” in this direction.

Lemma 1. Let γ > 0. Assume that (4) and (5) hold. Let u ∈ C1+α/2,2+α
(
R× Ω

)
for some α ∈ (0, 1) be an entire supersolution of (1) such that

inf
t<0

x·e<γt
x∈Ω

u(t, x) > S,

where S is defined in (5). Then:

lim inf
δ→+∞

inf
t<0

x·e<γt−δ
x∈Ω

u(t, x) ≥ 1.

The following lemma is a comparison principle for front-like solutions.
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Lemma 2. Assume that (4) and (5) hold. Let u, u ∈ C1+α/2,2+α
(
R× Ω

)
, for some

α ∈ (0, 1), be respectively entire supersolution and subsolution of (1). Assume that
there are e ∈ SN−1, γ > 0 such that

u > 0, lim inf
δ→+∞

inf
t<0

x·e<γt−δ
x∈Ω

u(t, x) ≥ 1. (17)

Moreover, assume that u ≤ 1 and that there is η > 0 such that the following hold:

• The nonlinearity f is of the combustion type (8) and we have:

∀s > 0, ∃L ∈ R, u(t, x) ≤ s if t ≤ 0, x · e ≥ (γ + η)t+ L, x ∈ Ω, (18)

or

• the nonlinearity f is of the monostable type (6) and we have:

∃L ∈ R, u(t, x) ≤ 0 if t ≤ 0, x · e ≥ (γ + η)t+ L, x ∈ Ω. (19)

Then, the following comparison result holds

u(t, x) ≤ u(t, x), ∀t ∈ R, ∀x ∈ Ω.

In addition to those two technical lemmas, we shall need the following result,
stating that, in our framework, the speed of invasion w is a continuous function:

Lemma 3. Let A, q, f,Ω be periodic, satisfying (4)-(5). Assume that f is of the
monostable type (6) or of the combustion type (8). Let w be defined by (12). Then
w is a continuous function from the sphere SN−1 to R+.

It is proven in [17, Proposition 2.6] that, if c : SN−1 → R+ is such that inf c > 0

and if w is defined by w(ξ) := infe·ξ>0
c(e)
e·ξ , then w is continuous. Hence, Lemma 3

comes directly if we can prove that inf c? > 0, where c? is the critical speed of fronts.
To prove this, it is sufficient to show that c? is lower semicontinuous. This is done in
[17, Proposition 2.5] when Ω = RN , and the proof can be readily adapted, hence we
will not prove Lemma 3 but refer the reader to [17]. Let us mention another result
of independent interest by Alfaro and Giletti [1] in the case where Ω = RN , which
states that, under suitable assumptions, c? is actually continuous.

2.2 Proof of Theorem 2

This section is dedicated to the proof Theorem 2. We show that the Freidlin-Gartner
formula (12) still holds in the context of periodic domains Ω considered in this paper.
The proof is divided in several steps. The main idea is to use a geometric argument,
introduced in [17] : from an initial datum that invades space, we construct a front-like
solution of our problem, and we compare it to pulsating traveling fronts.
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Proof. We start to prove that W , defined by (16), is an asymptotic subset of spread-
ing. We argue by contradiction. We assume that W is not an asymptotic subset
of spreading. Then, there is a compact set K ⊂ int(W ) such that (13) does not
hold. Now, we take W ⊂ W , W star-shaped with respect to the origin, compact
and C∞ such that K ⊂ int(W ). We assume that W is the graph of a function w̃,
i.e., W =

{
rξ : ξ ∈ SN−1, 0 ≤ r ≤ w̃(ξ)

}
, with w̃ smooth and w̃ < w, so that W

is strictly contained in W . We take w̃ strictly positive. This is possible because the
function w is continuous thanks to Lemma 3.

The set W satisfies the uniform interior ball estimates : ∃ρ > 0 such that ∀x ∈
∂W, ∃y ∈ W such that Bρ(y) ⊂ W and x ∈ ∂Bρ(y), where Bρ(y) is the ball of center
y and of radius ρ. In the course of the proof, u(t, x) denotes a solution of (1) arising
from a non-negative, compactly supported initial datum such that invasion occurs,
i.e., u(t, x)→ 1 as t goes to +∞, locally uniform in x ∈ Ω.

First step. Definition of Rη.
Let 0 < η < 1. We define

Rη(t) := sup{r ≥ 0 : ∀x ∈ (rW ) ∩ Ω, u(t, x) > η}.
For t ≥ 0, this quantity is well defined because u(t, x) decays to zero as |x| goes to
+∞ (this comes easily by comparison with pulsating traveling fronts) implying that
Rη(t) < +∞. Moreover, we have that Rη(t)→ +∞ as t goes to +∞ (because of the
assumption that u(t, x)→ 1 locally uniformly in x when t→ +∞).

Remembering that we assumed, by contradiction, that there is a compact set
K ⊂ int(W ) such that (13) does not hold, we can infer that there are η, k ∈ (0, 1)
such that

lim inf
t→+∞

Rη(t)

t
< k. (20)

Indeed, if this were not the case, then ∀η ∈ (0, 1), lim inft→+∞
Rη(t)
t
≥ 1. Hence,

taking h ∈ (0, 1) such that K ⊂ hW , we have

η ≤ lim inf
t→+∞

inf
x∈Rη(t)W

u(t, x)

≤ lim inf
t→+∞

inf
x∈htW

u(t, x)

≤ lim inf
t→+∞

inf
x∈tK

u(t, x).

This being true for each η ∈ (0, 1), it would yield that K satisfies (13), which we
assumed not to be the case. Observe that (20) is still verified if we increase η. We
do so, and in the following we assume that η ∈ (S, 1), where S is defined in (5).

From now on, we simplify our notations by writing R instead of Rη. Observe
that R is lower semicontinuous. Indeed, let tn be a sequence such that tn → t0 as
n goes to +∞ and such that R(tn) → R ∈ R. Consider r > R. Then, for n large
enough, we have that r > R(tn), and, by definition of R(tn), there is xn ∈ (rW ) ∩Ω
such that u(tn, xn) ≤ η. By continuity of u, there is some x0 ∈ (rW ) ∩ Ω such that
u(t0, x0) ≤ η. This implies that R(t0) ≤ r , and then that R(t0) ≤ R by arbitrariness
of r > R, hence the semicontinuity.

Second step. Shifting the function.
By definition of R we have that lim inft→+∞(R(t)−kt) = −∞. We define, for n ∈ N,

tn := inf{t ≥ 0 : R(t)− kt ≤ −n}.

11



The lower semicontinuity of R (proven in the first step) gives us that the above
infimum is a minimum, i.e., that R(tn) − ktn ≤ −n < R(t) − kt, ∀t < tn, and that
tn → +∞ as n goes to +∞. Hence, the sequence (tn)n∈N satisfies:

lim
n→+∞

tn = +∞ and ∀n ∈ N, ∀t ∈ [0, tn), R(tn)− k(tn − t) < R(t).

Now, by definition ofR(t), we have that ∀r > R(t), ∃xr ∈
(
rW ∩ Ω

)
\
(
(R(t)W ) ∩ Ω

)
such that u(t, xr) ≤ η. Up to extraction, we can assume that xr → x∞ as r goes to
R(t), where x∞ ∈ Ω ∩ ∂ (R(t)W ). By continuity, we have that u(t, x∞) = η.

Hence, we can consider a sequence (xn)n∈N ∈ Ω such that u(tn, xn) = η, with the
additional property that xn ∈ ∂ (R(tn)W ). Clearly, |xn| → +∞ as n goes to +∞. If
x ∈ ∂W , let ν̃(x) the outer unit normal to W at the point x. We define

x̂n =
xn
R(tn)

, yn = x̂n − ρν̃(x̂n).

By definition, x̂n ∈ ∂W and yn is the center of the interior ball tangent at W at
point x̂n, of radius ρ (we recall that W satisfies the uniform interior ball estimate
with radius ρ).

For every n, we define kn ∈ ZN and zn ∈ [0, 1)N by xn = kn+zn. Up to extraction,
we can assume that there is z ∈ [0, 1]N such that zn → z as n→ +∞. We also assume
that there is x̂ such that x̂n converges to x̂, whence ν̃(x̂n) converges to ν̃(x̂). We now
define, for n ∈ N, the translated functions:

un(t, x) = u(t+ tn, x+ kn).

Thanks to the periodicity and regularity hypotheses on Ω, we can apply the usual
interior and portion boundary parabolic estimates (see, for instance [15, Theorems
5.2, 5.3]) to get that un converges uniformly locally to an entire solution u? of the
equation (1). Moreover u?(0, z) = η.

Third step. Properties of u?.
We show here that u? is a front-like solution, in the sense that it satisfies, denoting
HT := {x ∈ Ω : x · ν̃(x̂) < −kx̂ · ν̃(x̂)T}:

∀T ≥ 0, ∀x ∈ HT + {z} , u?(−T, x) ≥ η. (21)

To show this, take T ∈ [0, tn] and x ∈ (R(tn)−kT )W∩Ω. AsR(tn)−kT ≤ R(tn−T ),
we have that x ∈ R(tn − T )W ∩ Ω. Therefore, by definition of R, u(tn − T, x) ≥ η.
Then, we have

∀T ∈ [0, tn], ∀x ∈ ((R(tn)− kT )W ) ∩ Ω− {kn} , un(−T, x) ≥ η.

From that, we infer:

∀T ≥ 0, ∀x ∈ Ω ∩
⋃
M∈N

⋂
n≥M

((R(tn)− kT )W − {kn}), u?(−T, x) ≥ η.

To prove (21), it suffices to show that HT +{z} ⊂ Ω∩
⋃
M∈N

⋂
n≥M((R(tn)−kT )W −

{kn}). To see this, take x ∈ HT + {z}. We start to compute:
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∣∣∣∣ x+ kn
R(tn)− kT

− yn
∣∣∣∣ =

∣∣∣∣x+ kn − (R(tn)− kT )(x̂n − ρν̃(x̂n))

R(tn)− kT

∣∣∣∣
=

∣∣∣∣x+ kT x̂n + (kn − xn) + (R(tn)− kT )ρν̃(x̂n)

R(tn)− kT

∣∣∣∣
=

∣∣∣∣ρν̃(x̂n) +
x+ kT x̂n − zn
R(tn)− kT

∣∣∣∣ .
Let us call wn := x+kT x̂n−zn

R(tn)−kT . This goes to zero as n goes to infinity. The last term in

the above equality can be rewritten |ρν̃(x̂n)+wn| =
√
ρ2 + |wn|(2ρν̃(x̂n) · wn/|wn|+ |wn|).

Now, observe that

lim
n→+∞

2ρν̃(x̂n) · wn/|wn|+ |wn| = 2ρν̃(x̂) · x+ kT x̂− z
|x+ kT x̂− z|

.

This limit is strictly negative. Indeed, if x ∈ HT+{z}, then (x−z) · ν̃(x̂) < −kT x̂· ν̃(x̂).
Therefore, we have, for n large enough,∣∣∣∣ x+ kn

R(tn)− kT
− yn

∣∣∣∣ < ρ,

which means that x+kn
R(tn)−kT ∈ W , by definition of yn and ρ. In other words,

x ∈ (R(tn)− kT )W − {kn}, which concludes this step.
Fourth step. Comparison.

We now compare the function u? built in the previous steps to the pulsating front
traveling in the direction ν̃(x̂) with critical speed c?(ν̃(x̂)). Combining Lemma 1 and
(21), we have that

lim inf
δ→+∞

inf
t<0

x·ν̃(x̂)<γt−δ
x∈Ω

u?(t, x) ≥ 1,

with γ := kx̂ · ν̃(x̂) > 0. Hence u? satisfies the hypotheses of Lemma 2. Observe that
we have

γ = kx̂ · ν̃(x̂)

= k x̂
|x̂| · ν̃(x̂)w̃

(
x̂
|x̂|

)
< x̂
|x̂| · ν̃(x̂)w

(
x̂
|x̂|

)
≤ c?(ν̃(x̂)),

where the last inequality follows from the definition of w in Theorem 2.
Assume first that f is of the combustion type (8). Let v be a pulsating traveling

front in the direction ν(x̂), with critical speed c?(ν(x̂)). Up to a time translation, we
normalize it so that v(0, 0) > u?(0, 0). Then, v satisfies the hypotheses of Lemma 2
(with η = c?(ν(x̂)) − γ in the hypotheses of Lemma 2), giving v ≤ u?, which is in
contradiction with the fact that v(0, 0) > u?(0, 0). Hence the contradiction.
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Now, if the nonlinearity is of the monostable type (6), we have to build a function
v satisfying (19) to apply Lemma 2. This can be done exactly as in [17, Proposition
2.6], the fact that the domain is not RN adds no difficulty here. This proves that W
is an asymptotic subset of spreading, and then, so is W . Now, we show that it is an
asymptotic superset of spreading.

Fifth step. Superset of spreading.
Let C be a closed set such that W ∩ C = ∅. Then, because w is continuous, we can
find ε > 0 so thatWε :=

{
rξ , ξ ∈ SN−1, 0 ≤ r ≤ w(ξ) + ε

}
is such thatWε∩C = ∅.

To prove that W is an asymptotic superset of spreading, it is sufficient to show that
supx∈tWc

ε
u(t, x)→ 0 as t goes to +∞. To do so, we take a sequence (tn)n∈N ∈ (R+)N

such that tn goes to infinity as n goes to infinity, and a sequence xn ∈ tnWc
ε such that

u(tn, xn) ≥ 1

2
sup

x∈tnWc
ε

u(tn, x).

Up to extraction, we take e ∈ SN−1 such that xn
|xn| → e as n goes to +∞. Let ξ ∈ SN−1

be such that w(e) = c?(ξ)
ξ·e , and let v be a pulsating traveling front in the direction ξ

with critical speed c?(ξ). Up to some translation in time, we can assume, thanks to
the parabolic comparison principle, that u(t, x) ≤ v(t, x), ∀t ≥ 0, ∀x ∈ Ω. Let us
show that v(tn, xn) goes to zero as n→ +∞.

We write xn :=
(
xn
|xn| · ξ

)
|xn|ξ+dn, where dn is orthogonal to ξ. Because xn

|xn| → e

as n goes to +∞, using the continuity of w, for n large enough, we have(
xn
|xn|
· ξ
)
|xn| ≥

(
xn
|xn|
· ξ
)

(w(
xn
|xn|

) + ε)tn ≥ (c?(ξ) + (e · ξ)ε
2

)tn.

So, we get that, for n ∈ N large enough, there is some λn, such that λn ≥ c?(ξ)+(e·ξ) ε
2

and xn = λnξtn+dn. Now, observe that the definition of the pulsating traveling fronts,
Definition 2, implies that v(tn, λntnξ + dn)→ 0 as n goes to +∞, hence

lim
n→+∞

1

2
sup

x∈tnWc
ε

u(tn, x) ≤ lim
n→+∞

u(tn, xn) ≤ lim
n→+∞

v(tn, xn) = 0,

which implies the result.

Now that we dispose of the Freidlin-Gartner formula (12), we use it to answer
Question 1.

3 Estimates for the spreading speed

This whole section is dedicated to the proof of Theorem 1. We consider here the
problem (15), with nonlinearity f independent of x of the monostable or combustion
type. In the following, for f and Ω given, we denote c? and w the critical speed of
fronts and the speed of invasion respectively, for equation (15).

The proof of Theorem 1 is done in several steps : first, we show that w ≡ c? is
equivalent to saying that w and c? are actually constant. This is the object of Section
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3.1. Then, we exhibit in Section 3.3 some estimates on the spreading speed that take
into account the geometry of the domain. Gathering all this, we will be able to prove
Theorem 1.

3.1 Comparison between w and c?

This section is dedicated to proving that, if the critical speed of fronts c? and the
speed of invasion w are everywhere equal, then they are constant. This uses only the
Freidlin-Gartner formula (12) proved in Section 2.

Proposition 1. Assume that Ω is a smooth periodic domain satisfying (3) and that f
is a nonlinearity satisfying (5) of the monostable (6) or combustion (8) type. Assume
that c? ≡ w. Then, the functions w and c? are constant.

Proof. Because of the hypotheses on Ω and f , we can apply Theorem 2 to get that
∀e ∈ SN−1, w(e) = infξ·e>0

c?(ξ)
ξ·e . Assume that w ≡ c? and take ξ0, ξ ∈ SN−1 so that

ξ0 · ξ > 0, and let ω be the angle between those two vectors. Let us take M ∈ N. We
define a sequence (ξk)k∈J0,MK ∈ SN−1 to be equidistributed on the arc joining ξ0 to ξ
on the sphere, i.e., ξk · ξk+1 = cos( ω

M
) and ξM = ξ. Then, we have

w(ξ0) ≤ w(ξ1)
1

ξ0ξ1

≤ w(ξ2)
1

ξ2ξ1

1

ξ1ξ0

.

Iterating and using that ξk · ξk+1 = cos( ω
M

) , we get:

w(ξ0) ≤ w(ξ)
M−1∏
k=0

1

ξk+1ξk
= w(ξ)

1

cos( ω
M

)M
.

Because 1
cos( ω

M
)M
∼ 1 + ω2

2M
when M goes to +∞, passing to the limit yields:

w(ξ0) ≤ w(ξ).

Inverting the roles of ξ0 and ξ, we get w(ξ0) = w(ξ). Hence, w is constant, and so is
c?.

Observe that, in the course of the proof, we did not use the particular form of
equation (15), only the Freidlin-Gartner formula, hence Proposition (1) holds true
also for the general equation (1).

As mentioned in the introduction, we shall use this result to build domains where
c? 6≡ w. Indeed, Proposition 1 reduces the problem to finding domains where w or c?

are not constants. Intuitively, it seems that, if in a certain direction e, there are lot
of “obstacles”, then the speeds w and c? should be “small”. On the contrary, if on a
certain direction, there are few obstacles, then the speeds should be “large”. Hence,
if the domain Ω is very “obstructed” in some direction and not in an other, then the
speeds should not be constants, and so they would be different.

To build such domains is actually quite easy if f is KPP and if the dimension
is greater or equal to 3. In this case, we will see in the next Section 3.2 that we
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can use domains invariants in one direction. If the nonlinearity is not KPP or if
the dimension is equal to 2, things are more involved. To overcome this difficulty, we
introduce estimates for w that do take into account the “obstructions” of the domain.
This is done in Section 3.3.

3.2 Invasion in domains that are invariant in one direction

In this subsection, f is a KPP nonlinearity independent of x and Ω is invariant in the
direction e ∈ SN−1, i.e., for all λ ∈ R, we have Ω + λe = Ω. Let us answer Question
1 in this specific case by proving the following:

Proposition 2. Let Ω be a periodic domain in RN , N ≥ 3, satisfying (3) and
invariant in the direction e ∈ SN−1. Let f satisfying (5) be a KPP nonlinearity
independent of x. Denoting c? and w the critical speed of fronts and the speed of
invasion respectively for problem (15), we have

w ≡ c? ⇐⇒ Ω = RN .

This comes directly by combining our Proposition 1 with the following result from
[5]:

Theorem 4. Let c? be the critical speed of fronts for the problem (15) with f KPP
independent of x. Then c?(e) ≤ 2

√
f ′(0) and the equality holds if and only if Ω is

invariant in the direction e.

If Ω is a periodic domain satisfying hypothesis (3) and invariant in a direction,
Ω 6= RN , then this Theorem implies that c? is not constant (as function of the
direction). Then, Proposition 1 implies that c? 6≡ w. This answers Question 1 in the
special case where f is KPP and the dimension greater than 3. The general setting
is more involved and is addressed after.

However, when considering domains invariant in one direction, we can give further
informations about the shape of the asymptotic set of spreading W . The next result
shows that, if Ω is invariant in the direction e, then the spreading speed in a direction
orthogonal to e does only depend on the part of the domain orthogonal to e. More
precisely, we have

Proposition 3. Let Ω be a periodic domain satisfying (3), invariant in the direction
e ∈ SN−1. Let W be the asymptotic set of spreading of equation (15) set on Ω with f

satisfying (5) and such that u 7→ f(u)
u

is decreasing (this implies that f is KPP). Let
H be the hyperplane in RN orthogonal to e. Then, if WH∩Ω is the asymptotic set of
spreading for the same equation restricted to H ∩ Ω, i.e.,{

∂tu−∆u = f(u), t > 0, x ∈ H ∩ Ω,
∂ν′u = 0, t > 0, x ∈ ∂(H ∩ Ω),

(22)

where ν ′ ∈ SN−2 denotes the exterior normal to H ∩ Ω, we have

WH∩Ω =W ∩H.
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Proof. To simplify the notations, we denote wN the spreading speed for the Fisher-
KPP equation (15) set on Ω and wN−1 the spreading speed for the equation (22)
set on H ∩ Ω. Similarly, we denote c?N and c?N−1 the critical speeds of fronts for the
equation (15) and (22) respectively. Up to some rotation of the coordinates, we write
the points of Ω under the form (x, y), where x ∈ H ∩ Ω and y ∈ R.

Step 1.
We start to show that, for each ζ ∈ SN−2, we have wN−1(ζ) ≥ wN((ζ, 0)). To
do so, take ξ ∈ SN−2 such that ξ · ζ > 0. Let φξ(t, x) be a pulsating traveling
front solution of (22) in the direction ξ with critical speed c?N−1(ξ). For (x, y) ∈ Ω,
we define Φ(t, x, y) := φξ(t, x). Then Φ is solution of the equation (15) on the
whole of Ω. If u0(x, y) is a non-negative compactly supported initial datum and if
u(t, x, y) is the solution of (15) arising from it, we can assume that (up to translation)
u0(x, y) ≤ Φ(0, x, y). Hence, the parabolic comparison principle gives us that

u(t, x, y) ≤ Φ(t, x, y), ∀t ≥ 0, ∀(x, y) ∈ Ω.

Observe that Φ moves in the direction (ζ, 0) ∈ SN−1 with speed
c?N−1(ξ)

ξ·ζ . This means

that wN((ζ, 0)) ≤ c?N−1(ξ)

ξ·ζ , and because this is true for all ξ such that ξ · ζ > 0,

Theorem 2 implies that wN((ζ, 0)) ≤ wN−1(ζ).
Step 2.

We now prove the reverse inequality. To start, let ε > 0 be fixed such that ε2 < f ′(0).
We define a KPP nonlinearity fε(u) := f(u) − ε2u. Let u0(x) be a smooth, non-
negative, compactly supported function in H∩Ω. Let uε(t, x) be the solution arising
from u0 of (15) but with f replaced by fε.

Define the cut-off function

φ(y) :=

{
cos(εy) for |y| ≤ π

2ε

0 for |y| ≥ π
2ε
.

Now, let v(t, x, y) := uε(t, x)φ(y). Let us show that v is a (generalized) subso-
lution. An easy computation shows that, for (x, y) ∈ Ω such that v(t, x, y) > 0, we
have

∂tv −∆v − f(v) = fε(uε)φ(y) + ε2uεφ(y)− f(uεφ)

=
(
fε(uε)
uε
− f(uεφ)

uεφ
+ ε2

)
uεφ

≤ 0.

The last inequality comes from the fact that z 7→ f(z)
z

is decreasing. One can then
check that ∂νv = 0 on ∂Ω. This comes from ∂ν′uε = 0 on ∂(Ω∩H) together with the
fact that Ω is invariant in the direction e.

Hence, uεφ is a (generalized) subsolution of (15) (with nonlinearity f). We can
observe that uε spreads in Ω∩H in the direction ζ ∈ SN−2 with speed wN−1(ζ)− ε2.
Hence, by comparison, we get that wN−1(ζ)−ε2 ≤ wN((ζ, 0)). Taking the limit ε→ 0
yields the result.

Now, we turn to the full proof of Theorem 1, answering then Question 1.
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3.3 Geodesic estimates

This aim of this section is to establish estimates on w(e) that do take into account
the geometry of the domain. The key tool is an estimate on the heat kernel from
[6], following from general results on the heat kernel by Davies [8] and Grigor’yan
[13]. This estimate is valid for domains satisfying the extension property. Denoting
W 1,p(Ω) the usual Sobolev space over Ω, a non-empty subset of RN satisfies the
extension property if, for all 1 ≤ p ≤ +∞, there is a bounded linear map E from
W 1,p(Ω) to W 1,p(RN) such that E(f) is an extension of f from Ω to RN , for all
f ∈ W 1,p(Ω). For our purpose, we mention that the smooth periodic domains we
consider here satisfy the extension property, see [18].

Proposition 4. Let Ω be a locally C2 non-empty connected open subset of RN sat-
isfying the extension property. Let p(t, x, y) be the heat kernel in Ω with Neumann
boundary condition on ∂Ω. Then, for every ε > 0, there are two positive constants C
and δ such that

∀t > 0, ∀(z, x) ∈ Ω× Ω, p(t, z, x) ≤ C(1 + δt−
N
2 ) exp

(
−dΩ(z, x)2

(4 + ε)t

)
, (23)

where dΩ(z, x) denotes the geodesic distance in Ω.

See [6, Proposition 2.5] for the proof. We use this to get upper estimates on the
spreading speed w(e). To do so, we introduce the following coefficient, for e ∈ SN−1 :

CΩ(e) := lim inf
λ→+∞

λ

dΩ(0, λe)
. (24)

For notational simplicity and without loss of generality, we assume that the point
0 is in Ω. Up to translation, this is always possible, and will be be assumed in the
following.

This coefficient represents how much the domain is obstructed in the direction
e. The geodesic distance dΩ is always greater than the euclidian distance, hence
CΩ(e) ≤ 1.

Proposition 5. Let Ω be a domain satisfying (3) and f a monostable (6) or a
combustion (8) nonlinearity independent of x. We denote w the speed of invasion
associated to problem (15). Then, we have

w(e) ≤ 2CΩ(e)

√
max
u∈[0,1]

f(u)

u
. (25)

Observe that, if f is a KPP nonlinearity, then this formula boils down to w(e) ≤
2CΩ(e)

√
f ′(0). In the case where Ω = RN , the upper bound is actually the KPP

speed 2
√
f ′(0).

Proof. Let us observe that it is sufficient to prove the result in the KPP case. Indeed,
if f is a monostable or a combustion nonlinearity, then there is a KPP nonlinearity
f such that f

′
(0) = maxu∈[0,1]

f(u)
u

and f ≥ f . If u0 is an initial datum, denoting u,
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respectively u, the solution of (15) with nonlinearity f , respectively f , arising from
u0, the parabolic comparison principle tells us that

u(t, x) ≤ u(t, x), ∀t ≥ 0, ∀x ∈ Ω.

Then, w(e) ≤ w(e), ∀e ∈ SN−1, where w, respectively w, is the invasion speed for
(15) with nonlinearity f , respectively f . Then, it is sufficient to prove the estimate

(25) for f , because maxu∈[0,1]
f(u)
u

= maxu∈[0,1]
f(u)
u

. Hence, in the rest of the proof,

we assume that f is KPP, and then maxu∈[0,1]
f(u)
u

= f ′(0).
Let u(t, x) be the solution of the parabolic problem (15) arising from a compactly

supported non-negative initial smooth datum u0. Let K be a compact set of Ω such
that the support of u0 is in K. We denote by p(t, x, z) the heat kernel with Neumann
condition on Ω. Then, we first observe that

u(t, x) ≤ ef
′(0)t

ˆ
Ω

p(t, x, z)u0(z)dz. (26)

Indeed, ef
′(0)t
´

Ω
p(t, x, z)u0(z)dz is the solution of the linearized problem

∂tv −∆v = f ′(0)v, t > 0, x ∈ Ω,
∂νv = 0, t > 0, x ∈ ∂Ω,

v(0, x) = u0(x), x ∈ Ω,
(27)

and hence is a supersolution of (15), thanks to the KPP property. Then, the inequal-
ity (26) follows by the parabolic comparison principle. Now, let ε > 0 be fixed. Using
the estimate (23) in (26), we get

u(t, x) ≤ C(1 + δt−
N
2 )ef

′(0)t

ˆ
Ω

exp

(
−dΩ(z, x)2

(4 + ε)t

)
u0(z)dz, (28)

for some positive constants C and δ (depending on ε). This gives us

u(t, x) ≤ C‖u0‖L1(1 + δt−
N
2 ) exp

((
f ′(0)− (minz∈K dΩ(z, x))2

(4 + ε)t2

)
t

)
. (29)

Now, take e ∈ SN−1 and ω > 0 such that ω < w(e). Then, u(t, ωte)→ 1 as t→ +∞,
by definition of w(e). Then, necessarily, we have

lim sup
t→+∞

infz∈K dΩ(z, ωte)

t
≤
√

(4 + ε)f ′(0),

if this were not the case, up to subsequence the right-hand term of (29) would go
to zero along some time sequence (tn)n∈N, tn → +∞ as n goes to +∞, which would
be in contradiction with the fact that u(tn, ωtne) goes to 1. Using the triangular
inequality for dΩ and the fact that K is compact we get

ω ≤
√

(4 + ε)f ′(0)

lim supt→+∞
dΩ(0,ωte)

ωt

.
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Recalling the definition of CΩ(e) and that the above inequality is true for every ε > 0,
we get

ω ≤ 2CΩ(e)
√
f ′(0),

and the result follows.

We are now in position to answer Question 1.

3.4 Domains where c? 6≡ w

In this section, we build periodic domains Ω such that c? 6≡ w. If f is a KPP
nonlinearity, we exhibit a 1−periodic domain (but the periodicity can be chosen
arbitrary). If f is a monostable or a combustion nonlinearity, we build a L-periodic
domain, where L > 0 can be large. For clarity, we do this in dimension N = 2, but
these constructions can be easily generalized to greater dimensions.

In the following, we denote ex := (1, 0), ey := (0, 1) ∈ S1 the unit vectors of the
canonical basis of R2. Moreover, we define ed := 1√

2
(1, 1) ∈ S1.

3.4.1 The KPP case

We show here the following:

Proposition 6. Let f be a KPP nonlinearity (7). There is a smooth periodic domain
Ω ⊂ R2 such that c?(ex) > w(ed), where c? and w are the critical speed of fronts and
the speed of invasion respectively for (15) set in Ω with nonlinearity f .

We see that in this domain, it is not possible that w = c?, thanks to Proposition
1. Hence, this answers Question 1 in the KPP case.

Proof. For α ∈ (1
2
, 1), β ∈ (0, 1

2
), we define Ωα,β to be a smooth periodic domain such

that

Z2 + (1− α, α)× [β, 1− β] ⊂ Ωc
α,β ⊂ Z2 +

(
1− α

2
,
1 + α

2

)
× [β, 1− β]. (30)

This domain is simply R2 with “almost square” holes. For α, β given we denote
c?α,β(e) the critical speed of fronts in this domain in the direction e. If β is fixed
and if we let α → 1, then the domain “converges” in some sense to an array of
parallel disconnected strips in the direction ex. This observation is made rigorous by
[5, Theorem 1.4], where it is proven that:

c?α,β(ex) −→
α→1

2
√
f ′(0).

Now, let κ ∈ (1,
√

2) and take α close enough to 1 so that c?α,β(ex) >
1
κ
2
√
f ′(0).

Take n ∈ N. Denoting dΩα,β the geodesic distance in Ωα,β, it is easy to see that

dΩα,β(0, n
√

2ed) ≥ 2n(α−β). Plotting this in (24) yields CΩα,β(ed) ≤ 1√
2(α−β)

. Taking

β small enough, and increasing α if needed, we can assume that CΩα,β(ed) ≤ 1
κ
.

Denoting wα,β the speed of invasion in the domain Ωα,β, Proposition 5 implies that

wα,β(ed) ≤ 1
κ
2
√
f ′(0). Hence, c?α,β(ex) > wα,β(ed) when α is close enough to 1 and β

close enough to 0. This yields the result.
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3.4.2 Combustion and monostable case

Now, we answer Question 1 in the case where f is a combustion or a monostable
nonlinearity. We do it for f combustion first, and then we explain how this yields
the result for monostable nonlinearities.

Proposition 7. Let f be a combustion nonlinearity, i.e, it satisfies (8). Then, there
are L > 0 and a family of smooth L-periodic domains (Ωα)α∈(0,1) such that wα(ex) ≥
K, where K > 0 is independent of α, and wα(ey)→ 0 as α goes to 0.

If α > 0 is chosen small enough so that wα(ey) < K, we see that wα can not
be constant, and then Proposition 1 implies that c? 6≡ w on Ωα for α small. This
answers Question 1 and proves Theorem 1 when f is a combustion nonlinearity.

Before turning to the proof of Proposition 7, we state the following technical
lemma. We mention that Rossi and the author prove a similar (more general) lemma
in [9]. We recall that we denote BR the ball of radius R and of center 0.

Lemma 4. Let f be a combustion nonlinearity (8) independent of x. Then, there
are R, c > 0 and φ ∈ W 2,∞(R2), φ > 0 in BR and φ = 0 on ∂BR such that, on BR

we have:
∆φ+ c∂xφ+ f(φ) ≥ 0.

Proof. We build φ to be radial. We set φ(x) := h(|x|). Now, take R1, R2, R3 > 0 to
be chosen after, such that R1 < R2 < R3. We denote c̃ := c+ 1

R1
. Let C ∈ (θ, 1), and

α, β > 0. We define h as follows:
h(r) = C, r ∈ [0, R1],
h(r) = −α

2
(r −R1)2 + C, r ∈ [R1, R2],

h(r) = β(e−c̃(r−R3) − 1), r ∈ [R2, R3].
(31)

Let us see that we can choose R1, R2, R3, c, α, β, C such that
h ∈ W 2,∞(R+),
h(R2) = K, where K ∈ (θ, C) will be chosen after,
h′′(r) + c̃h′(r) + f(h(r)) ≥ 0, for r ≥ 0.

(32)

The existence of such a function proves our result, indeed

∆φ+ c∂xφ+ f(φ) ≥ h′′ + (c+ 1
r
)h′ + f(h)

≥ h′′ + (c+ 1
R1

)h′ + f(h).

We used the fact that h is non-increasing and h′(r) = 0 if r ∈ [0, R1] here.
Let us define

F := inf
s∈(K,C)

f(s) > 0.

Because h(R2) = K, we can bound from behind f(h(r)) by F when r ∈ [R1, R2] and
by 0 elsewhere. Some easy computations show that (32) boils down to verify the
following algebraic system:
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β(ec̃(R3−R2) − 1) = K,
α
2
(R2 −R1)2 = C −K,

α(R2 −R1) = βc̃ec̃(R3−R2),
F ≥ α(1 + c̃(R2 −R1)).

(33)

Up to some computations, it is easy to see that (33) admits positive solutions, for
instance: 

α = F
1+C−K

2K

,

c = 1
8

√
2α(C−K)

K
,

β =

√
α(C−K)

2c
√

2
−K,

R1 = 1
c
,

R2 =
√

2(C−K)
α

+R1,

R3 = 1
2c

ln(1 + K
β

) +R2.

Hence, φ(x) := h(|x|) satisfies the lemma with R := R3.

Now, we use this technical lemma to prove Proposition 7.

Proof of Proposition 7. Step 1: Construction of the domain.
Let R > 0 be large enough, so that we can apply Lemma 4. We build a family of
3R-periodic domains, let α ∈ (0, 1), ε ∈ [0, αR

2
] and define

K̃ε
α :=

{
(x, y) ∈ R2 such that αx+R + ε ≤ y ≤ αx+ (1 + α)R− ε, y ∈ [R, 2R]

}
.

Now, let Kα be a smooth connected compact set such that

K̃
αR
4
α ⊂ Kα ⊂ K̃0

α.

We define Ωα to be a smooth 3R-periodic domain as follows:

Ωc
α :=

⋃
k∈Z2

(Kα + 3Rk).

Observe that, if k, l ∈ Z2 are such that k 6= l, then (Kα + 3Rk) ∩ (Kα + 3Rl) = ∅.

Ωα
x

y

R

3R

2R
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Step 2 : Lower bound on wα(ex).
For α > 0 given, we can consider the invasion speed wα(ex) for (15) set on the
smooth periodic domain Ωα (thanks to Theorem 2). Let us show that there is K > 0
independent of α such that wα(ex) ≥ K.

Because of the choice of R, we can apply Lemma 4 to find c > 0 and φ ∈
W 2,∞(BR), φ > 0 on BR and φ = 0 on ∂BR such that ∆φ + c∂xφ + f(φ) ≥ 0. Now,
we define

v(t, x, y) :=

{
φ(x− ct, y) if (x, y) ∈ BR(ctex),
0 elsewhere.

Then, the support of v(t, ·, ·) never intersects the boundary of Ωα, and because

∂tv −∆v − f(v) = −c∂xφ−∆φ− f(φ) ≤ 0 for (x, y) ∈ supp v(t, ·, ·),

we have that v is a non-negative compactly supported generalized subsolution of (15).
Now, take u0 a compactly supported initial datum such that u0(x, y) ≥ φ(x, y)

and such that the solution arising from it, name it u(t, x, y), converges to 1 (as we
mentioned earlier, such initial datum always exists, see [9]). The parabolic comparison
principle yields

u(t, x, y) ≥ φ(x− ct, y), ∀t ≥ 0, ∀(x, y) ∈ Ωα.

By definition of wα(ex), this implies that wα(ex) ≥ c, where c is given by Lemma 4
and is independent of α. This concludes this step with K := c.

Step 3. Upper bound bound on wα(ey).
We now show that wα(ey) → 0 as α goes to 0. To do so, we first apply Proposition
5, to get

wα(ey) ≤ 2CΩα(ey)

√
max
u∈[0,1]

f(u)

u
.

Let us estimate CΩα(ey). If we take n ∈ N, we see that, if α is small enough,

dΩα(0, 4Rney) ≥ 2Rn
√

1 +
(
1− 1

α

)2
. If α is small enough, CΩα(ey) ≤ 3α. Then

wα(ey) ≤ 6α

√
max
u∈[0,1]

f(u)

u
−→
α→0

0,

hence the result.

Now, Proposition 7 is proved, and answers Question 1 in the combustion case :
in Ωα, c? 6≡ w, for α > 0 small enough.

Let us now explain how this also answers Question 1 in the monostable case. Take
f to be monostable nonlinearity and let f be a combustion nonlinearity and let f be
a KPP nonlinearity, both independent of x, such that

f ≤ f ≤ f.
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Let wα, wα, wα be the invasion speed for the problem (15) with nonlinearity f, f, f
respectively. Then, by comparison, we have

∀e ∈ S1, wα(e) ≤ wα(e) ≤ wα(e). (34)

Now, we can apply Proposition 4 to find c > 0 and φ ∈ W 2,∞(R2), φ > 0 in BR and
φ = 0 on ∂BR such that, on BR we have:

∆φ+ c∂xφ+ f(φ) ≥ 0.

Then, consider the domain Ωα built in the proof of Proposition 7, but with this new
R > 0.

On this domain, we have a lower bound on wα(ex) independent of α. Moreover,
we can show that wα(ey) goes to zero as α goes to 0, as in the proof of Proposition 7.

Hence, (34) yields that there is K > 0 independent of α such that wα(ex) ≥ K,
and wα(ey) → 0 as α goes to 0. This means that Proposition 7 still holds if f is
monostable, hence this answers Question 1 in the monostable case and concludes the
proof of Theorem 1.

3.5 Symmetries of the domain and relation with c? and w

This section is dedicated to the proof of Theorem 3. As we mentioned earlier, even
in a domain Ω where c? 6≡ w, the Freidlin-Gartner formula yields that any direction
e ∈ SN−1 minimizing c? satisfies the equality c?(e) = w(e). Theorem 3 gives a
geometrical condition that ensure the existence of directions where c? and w coincide.
To prove it, we first start to state the following lemma:

Lemma 5. Let c? and w be respectively the critical speed of fronts and the speed of
invasion for (15) with the nonlinearity f satisfying (4), (5) and such that u 7→ f(u)

u

is non-increasing. For any k ∈ N and e ∈ SN−1, (ξi)i∈J1,kK ∈ (SN−1)k such that

e ∈

{
x ∈ RN : x =

k∑
i=1

λiξi, λi ≥ 0

}
,

the following holds:

c?(e) ≤ max
i∈J1,kK

c?(ξi)

e · ξi
.

Proof of Lemma 5. For i ∈ J1, kK, we denote φξi(t, x) a pulsating traveling fronts
solution of (1) in the direction ξi with critical speed c?(ξi) respectively. Denote

v(t, x) :=
k∑
i=1

φξi(t, x).

Now, the hypotheses on f imply that f(v) ≤
∑k

i=1 f(φξi), and then v is a supersolu-
tion of (1).
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Now, for ε > 0, let fε be a combustion nonlinearity satisfying the following:
0 ≤ fε(x, u) ≤ f(x, u), ∀u ∈ [0, 1], ∀x ∈ Ω,
fε(x, u) = f(x, u), ∀u ∈ [0, 1− 2ε], ∀x ∈ Ω,
fε(x, u) = 0, ∀u ∈ [−ε, 0], ∀x ∈ Ω,
fε(x, 1− ε) = 0, ∀x ∈ Ω.

Let φεe be a pulsating traveling fronts connecting 1− ε to −ε, solution of (1) with the
combustion nonlinearity fε, in the direction e with critical speed c?ε(e).

Up to some translation in time, we can assume that φεe(0, x) < 0 if x · e > 0 and
∀i ∈ J1, kK, φξi(0, x) ≥ 1 − ε if x · ξi < 0. Thanks to the hypotheses, we can write

e =
∑k

i=1 λiξi, with λi ≥ 0, ∀i ∈ J1, kK. Hence, if x ∈ Ω is such that x · e < 0, then
there is at least one of the ξi such that x · ξi < 0. Hence, v(0, x) > 1− ε if x · e < 0.
If x · e ≥ 0, we have v(0, x) > 0 ≥ φεe(0, x). Hence

v(0, x) ≥ φεe(0, x), ∀x ∈ Ω.

Because fε ≤ f , the parabolic comparison principle yields

v(t, x) ≥ φεe(t, x), ∀t ≥ 0, ∀x ∈ Ω. (35)

Now, if we take c > maxi∈J1,NK
c?(ξi)
e·ξi , we have that v(t, cte) → 0 as t goes to +∞.

It then follows from (35) that c?ε(e) ≤ maxi∈J1,NK
c?(ξi)
e·ξi . Now, it is classical that

c?ε(e)→ c?(e) as ε goes to 0 (see, for exemple, [17, Proposition 2.6]). Taking the limit
ε→ 0 then yields the result.

Remark 2. Lemma 5 yields a very strong geometrical condition on c?, and prevents
it to be any arbitrary function. Consider

C :=
{
r(ξ)ξ ∈ R2 : r(ξ) ∈ [0, c?(ξ)]

}
.

In the case of equation (15) with Ω = RN , c? is constant and then C is a ball. In
general, it is not clear what “shapes” C can adopt. Lemma 5 prevents it to be some
natural candidates, for instance, C can not be an ellipse with eccentricity larger than

1√
2
. We recall that an ellipse of equation x2

a2 + y2

b2
= 1, with a > b, has eccentricity√

1− b2

a2 .

Now, we prove Theorem 3.

Proof of Theorem 3. We first consider the case N ≥ 3. Let e ∈ SN−1 and R be the
rotation of angle π around the axis directed by e such that RΩ = Ω. Take ξ1 be
such that w(e) = c?(ξ1)

ξ1·e , where ξ1 · e > 0. If ξ1 = e, then w(e) = c?(e) and we are
done. If not, define ξ2 := Rξ1. Then, e is in the positive cone generated by ξ1 and ξ2.
Because RΩ = Ω, it is easy to see that c?(ξ1) = c?(ξ2). Indeed, if φ(t, x) is a pulsating
traveling front solution of (15) in the direction ξ with speed c?(ξ), then φ(t, Rx) is a
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pulsating traveling front solution of (15) in the direction Rξ with speed c?(ξ). Hence,
Lemma 5 implies that

c?(e) ≤ c?(ξ1)

ξ1 · e
= w(e).

Because w(e) ≤ c?(e) (thanks to (12)), we get

c?(e) = w(e),

hence the result. If N = 2, the proof works identically.

Let us emphasize that, if one consider the general equation (1), then Theorem 3
still holds if we add the following hypothesis on the coefficients: in the case N ≥ 3,

A(Rx) = RA(x)R?, q(Rx) = Rq(x), f(Rx, ·) = f(x, ·),

where R is the rotation of angle π around the axis directed by e that satisfies RΩ = Ω.
In the case N = 2, we should add:

A(Sx) = SA(x)S?, q(Sx) = Sq(x), f(Sx, ·) = f(x, ·),

where S is the symmetry about the axis directed by e that satisfies SΩ = Ω.

Appendix

Proof of Lemma 1

As we mentioned, Lemma 1 is the natural extension of [17, Lemma 2.1], in the case
of a periodic domain.

Proof. Let u be taken as in the lemma. We denote

h := lim inf
δ→+∞

inf
t<0

x·e<γt−δ
x∈Ω

u(t, x)

Assume that, by contradiction, h ∈ (S, 1). We can find two sequences (xn)n ∈ ΩN,
(tn)n ∈ (−∞, 0)N such that xn · e− γtn → −∞ and u(tn, xn)→ h as n goes to +∞.
Let us define kn ∈ ZN , zn ∈ [0, 1)N so that xn = kn + zn. Up to extraction, we
assume that zn → z as n goes to +∞, for some z ∈ [0, 1]N . Consider the sequence of
translated functions:

un := u(·+ tn, ·+ kn).

These functions are supersolutions of (1), by periodicity of the domain. As before,
we can use the usual parabolic estimates to get local uniform convergence of the
sequence (un)n to a function u∞ supersolution of (1). Moreover, we have

u∞(0, z) = h ≤ u∞(t, x), ∀t ≤ 0, ∀x ∈ Ω. (36)
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Indeed, for t ≤ 0, x ∈ Ω, we have

un(t, x) = u(t+ tn, x+ kn) ≥ inf
τ<0

y·e−γτ≤δ̃n

u(τ, y), (37)

where δ̃n := x · e − γt − zn · e + xn · e − γtn goes to −∞ as n goes to +∞. Hence,
passing to the limit n → +∞ in (37) yields (36). Because f ≥ 0, it follows from
the parabolic maximum principle and Hopf principle that u∞ is actually equal to h
if t ≤ 0 and x ∈ Ω. This implies that f(x, h) = 0, which is in contradiction with the
fact that h ∈ (S, 1) together with hypothesis (5), hence the result.

Proof of Lemma 2

We now turn to the proof of Lemma 2. Again, it is the natural extension of [17,
Lemma 2.2] to the case of a periodic domain.

Proof. Let us define ūε := ū+ ε, where ε > 0. The hypotheses on u yield that there
is δ > 0 such that uε(t, x) ≥ 1 + ε

2
if t < 0 and x · e < γt− δ, x ∈ Ω. The hypotheses

on u gives us that there is L > 0 such that u(t, x) ≤ ε if t < 0 and x ·e ≥ (γ+η)t+L.
Hence, there is Tε ≤ 0, such that uε(t, x) > u(t, x) for t < Tε, for all x ∈ Ω. Indeed,
if t is negative enough, we have ηt+ L < −δ, hence we can take Tε := −δ−L

η
.

In order to prove the result, we shall argue by contradiction. Hence, we will
assume that there is ε0 > 0 such that:

∀ε ∈ (0, ε0), ∃τ ∈ (Tε, 0), ∃xτ ∈ Ω such that ūε(τ, xτ ) < u(τ, xτ ). (38)

Indeed, if (38) does not hold, our result follows by letting ε → 0. Now, we define
tε ∈ [Tε, 0) to be the infimum of all the τ such that (38) holds true. Hence

uε(t, x) ≥ u(t, x), ∀t ≤ tε, ∀x ∈ Ω,

and by continuity we have

inf
x∈Ω

(
ūε − u

)
(tε, x) = 0.

Thanks to the hypotheses, we can find ρε ∈ R such that

inf
x·e=ρε

(
ūε − u

)
(tε, x) = 0.

Depending on the behavior of ρε, we now consider three cases.
First case : (ρε)ε∈(0,ε0) is bounded.

We can find a sequence of points (xε)ε∈(0,ε0), with xε ∈ Ω such that

xε · e = ρε and ūε(tε, xε)− u(tε, xε) < ε.

We define kε ∈ ZN , yε ∈ [0, 1)N to be such that xε = kε + yε . Up to extraction,we
can find y ∈ [0, 1)N such that yε → y as ε goes to 0.
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We now consider the translated functions uε(t+ tε, x+kε), u(t+ tε, x+kε). Using
parabolic estimates and extracting, these functions converge locally uniformly as ε
goes to 0 to u∞, u∞, a supersolution and a subsolution respectively of (1).

Moreover, u∞, u∞ satisfy:

u∞(0, y) = u∞(0, y) and u∞(t, x) ≥ u∞(t, x) for t ≤ 0, x ∈ Ω.

Hence, the strong comparison principle and Hopf lemma (see [16, chapter 3]) imply
that u∞ = u∞ for t ≤ 0. But the boundedness of xε · e = ρε implies that we still have

lim inf
δ→+∞

inf
t<0

x·e<γt
x∈Ω

−δ

u∞(t, x) ≥ 1.

However, the hypotheses on u yields that there is K ∈ R such that

u∞(t, x) ≤ 1

2
, ∀t < 0, ∀x ∈ Ω such that x · e ≥ (γ + η)t+K.

Taking t < 0 small enough yields a contradiction.
Second case : infε∈(0,ε0) ρε = −∞.

Let us take ε be such that −ρε is large enough to have

inf
t<0

x·e−γt<ρε

u(t, x) > S.

Because f(x, ·) is decreasing in (S, 1), we have that uε = u+ ε is supersolution of (1)
for {(t, x) ∈ R× Ω such that x · e− γt < ρε}.

We can find a sequence (xn)n ∈ ΩN such that xn · e = 0 and

lim
n→+∞

(
uε − u

)
(tε, ρεe+ xn) = 0.

We write as before xn = kn+yn, where kn ∈ ZN and yn ∈ [0, 1)N , and up to extraction
we can find y ∈ [0, 1]N such that yn → y as n goes to +∞.

We define uεn(t, x) := uε(t, x+ kn) and un(t, x) := u(t, x+ kn). Observe that uεn is
supersolution in {(t, x) ∈ R×Ω such that x ·e−γt < ρε−1}. Again, using parabolic
estimates and extracting as n goes to +∞, we get two functions uε∞ and u∞ that are
respectively supersolution and subsolution of (1) on the same set. Moreover, they
satisfy uε∞(tε, ρεe+ y) = u∞(tε, ρεe+ y) : we have a contact point.

Observe that (tε, ρεe + y) is in {(t, x) ∈ R × Ω such that x · e − γt < ρε − 2}.
Hence, we can apply Hopf lemma ([16, Theorem 6]) to the equation (1) on {(t, x) ∈
R×Ω such that x · e− γt < ρε− 1} to get get that (tε, ρεe+ y) is not on a boundary
point. Therefore, it is an interior contact point and the parabolic comparison principle
yields that uε∞(t, x) = u∞(t, x) on {(t, x) ∈ R×Ω such that x · e− γt < ρε− 1}. But
this is not possible, because the hypotheses on u imply that there is δ large enough so
that uε∞(t, x) ≥ 1 + ε

2
if x · e− γt < −δ. Because u ≤ 1, we are led to a contradiction.

Third Case : supε∈(0,ε0) ρε = +∞.
If we are in the case (19), this can not happen because uε ≥ 0 and u(tε, x) < 0 if
x · e is large enough. Then, we are left to assume that f satisfies (9) and u satisfies
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(18). In particular, we can take ε small enough so that ρε is large enough to have
u(t, x) ≤ θ on {(t, x) ∈ R×Ω such that x · e− γt > ρε}, where θ is from (9). Hence,
uε := u − ε is a subsolution of (1) on this set. Arguing as in the previous case, we
get a contradiction, and hence the result.
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