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BOUNDARY REGULARITY OF WEAKLY ANCHORED

HARMONIC MAPS

ANDRES CONTRERAS, XAVIER LAMY, AND RÉMY RODIAC

Abstract. In this note we study the boundary regularity of minimizers
of a family of weak anchoring energies that model the states of liquid
crystals. We establish optimal boundary regularity in all dimensions
n ≥ 3. In dimension n = 3, this yields full regularity at the boundary
which stands in sharp contrast with the observation of boundary de-
fects in physics works. We also show that, in the cases of weak and
strong anchoring, regularity of minimizers is inherited from that of their
corresponding limit problems.The analysis rests in a crucial manner on
the fact that the surface and Dirichlet energies scale differently; we take
advantage of this fact to reduce the problem to the known regularity of
tangent maps with zero Neumann conditions.

1. Introduction

Let n ≥ 3, Ω ⊂ R
n a smooth bounded domain and N a smooth compact

manifold. We are interested in the boundary regularity of minimizers of the
family of weak anchoring energies defined for maps u ∈ H1(Ω;N ),

(1) Ew(u) :=

∫

Ω
|∇u|2dx+ w

∫

∂Ω
g(x, u)dHn−1,

that arise in the study of liquid crystals [3]. Above, w ≥ 0 is referred to as the
anchoring strength while g, the anchoring energy density, is a non-negative
bounded function on ∂Ω×N . The Euler-Lagrange equations satisfied by a
minimizer u of Ew are

(2)

{

−∆u = AN (u)(∇u,∇u) in Ω,
1
w

∂u
∂ν = πN (u)∇ug(x, u) on ∂Ω,

where ν is the outward unit normal to ∂Ø, AN is the second fundamental
form of N and πN is the projection on the tangent space. In the context
of liquid crystals, n = 3 and the target manifold is N = S

2. The functional
Ew relaxes the physically unrealistic strong anchoring constraint

(3) g(x, u(x)) = 0 for a.e. x ∈ ∂Ω,

which formally corresponds to w = ∞. A model case of anchoring density,
though not the only one of physical interest, is given by

(4) g(x, u) = |u− u0(x)|
2,
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for some u0 : ∂Ω → N , which corresponds to Dirichlet boundary conditions
in the strong anchoring limit.

Interior regularity for minimizers of Ew follows directly from [6]: the
singular set has Hausdorff dimension at most n − 3 and is discrete when
n = 3. On the other hand, boundary regularity does not seem to have
been considered. In the liquid crystal setting, however, boundary defects
have been discussed in [3]. The chief goal of this note is to address the
question of optimal boundary regularity of minimizers of Ew. We tackle this
question from two different perspectives: first we obtain an optimal bound
on the dimension of the singular set of such maps valid for all values of w,
and then we take on a perturbation point of view to observe that boundary
smoothness is a stable condition in w.

In what follows Sing(u) ⊂ Ω denotes the set of points where u is not
continuous while dimA corresponds to the Hausdorff dimension of a set
A ⊂ R

n. As is natural, we extend the definition of Ew to w = ∞ by setting
E∞(u) = +∞ if u does not satisfy the strong anchoring constraint (3). Our
main result is the following.

Theorem 1.1. Let Ew be as in (1). The following holds about minimizers
of Ew in H1(Ω;N ) :

1. (Optimal boundary regularity for fixed anchoring strength) For
any w ∈ [0,∞) and u a minimizer of Ew,

dim(Sing(u) ∩ ∂Ω) ≤ n− 4 if n ≥ 4,

Sing(u) ∩ ∂Ω is discrete if n = 4,

Sing(u) ∩ ∂Ω = ∅ if n = 3.

2. (Stability with respect to the anchoring strength) Assume that for
some w0 ∈ [0,∞], minimizers of Ew0

have no boundary singularities,
and in the case w0 = ∞ assume in addition that inf Ew0

< ∞. Then,
for w in a neighborhood of w0, minimizers of Ew have no boundary
singularities.

Let us note that, somewhat surprisingly, in the case of the physical dimen-
sion n = 3, the first part of Theorem 1.1 gives full regularity at the boundary
which is in strong contrast with physical observations [3]. At the same time,
the second part of the theorem implies in particular that minimizers of Ew

have no boundary singularities for w close to zero (weak anchoring case),
since minimizers of the Dirichlet energy with Neumann boundary conditions
are constants. In the case of extreme anchoring (that is when w is large) and
for g of the form (4) with a smooth u0, minimizers of Ew have no bound-
ary singularities, again as a consequence of the second part of Theorem 1.1
because minimizing harmonic maps with smooth Dirichlet conditions are
smooth near the boundary [7].
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2. Proof of Theorem 1.1

The proof of the first part of Theorem 1.1 follows the classical scheme for
regularity of harmonic maps [6], which relies on the study of tangent maps.
Let x0 ∈ ∂Ω and r > 0. Defining û(x) := u(x0 + rx), we have















−∆û = AN (û)(∇û,∇û) in
1

r
(Ø \ x0) ,

1

w

∂û

∂ν
= rπN (û)∇ûg(x, û) on ∂

[

1

r
(Ø \ x0)

]

,

Since πN (û)∇ûg(x, û) is bounded, taking the formal limit r → 0 yields a
map φ satisfying







−∆φ = AN (φ)(∇φ,∇φ) in R
n
+,

∂φ

∂ν
= 0 on R

n−1 × {0}.

Such maps, when they are 0-homogeneous and locally minimizing, are called
free-boundary minimizing tangent maps and have been studied by Hardt and
Lin in [2]. They discovered that their singular set has Hausdorff dimension
at most n− 4 at the boundary. This result allows to conclude, provided we
adapt the techniques developed in [6] to our case. An essential ingredient in
[6] is the energy monotonicity formula, which – together with a technical ex-
tension lemma – ensures convergence of blow-up sequences to tangent maps.
The key observation in our case is that the surface anchoring term in the
energy (1) scales differently from the Dirichlet energy whence an approx-
imate monotonicity formula is still valid; moreover the surface anchoring
term disappears after blow-up and thus our tangent maps are precisely the
ones studied in [2], where the equivalent of Theorem 1.1 part 1. is proven.

Proof of Theorem 1.1 part 1. We denote by B+
r the half ball

B+
r = {x ∈ R

n : |x| < 1, xn > 0} ,

by Σr the “flat” part of its boundary Σr = B+
r ∩ {xn = 0}, and by Γr the

“round” part of its boundary Γr = ∂B+
r ∩{xn > 0}. By locally flattening the

boundary of Ω, our problem can be reduced to studying maps minimizing
an energy functional of the form

Ew(u) =

∫

B+

1

|∇u|2 + w

∫

Σ1

g(x′, u),

among maps u ∈ H1(B+
1 ;N ) with fixed boundary values on Γr. Here g

is a bounded non-negative function on Σ1 ×N , and we study regularity of
minimizers on Σ1. It is important to remark that the two terms in the above
energy scale differently: setting ur(x) = u(rx), it holds

(5) rn−2Ew(ur) =

∫

B+
r

|∇u|2 + r

∫

Σr

g(x′/r, u).
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A first consequence of (5) is that “small energy regularity” holds for mini-
mizers of Ew: there exist r0 and ε0 (depending on n, w and sup g) such that
for r < r0,

(6) r2−n

∫

B+
r

|∇u|2 < ε20 =⇒ u is continuous in B+
r/2.

This can be proved arguing by contradiction as in [4, Proposition 1]. An
essential step there is to construct good comparison maps, which is done with
the help of an important extension lemma. Our setting is slightly different
since we are dealing with maps defined on half balls, but after extending by
reflection, the proof carries over.

Comparison with rescaled homogeneous maps as in [6, §2] implies the
following monotonicity formula: for some c > 0 depending only on n, w and
sup g,

(7)
d

dr

[

r2−n

∫

B+
r

|∇u|2
]

≥ −c+ r2−n

∫

Γr

∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

2

.

Together with the construction of good comparison maps, this monotonicity
formula implies, following [4, Proposition 2] and taking (5) into account,
the strong H1 convergence of blow-up subsequences ux0,ri(x) = u(x0 + rix)
for any x0 ∈ Σ1. The limits, called tangent maps, are homogeneous N -
valued maps defined in the half-space {xn > 0}. Moreover tangent maps
minimize the Dirichlet energy E0 with free boundary conditions on Σ1 (and
fixed boundary values on Γ1). Therefore the proof can be continued exactly
as in [2, Theorem 2.8]. �

Remark 2.1. The Dirichlet energy of a tangent map at x0 ∈ Ω equals the
density function

(8) Θ(u, x0) = lim
r→0

[

r2−n

∫

Br(x0)∩Ω
|∇u|2

]

.

The limit exists thanks to the monotonicity formula (7). The small energy
regularity property (6) amounts to

(9) Θ(u, x0) < ε0 =⇒ u is continuous at x0,

and ε0 can be a posteriori taken as the infimum of the Dirichlet energy over
all non constant tangent maps. In particular, ε0 in (9) is independent of w
and sup g, which was a priori not obvious.

Theorem 1.1 part 2. follows from the strongH1 convergence of minimizers
of Ew to minimizers of Ew0

as w → w0.

Proof of Theorem 1.1 part 2. Were the result not true, there would exist a
sequence wk → w0 and maps uk minimizing Ewk

, with singularities at xk →
x0 ∈ ∂Ω. By Remark 2.1 above, this implies in particular Θ(uk, xk) ≥ ε0.
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We may also assume that uk converges weakly in H1 to a N -valued map
u0. The convergence is in fact strong, and u0 minimizes Ew0

: this follows
from the inequalities

Ew0
(u0) ≤ lim inf Ewk

(uk) ≤ lim inf Ewk
(u) = Ew0

(u), ∀u ∈ H1(Ω;N ).

By assumption, u0 has no boundary singularities. On the other hand it
holds Θ(u0, x0) ≥ ε0 since the density function is upper-semicontinuous [1,
Proposition 10.26]. This contradiction completes the proof. �

3. Future directions

The proof of Theorem 1.1 is really specific to minimizing maps. A natural
question is then if it can be extended to also consider stationary harmonic
maps. Another line of investigation is more directly linked to the harmonic
map depiction of liquid crystals, which can be seen as the London limit of a
more general model based on Q-tensors [5]: in the case of weak anchoring,
does the convergence of minimizing Q-tensors hold up to the boundary?
Finally, the upper bound in Theorem 1.1 part 1. is very general and valid
for any w and any function g. It would be interesting to see if this bound
can be improved incorporating the dependence on the anchoring strength
and the map g. This would require much finer analysis.
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[3] M. Kléman and O.D. Lavrentovich. Soft matter physics: an introduction. Springer,
2007.
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