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Persistence of superconductivity in thin shells

beyond Hc1

Andres Contreras ∗† Xavier Lamy ‡§

November 5, 2018

Abstract

In Ginzburg-Landau theory, a strong magnetic field is responsible for
the breakdown of superconductivity. This work is concerned with the
identification of the region where superconductivity persists, in a thin
shell superconductor modeled by a compact surface M ⊂ R3, as the
intensity h of the external magnetic field is raised above Hc1. Using
a mean field reduction approach devised by Sandier and Serfaty as the
Ginzburg-Landau parameter κ goes to infinity, we are led to studying a
two-sided obstacle problem. We show that superconductivity survives in a
neighborhood of size (Hc1/h)1/3 of the zero locus of the normal component
H of the field. We also describe intermediate regimes, focusing first on a
symmetric model problem. In the general case, we prove that a striking
phenomenon we call freezing of the boundary takes place: one component
of the superconductivity region is insensitive to small changes in the field.

1 Introduction

LetM be a compact surface homeomorphic to S2, embedded in R3. For κ, h > 0
and A a vector field onM, we consider the Ginzburg-Landau functional GM,κ :
H1(M;C)→ R+,

GM,κ(ψ) =

∫
M

(
|∇M − ihAψ|2 +

κ2

2

(
|ψ|2 − 1

)2
)
dH2
M(x). (1)

The functional GM,κ arises as the Γ-limit (see [5]) of the full 3d Ginzburg-Landau
energy
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Gε,κ(ψ,A) =
1

ε

[∫
Ωε

(
|(∇− iA)ψ|2 +

κ2

2

(
|ψ|2 − 1

)2
)
dx

+

∫
R3

|∇ ×A−Hext|2 dx
]
.

(2)

where for all ε > 0 sufficiently small, Ωε corresponds to a uniform tubular
neighborhood of M. In (2) Hext is the external magnetic field. As ε → 0, the
field completely penetrates the sample which then implies that in the Γ-limit A
is prescribed to be equal to A, the tangential component of a divergence free
vector field Ae such that ∇× hAe = Hext.

A central question in Ginzburg-Landau theory is the determination of the
so-called critical fields. The first critical field corresponds to the appearance
of zeros of ψ carrying non-trivial degree – called vortices in this context – in
minimizers of the energy.

The analysis in [5] includes the computation of the first critical field of a
thin shell of a surface of revolution subject to a constant vertical field which
turns out to be surprisingly simple and depending only on an intrinsic quantity,
in the κ→∞ limit:

Hc1 ∼
(

4π

Area of M

)
lnκ.

This result is extended in [4], to general surfaces and magnetic fields. For a fixed
field He, an external magnetic field of the form Hext = h(κ)He = h(κ)∇×Ae

is considered. Then the first critical field is

Hc1 ∼
1

maxM ∗F −minM ∗F
lnκ,

where d∗F = ∗d ∗ F = A and ∗ denotes the Hodge star-operator. In fact,
the study shows also that, somewhat remarkably, not all fields He give rise to
a first critical field. This phenomenon is related to the geometry and relative
location ofM with respect to He. For He that yield a finite Hc1 , the topological
obstruction imposed by M implying that the total degree of ψ

|ψ| is zero is used

in [4] to show that there is an even number of vortices in minimizers of GM,κ,
half with positive degree, half with negative degree concentrating respectively
on the set where ∗F achieves its minimum and maximum. The optimal number
2n and location of vortices and anti-vortices inM is established in [4] for values
of h(k) slightly above Hc1 and in addition it is shown that if the minimum and
maximum of ∗F is attained at finitely many points then the two sets of vortices
minimize, independently, a renormalized energy.

The results in [4] and [5] cover only a moderate regime; in these works the
intensity of the applied field is Hc1 +O(ln lnκ) and thus the number of vortices
remains bounded as κ goes to infinity.

Once the value of h becomes much larger than Hc1 , that is there is a constant
C > 0 such that h − Hc1 ≥ C lnκ, then the number of vortices in minimizers
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diverges as κ → ∞. For even larger h, superconductivity persists only in a
narrow region in the sample.

In the case of an infinite cylinder whose cross section is a domain Ω ⊆ R2

and for constant applied fields parallel to the axis of the cylinder a reduction
to a two-dimensional problem is possible. In this case it is known that as
the intensity increases superconductivity is lost in the bulk and only a thin
superconductivity region near ∂Ω persists (see Chapter 7 in [15]). For much
higher values still, superconductivity is completely lost: this value is known as
Hc3 and is estimated by a delicate spectral analysis of the magnetic Laplacian
operator as in the monograph [7].

In our setting, corresponding to the above functional GM,κ (1) on the com-
pact surfaceM, there is no boundary, so what happens to the superconductivity
region is not obvious. Another crucial difference lies in the behaviour of the (nor-
malized) magnetic field H induced onM, which is the normal component of He,
or equivalently H dH2

M = dA (viewing A as a 1-form). Namely, in our case,
H vanishes and changes sign. The spectral analysis in [8] therefore suggests
that superconductivity should persist near the set {H = 0}, where the external
magnetic field is tangent to the surface M. In [9] the authors study the case
of a vanishing magnetic field in the infinite cylinder model, and observe indeed
nucleation of superconductivity near the zero locus of the magnetic field, for
very high values of the applied field (near the putative Hc3) under the condition
that the gradient of the magnetic field does not vanish on its zero locus. The
problem of the determination of the upper critical field for vanishing fields re-
mains largely open otherwise. Here, we are concerned with much lower values of
the applied field: a main motivation of this work is to understand the transition
from the vortexless to normal state regimes.

Another interesting difference is the fact that in the infinite cylinder model
only positive vortices exist and so the location and growth of the vortex region
is always ruled by the competing effects of mutual repulsion, and confinement
provided by the external field. In the present setting, this is no longer the
case. Vortices of positive and negative degree must coexist and so repulsion and
attraction are common features of the relative placement of vortices inM, this
without taking into account the external field.

In this way, the shrinking of the superconductivity region is a multifaceted
phenomenon. Moreover, the problems mentioned in the characterization of this
region are present even in the most emblematic case of a constant external field
He: the region of persistence of superconductivity does not only depend on the
field and on the topology ofM, but also on extrinsic geometric properties of the
surface; the relative position of M with respect to He affects H and therefore
the zero locus of the induced field.

In the present work we address the question of identifying the region where
superconductivity persists in the κ→∞ limit, when

Hc1

h

is small; we show that as this quantity gets small superconductivity persists
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in a small neighborhood of the place where the applied field is tangential to
the sample, provided the field satisfies a generic non-degeneracy condition(see
(14) below). Another thrust of this work is aimed at uncovering some new
intermediate regimes only present in this setting, when the normal component of
the external field changes sign multiples times. In the model problem of a surface
of revolution and constant vertical field, we identify several structural transitions
undergone by the superconductivity region. Furthermore, we observe a new
phenomenon which we refer to as freezing of the boundary, where a component
of the vortex region stops growing even after increasing the intensity of the
external field. This phenomenon holds in great generality (not only in the
surface of revolution case), as is shown at the end of section 4.

To carry out our analysis we start by using a reduction to a mean field model,
first derived rigorously in [14]. More precisely, if we write a critical point ψ of
GM,κ in polar form ψ = ρeiφ, variations of the phase yield d(ρ2(dφ−hd∗F )) = 0,
and because H1

dr(M) = 0 this implies there is a V such that ∗dV = ρ2(dφ −
hd∗F ). Taking V = hW , the function W is expected to minimize∫

M
|∇MW |2 dH2

M +
lnκ

h

∫
M
|−∆MW + ∆M ∗ F | dH2

M. (3)

The details of this mean field reduction can be found in [14] in the case
of a positive external field applied in a bounded planar domain. However, the
analysis in [14] does not handle the additional restriction of total zero mass
which affects the construction of an upper bound in this setting. The steps
needed to extend the proof to the present case are included in Appendix A.

The measure −∆MV +∆M∗F can be interpreted as the normalized measure
generated by the vortices. On the other hand, we observe that

∆M ∗ F dH2
M = d ∗ d ∗ F = dA = HdH2

M,

where the function H is the normal component of the external magnetic field
He relative to M. In what follows we refer to H simply as the magnetic field,
and we assume that H ∈ C1(M). Moreover, we drop the explicit dependence
on M in expressions like ∆M, ∇M.

Before we state our main result we make the following assumption: there
exists β > 0 such that

lim
κ→∞

lnκ

h
= β. (4)

Once the connection to the mean field problem (3) is established we proceed to
locate very precisely the region of persistence of superconductivity, that is, the
region SCβ where the vorticity measure −∆V +H vanishes. We find that this

region corresponds to a β
1
3 neighborhood of the set where H vanishes, in the

β → 0 limit. More precisely,

Theorem 1.1. Under the nondegeneracy assumption that ∇H is nowhere van-
ishing on {H = 0}, there exists C > 0 independent of β such that the super-

conductivity region SCβ is contained in {x ∈ M : d(x, {H = 0}) < Cβ
1
3 }, and

contains {x ∈M : d(x, {H = 0}) < C−1β
1
3 }, for β sufficiently small.
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The nondegeneracy assumption on H implies that the set {H = 0} is a finite
union of smooth closed curves. It is the same assumption as the one made in
[8, 9] for the study of the third critical field Hc3 .

To prove Theorem 1.1 we reformulate the mean field approximation as an
obstacle problem, and construct comparison functions. We note that a con-
struction in the same spirit was carried out in [16, Appendix A] for the planar
Ginzburg-Landau model in a different context. In our case however the con-
struction is not immediate, because our obstacle problem is two-sided and our
magnetic field H changes sign. Indeed, our proof makes use of a comparison
principle for two sided obstacle problems proved in [6] which allows to com-
pare solutions to obstacle problems corresponding to different data H. Hence
the comparison functions will not be merely “super- or sub-solutions” of our
problem, but actual solutions of modified problems. In particular they have to
be quite regular. As a consequence, we cannot use functions of the distance
to {H = 0} as comparison functions. We have to use a particular coordinate
system near each component of {H = 0} and explicitly build local functions
satisfying local obstacle problems with appropriate modifications of H. Pasting
these constructions we are able to appeal to [6] to obtain the desired estimates.
In so doing we note a key feature of the proof, related to the fact that the
obstacle problem is two-sided: the barriers thus obtained cannot be used inde-
pendently to get neither the inner nor the outer bound separately, but together
they yield the conclusion of the theorem. This is explained in more detail in
section 3.

Thanks to Theorem 1.1, we have a clear picture of the superconductivity
region for β → 0: it is a union of tubular neigborhoods of the connected com-
ponents of {H = 0}. In particular, the superconductivity region has at least as
many connected components as {H = 0}. On the other hand, we also have a
clear picture of the superconductivity region as β → βc, where positive (resp.
negative) vortices are concentrated near the points where ∗F achieves its maxi-
mum (resp. minimum). In particular, the superconductivity region has, gener-
ically, one connected component. In the last part of this work, we investigate
the intermediate regimes. If {H = 0} has more than one connected component,
transitions have to occur: when β crosses some critical value, the number of
connected components of SCβ changes.

Studying such transitions, and determining the values of β at which they
occur, seems out of our reach in all generality. That is why we concentrate
first on a simple model problem. We consider a surface of revolution around
the vertical axis ez, and assume that the external magnetic field He = ez is
vertical and constant. (In fact in Section 4.1, more general magnetic fields are
considered.) In that case, the induced field H onM is just H = ez ·ν, where ν is
an outward normal vector onM. The set {H = 0} consists exactly of the points
where ez is tangent toM, and it is a union of circles. Note that H has to change
sign an odd number of times, since H = −1 at the ‘south pole’ and +1 at the
‘north pole’, thus there are an odd number of those circles. As explained above,
interesting transitions happen when {H = 0} has more than one connected
component. Therefore we focus on the simplest non-trivial situation, which
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corresponds to {H = 0} consisting of three circles. We state loosely here the
result that we obtain for that simple model problem in Section 4.1 (see Figure 1).

Proposition 1.2. There exists βc > β∗1 ≥ β∗2 > 0 such that

• for β ∈ (β∗1 , βc), SCβ has one connected component,

• for β ∈ (β∗2 , β
∗
1), SCβ has two connected components,

• for β ∈ (0, β∗2), SCβ has three connected components.

Moreover, for β ∈ (β∗2 , β
∗
1), one connected component of SCβ remains constant.

H > 0

H < 0

H > 0

H < 0

(a) β ∈ (β∗1 , βc)

frozen

(b) β ∈ (β∗2 , β
∗
1 ) (c) β ∈ (0, β∗2 )

Figure 1: The region SCβ in the three regimes of Proposition 1.2

The most striking part of Proposition 1.2 is the appearance of an interme-
diate regime in which one connected component of SCβ remains constant: one
part of the free boundary is frozen. In Section 4.2 we identify the features
responsible for such ‘freezing’ of the boundary and prove a similar ‘freezing
property’ in a general (non-symmetric) setting (see Proposition 4.3).

An other interesting outcome of the precise version of Proposition 1.2 (Propo-
sition 4.2 in Section 4.1) are the expressions of the critical values β∗1 and β∗2 , in
terms of integral quantities involving A and the parametrization ofM. Transfer-
ing these conditions to a general non-symmetric setting seems far from obvious
and constitutes an interesting challenge.

The plan of the paper is as follows. In the next section we collect some basic
properties of solutions to an obstacle problem that serves as the starting point
in our analysis. In section 3 we identify the thin region of superconductivity
when β is small. In section 4 we turn to the symmetric situation and identify
in Proposition 4.2 the further transitions as β decreases to zero from βc =
max(∗F ) −min(∗F ). We also prove the ‘freezing of the boundary’ property at
the end of section 4.
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2 The obstacle problem

This preamble is devoted to the derivation of the obstacle problem dual to the
mean field approximation. We also prove some basic results we will need later
on. We think it is worthwhile recording these properties because in our setting,
even in the by now classical application of the duality theorem which allows for
the obstacle problem formulation, there is an inherent degeneracy we have to
account for which is not present in other similar results in the literature.

In the first part of this section we show that – as in [15, Chapter 7] – the
minimizer of

Eβ(V ) =

∫
M
|∇V |2 + β

∫
M
|−∆V +H| (5)

is the solution of an obstacle problem, and then we study general properties
of the contact set. There are two main differences with the obstacle problem
arising in [15, Chapter 7].

• In our case there are no boundary conditions and the minimizer is well-
defined only up to a constant. We need to deal with this degeneracy.

• While in [15, Chapter 7] the obstacle problem is one-sided, we have to
consider a two-sided obstacle problem. This is due to the fact that, in our
case, the magnetic field H changes sign.

The functional Eβ is, under assumption (4), the limit of the sequence of
energies considered in (3). The link between Eβ and the superconductivity
region is, as mentioned in the introduction, proved in appendix A.

2.1 Derivation of the obstacle problem

Proposition 2.1. Let β > 0. A function V0 ∈ H1(M) minimizes Eβ (5) if and
only if V0 minimizes

F(V ) =

∫
M

(
|∇V |2 + 2HV

)
(6)

among all V ∈ H1(M) such that (ess supV − ess inf V ) ≤ β.

Remark 2.1. Since the functional F(V ) is translation invariant, V0 coincides,
up to a constant, with any minimizer of the two-sided obstacle problem

min

{∫
M

(
|∇V |2 + 2HV

)
: V ∈ H1(M), |V | ≤ β/2

}
.
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Moreover, recalling that H = ∆ ∗F , this obstacle problem can also be rephrased
as

min

{∫
M
|∇(V − ∗F )|2 : V ∈ H1(M), |V | ≤ β/2

}
. (7)

The fact that minimizers coincide only up to a constant does not matter, since
the physically relevant object is the vorticity measure −∆V +H. Moreover, it is
easy to check that, if the obstacle problem (7) admits a solution V that ‘touches’
the obstacles, i.e. satisfies maxV − minV = β, then this solution is unique
because any other solution differs from it by a constant, which has to be zero.
On the other hand, a solution satisfying maxV −minV < β would have to be
V = ∗F + α for some constant α. Therefore, for β ≤ max ∗F − min ∗F the
solution is unique.

The proof of Proposition 2.1 relies on the following classical result of convex
analysis (easily deduced from [12] or [3, Theorem 1.12]).

Lemma 2.2. Let H be a Hilbert space and ϕ : H → R ∪ {+∞} be a convex
lower semi-continuous function. Then the minimizers of the problems

min
x∈H

(
1

2
‖x‖2H + ϕ(x)

)
and min

y∈H

(
1

2
‖y‖2H + ϕ∗(−y)

)
coincide, where ϕ∗ denotes the Fenchel conjugate of ϕ,

ϕ∗(y) := sup
z∈H
〈y, z〉H − ϕ(z).

Proof of Proposition 2.1: We apply Lemma 2.2 in the Hilbert space

H := Ḣ1(M) =

{
V ∈ H1(M) :

∫
M
V = 0

}
,

endowed with the norm ‖V ‖2 =
∫
|∇V |2, to the function

ϕ(V ) = ϕβ(V ) =
β

2

∫
M
|−∆V +H| . (8)

In formula (8), it is implicit that ϕ(V ) = +∞ if µ = −∆V +H is not a Radon
measure. Note that, when µ is a Radon measure, it must have zero average∫
µ = 0, since µ = ∆(∗F − V ).

We compute the Fenchel conjugate of ϕ. It holds

ϕ∗(V ) = sup
U∈H

{∫
M
∇V · ∇U − β

2

∫
M
|−∆U +H|

}
= −

∫
M
HV + sup

U∈H

{∫
M

(−∆U +H)V − β

2

∫
M
|−∆U +H|

}
= −

∫
M
HV + sup∫

P=0

{∫
M

(
PV − β

2
|P |
)}

.
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In the last equality, the supremum may – by a density argument – be taken over
all L2 functions P with zero average.

If (ess supV − ess inf V ) ≤ β, then |V + α| ≤ β/2 for some α ∈ R, so that∫
M

(
PV − β

2
|P |
)

=

∫
M

(
(V + α)P − β

2
|P |
)
≤ 0,

and in that case

ϕ∗(V ) = −
∫
M
HV.

On the other hand, if (ess supV − ess inf V ) > β, then up to translating V we
may assume that {V > β/2} and {V < −β/2} have positive measures. It is
then easy to construct a function P supported in those sets, such that

∫
P = 0,∫

|P | = 1, and
∫
PV > β/2. Using λP as a test function for arbitrary λ > 0,

we deduce that ϕ∗(V ) = +∞.
From Lemma 2.2 it follows that V0 ∈ Ḣ1(M) minimizes Eβ if and only if V0

minimizes
1

2

∫
M
|∇V |2 +

∫
M
HV

among V ∈ Ḣ1(M) such that ess supV − ess inf V ≤ β. Since both problems
are invariant under addition of a constant, the restriction to the space Ḣ1(M)
can be relaxed to obtain Proposition 2.1.

2.2 Basic properties

In this section we concentrate on the obstacle problem

min

{∫
M

(
|∇V |2 + 2HV

)
: V ∈ H1(M), |V | ≤ β/2

}
. (9)

We recall the classical interpretation of (9) as a free boundary problem, and
establish a monotonicity property of the free boundary.

The first step to these basic properties is the reformulation of the obstacle
problem (9) as a variational inequality: a function V ∈ H1(M) solves (9) if and
only if |V | ≤ β/2 and∫
M
∇V · ∇(W − V ) ≥ −

∫
M
H(W − V ) ∀W ∈ H1(M), |W | ≤ β/2. (10)

The proof of this weak formulation is elementary and can be found in many
textbooks on convex analysis. See for instance [13].

Next we recall the standard reformulation of (10) as a free boundary prob-
lem.

9



Lemma 2.3. A function V ∈ H1(M) with |V | ≤ β/2 solves (9) or equivalently
(10) if and only if 

V ∈W 2,p(M), 1 < p <∞,
∆V = H in {|V | < β/2},

0 ≥ H in {V = β/2},
0 ≤ H in {V = −β/2}.

(11)

In particular V ∈ C1,α(M), so that at every regular point of the free boundaries
∂{V = ±β/2}, the function V satisfies the overdetermining boundary conditions
V = ±β/2 and ∂V/∂ν = 0.

The only non-elementary part of Lemma 2.3 is the W 2,p regularity of the
solution. There are many textbooks on the subject, at least for the one-sided
obstacle problem. See for instance [10]. For the two-sided obstacle problem we
refer to [6], in which the authors study very fine properties of two-sided obstacle
problems. For the convenience of the reader, since most of the literature only
deals with a one-sided obstacle (and [6] reaches far beyond this quite elementary
result), we provide a sketch of the proof in Appendix B.

Recall that in our case, µ = −∆V +H represents the vorticity measure. In
light of Lemma 2.3, this measure is supported in {V = ±β/2}. In that region,
vortices are distributed with density H.

For β > βc, where

βc := max(∗F )−min(∗F ), (12)

the function ∗F + α solves the obstacle problem (9), as long as the constant
α satisfies max(∗F ) − β/2 ≤ α ≤ min(∗F ) + β/2, and the vorticity measure
−∆V +H is identically zero.

For β ≤ βc, the solution V = Vβ of the obstacle problem (9) must satisfy

maxVβ −minVβ = β,

and therefore is unique (see Remark 2.1). Recall that the superconductivity
region SCβ is defined as the set where the vorticity measure −∆V +H vanishes.
According to Lemma 2.3, that region is exactly

SCβ = {|Vβ | < β/2}. (13)

A first basic property of the superconductivity region SCβ is its monotonic-
ity.

Proposition 2.4. For any 0 < β1 < β2 ≤ βc, it holds

SCβ1
⊂ SCβ2

.

In other words, increasing the intensity of the applied magnetic field shrinks
the region of persisting superconductivity, which consistant with physical intu-
ition. Since we have to deal with a two-sided obstacle problem, this monotonicity
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property is not as obvious as in [15, Chapter 7]. To prove it, we use a com-
parison principle for two-sided obstacle problems [6, Lemma 2.1]. We state and
prove here a particular form that will also be useful later on.

Lemma 2.5. Let H1 ≥ H2 be bounded, real-valued functions on M. Let also
α1 ≤ α2 and β1 ≤ β2 be real numbers. For j = 1, 2, let Vj ∈ H1(M) solve
respectively the obstacle problems

min

{∫
M

(
|∇V |2 + 2HjV

)
: αj ≤ V ≤ βj

}
.

Then either V1 − V2 is constant, or V1 ≤ V2.

Proof. For the convenience of the reader, we provide here the elementary proof,
which consists in remarking that

W1 = min(V1, V2) and W2 = max(V1, V2)

are admissible test functions in the variational inequalities∫
M
∇Vj · ∇(Wj − Vj) ≥ −

∫
M
Hj(Wj − Vj), ∀Wj ∈ H1, αj ≤Wj ≤ βj .

Substracting the resulting inequalities, we obtain∫
M
|∇(V1 − V2)+|2 ≤

∫
M

(H2 −H1)(V1 − V2)+ ≤ 0,

where (V1−V2)+ = max(V1−V2, 0). We conclude that (V1−V2)+ is a constant
function.

With Lemma 2.5 at hand, we may prove the monotonicity of the supercon-
ductivity region.

Proof of Proposition 2.4: Let V1 and V2 denote the solution of the obstacle prob-
lem (9) corresponding respectively to β = β1 and β = β2. Let

Ṽ1 = V1 + β1/2, and Ṽ2 = V2 + β2/2,

so that for j = 1, 2, Ṽj solves the obstacle problem

min

{∫
M

(
|∇V |2 + 2HV

)
: 0 ≤ V ≤ βj

}
.

Therefore, applying Lemma 2.5 with H1 = H2 = H, α1 = α2 = 0 and β1 ≤ β2,
we deduce that

V1 + β1/2 ≤ V2 + β2/2.

(If Ṽ1 − Ṽ2 is constant, then β2 = maxV1 − minV1 = β1.) In particular, we
obtain that

{V1 > −β1/2} ⊂ {V2 > −β2/2}.

11



By a similar argument, we show that

{V1 < β1/2} ⊂ {V2 < β2/2},
and conclude that SCβ1

⊂ SCβ2
.

Remark 2.2. It follows from the above proof that

|V1 − V2| ≤ (β2 − β1)/2,

thus proving the continuity of β 7→ Vβ for 0 ≤ β ≤ βc.

3 The small β limit

In this section we study what happens to the superconductivity set when the
intensity of the field is high enough to confine it in a narrow region. We make
the (generic) non degeneracy assumption that

|H|+ |∇H| > 0 in M. (14)

In other words, ∇H 6= 0 in {H = 0}. This implies in particular that the set
Σ := {H = 0} where the magnetic field vanishes is a finite disjoint union of
smooth closed curves. We also note that condition (14) also implies that we
are not in the situation where not even the first critical field is defined(see [4],
Theorem 3.1).

Let us say a few words here about the nondegeneracy assumption (14). This
is the same nondegeneracy assumption that has been considered in works on the
spectral analysis of the magnetic Laplacian [8] and on higher applied magnetic
fields in Ginzburg-Landau [9, 1]. Moreover, we emphasize that (14) is a generic
assumption, in the following sense.

Lemma 3.1. The set of H satisfying (14) is open and dense in C1(M).

Proof. The fact that (14) is an open condition in C1(M) is clear. The density
follows from a transversality theorem by Quinn [11, Theorem 3], applied to the
C1 map

Φ: C1(M)×M→ R, (H,x) 7→ H(x).

For a function H ∈ C1(M), (14) is equivalent to Φ(H, ·) being transverse to
{0}. Clearly, DHΦ(H,x) = IC1(M) is Fredholm, and Φ is transverse to {0}.
Therefore, the set of H such that Φ(H, ·) is transverse to {0} is dense in C1(M).

We are interested in the behavior, as β → 0, of the superconductivity region
SCβ (13).

We let d : M → R+ denote the distance function to the set Σ = {H = 0},
that is

d(x) = dist(x, {H = 0}). (15)

In this context we characterize the behavior of SCβ in terms of the function d,
as follows(this is a more explicit version of Theorem 1.1).

12



Theorem 3.1. Under the non-degeneracy assumption (14) on the magnetic
field, there exists β0 > 0 and C > 0 such that, for β ∈ (0, β0),{

d ≤ 1

C
β1/3

}
⊂ SCβ ⊂

{
d ≤ Cβ1/3

}
, (16)

where SCβ is the superconductivity region (13), and d denotes the distance to
the zero locus of the magnetic field (15).

In the proof we construct explicit solutions to modified obstacle problems, in
order to apply the comparison principle Lemma 2.5. The comparison functions
are constructed locally near each component Γ of {H = 0}, and then we need to
extend and paste these functions and the associated modified obstacle problem
data. Although the construction looks local, it is worth noting that we really
need to make it near every component Γ of {H = 0}. Otherwise the pasting
would not provide us with obstacle problems comparable to the original one,
because a solution has to change sign near every curve Γ.

Remark 3.1. Another natural approach to proving Theorem 3.1 would be to
construct separate comparison functions in {H > 0} and {H < 0}. In those re-
gions, the obstacle problem becomes one-sided, so that more standard construc-
tions with a classical comparison principle can be made. On the other hand,
there is no boundary conditions in those regions, so that such a construction
would only provide us with the outer bound

SCβ ⊂ {d ≤ Cβ1/3}. (17)

To obtain the bounds (16) which show that the superconductivity set extends to

both sides of the zero locus of H by a β
1
3 margin, it seems that we really have to

appeal to the comparison principle for two-sided obstacle problems. However, if
we would just content ourselves with showing that the superconductivity set had
‘thickness’ proportional to β

1
3 , namely

dist({V = β/2}, {V = −β/2}) ≥ cβ1/3, (18)

there would be a simpler way. In fact (18) can be directly inferred from (17).
This is a simple consequence of the interpolated elliptic estimate (see [2, Ap-
pendix A])

‖∇V ‖2∞ ≤ C ‖∆V ‖∞ ‖V ‖∞ , (19)

which implies, since |V | ≤ β and |∆V | = |H1SCβ | ≤ Cβ1/3, that

|∇V | ≤ Cβ2/3 in M. (20)

Hence, for any x± ∈ {V = ±β/2} and any arc-length parametrized curve γ(s),
(0 ≤ s ≤ `) going from x− to x+, it holds

β = V (x+)− V (x−) =

∫ `

0

∇V (γ(s)) · γ′(s) ds ≤ Cβ2/3`,

so that the length of γ satisfies ` ≥ cβ1/3, which proves (18).
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Next we turn to the proof of Theorem 3.1.

Proof of Theorem 3.1: We will construct, for small enough β, bounded func-
tions H1 ≤ H ≤ H2, and comparison functions V1 and V2 of regularity W 2,∞,
satisfying for j = 1, 2,

∆Vj = Hj1|Vj |<β/2,

|Vj | ≤ β/2, Hj ≥ 0 in {Vj = −β/2}, Hj ≤ 0 in {Vj = β/2},
(21)

and the bounds{
d ≤ 1

C
β1/3

}
⊂ {|Vj | < β/2} ⊂

{
d ≤ Cβ1/3

}
. (22)

By Lemma 2.3, (21) implies that Vj solves the obstacle problem (9) with H =
Hj . Therefore we may apply the comparison principle for two-sided obstacle
problems (Lemma 2.5) to conclude that V1 ≥ V ≥ V2. In view of the bounds
(22) satisfied by V1 and V2, this obviously implies that the superconductivity
region satisfies the bounds (16).

The rest of the proof is devoted to constructing V1 and V2. To this end
we introduce good local coordinates in a neighborhood of Σ = {H = 0}. Re-
call that, thanks to the nondegeneracy assumption (14), Σ is a finite union of
closed smooth curves. Let us fix one of them, Γ, together with an arc-length
parametrization of it:

Γ = {γ(x) : x ∈ R/`Z} , |γ′(x)| = 1.

Let us also fix a smooth normal vector ν(x) to Γ on M, that is

ν(x) ∈ Tγ(x)M, |ν| = 1, ν · γ′ = 0,

and impose that ν(x) points in the direction of {H > 0} (since H < 0 on one
side of Γ and H < 0 on the other side). We introduce Fermi coordinates along
Γ: for small enough δ, the map

R/`Z× (−δ, δ)→M, (x, y) 7→ expγ(x)(yν(x)),

is a diffeomorphism. It defines local coordinates (x, y) onM in a neighborhood
of Γ, in which the Laplace operator has the form

∆ =
1

f

(
∂yf∂y + ∂xf

−1∂x
)
, (23)

where f(x, y) = 1−yκ(x, y) for some smooth function κ. Note that y is nothing
else than the signed distance to Γ, and in particular |y| = d in a neighborhood
of Γ. While this is a coordinate system that follows well the geometry of a
neighborhood of γ, we actually need one where the Laplacian allows us to reduce
our construction to a 1d problem. To that end let (x, z) be the local coordinates
where

z = y +
1

2
y2κ(x, y). (24)
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Clearly the map (x, y) 7→ (x, z) is a diffeomorphism for small enough y, so that
(x, z) define indeed local coordinates onM. The reason for using the coordinates
(x, z) is that the Laplace operator is then approximately

∆ ≈ ∂2
x + ∂2

z ,

which will allow us to obtain nice bounds for functions depending only on z.
Note that, since we choose the normal vector ν to point in the direction

of {H > 0}, and since |∇H| ≥ c > 0 in a neighborhood of Γ thanks to the
nondegeneracy assumption (14), it holds

∂zH ≥ c > 0, |z| < δ.

On the other hand, ∇H is bounded, so that there exist C ≥ c > 0 such that

Cz1z<0 + cz1z>0 ≤ H ≤ cz1z<0 + Cz1z>0, |z| < δ. (25)

Next we concentrate on the construction of V1 (H1 will be defined accord-
ingly). Away from the set Σ, we simply define

V1 = −sign(H)β/2 in {d > δ/2}. (26)

The interesting part is of course what happens near Σ. Near each of the smooth
curves Γ ⊂ Σ, we will look for V1 in the form V1 = v(z), where v is a W 2,∞

function satisfying

v(z) =

{
β/2 for z < −η−,
−β/2 for z > η+,

(27)

for some parameters η± > 0 that will depend on β. A straightforward compu-
tation using (23) and (24) shows that

∆V1 = v′′(z) + z (g1(x, z)v′′(z) + g2(x, z)v′(z)) , (28)

where g1 and g2 are bounded functions. We are going to define in (−η−, η+)
the function v so that

v′′ ≤ 2Cz1z<0 +
c

2
z1z>0, |v′| = o(β), |v′′| = o(β). (29)

We then define H1 in (−η−, η+) simply as ∆V1. Thus, recalling (25), we will
have, for small enough β > 0,

∆V1 = H11|V1|<β/2 with H1 ≤ H in {−η− < z < η+}. (30)

It is then straightforward to extend H1 to a function defined on M, such that
H1 ≤ H, and having the same sign as H outside of {−η− < z < η+}. The
resulting H1 and V1 satisfy (21).

Thus it remains to show that we can indeed define v(z) in {−η− < z < η+},
satisfying the bounds (29). We look for v in the form

v(z) =

{
v−(z) for − η− < z < 0,

v+(z) for 0 < z < η+,
with v±(z) polynomial. (31)
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First of all, for v to be of class W 2,∞ around the points ±η±, we should impose

v−(−η−) = β/2, v+(η+) = −β/2, v′−(−η−) = v′+(η+) = 0. (32)

Thus we take v± to be of the form

v−(z) = (z + η−)2(A−z +B−) +
β

2

= A−z
3 + (B− + 2η−A−)z2 + (2η−B− + η2

−A−)z + η2
−B− +

β

2
,

v+(z) = (z − η+)2(A+z +B+)− β

2

= A+z
3 + (B+ − 2η+A+)z2 + (−2η+B+ + η2

+A+)z + η2
+B+ −

β

2
.

(33)

For v to be of class W 2,∞ around z = 0, we have to impose

η2
−B− +

β

2
= η2

+B+ −
β

2
,

2η−B− + η2
−A− = −2η+B+ + η2

+A+.
(34)

We also need to ensure that

v′′ ≤ 2Cz1z<0 +
c

2
z1z>0, (35)

so we impose

6A− = 2C, 6A+ =
c

2
, B− + 2η−A− = B+ − 2η+A+ = 0, (36)

so that we even have an equality in (35). Plugging (36) into (34), we find

c

6
η3

+ +
2C

3
η3
− = β, 4Cη2

− = cη2
+, (37)

which leads us to choose
η± = α±β

1/3, (38)

where α± > 0 are the solutions of

4Cα2
− = cα2

+,
c

6
α3

+ +
2C

3
α3
− = 1.

With A±, B± and η± chosen as in (36)-(38), the function v is of class W 2,∞

and satisfies (35). Moreover, it is straightforward to check that

|v′|+ |v′′| ≤ Cβ1/3 in (−η−, η+),

so that (29) is satisfied, which concludes the construction of V1 satisfying (21).
On the other hand V1 obviously satisfies (22) since

{|V1| < β/2} = {−η− < z < η+}.
We omit the construction of V2, which is completely similar to the one just

performed.
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4 Intermediate regimes

As discussed in the introduction (Section 1), in the present section we want to
understand the transitions occurring as β decreases from βc to 0, when the set
{H = 0} has more than one connected component.

In Section 4.1 we study in detail a special case with rotational symmetry
along a vertical axis, to provide some insight into the transition from the vor-
texless state to the zero solution. The reason to restrict to this setting is that it
encapsules, what we believe are, the most interesting changes in the supercon-
ducting set that can occur.

On the one hand, once we drop the assumption of rotational symmetry,
changes in H inside the sample could lead to arbitrarily intricate solutions to the
obstacle problem for different values of β, so a general theorem is not available.
On the other hand the symmetries we consider highlight many model situations
with remarkable properties. One of these is the striking phenomenon that some
parts of the free boundary may freeze: that is, remain constant with respect to
β, for β in some interval. In Section 4.2 we generalize this observation to the
general, non-symmetric case.

As mentioned earlier, a generalization of the other properties is precluded
due to the wide variety of solutions one could construct, having the freedom to
choose bothH andM. Nevertheless, we believe that under some more restrictive
assumptions, in particular fixing the topology of the level sets of H, one could
extend the result on existence of the transitions observed in Proposition 4.2,
however the role of the integral conditions on I±, J is not so easily transferable
or even identifiable anymore.

4.1 Detailed study of a symmetric case

Here we consider a surface of revolution of the form

M = {(ρ(φ) cos θ, ρ(φ) sin θ, z(φ)) : φ ∈ [0, π], θ ∈ [0, 2π]} ,

where ρ and z are smooth functions linked by the relation

z(φ) tanφ = ρ(φ),

and satisfying ρ(0) = ρ(π) = 0, ρ > 0 in (0, π), z′(0) = z′(π) = 0, and

γ :=
√

(ρ′)2 + (z′)2 ≥ c > 0.

The volume form on such M is dH2
M = ργdθdφ.

The induced magnetic potential A on M is also assumed to be symmetric,
of the form

A = a(φ)dθ =
a(φ)

u(φ)
êθ,

and we make the following assumptions on the functions a:

(a1): a(0) = a(π) = 0, and a > 0 in (0, π).
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(a2): a′ > 0 in (0, φ1) and (φ2, φ3) and a′ < 0 in (φ1, φ2) and (φ3, π), for some
0 < φ1 < φ2 < φ3 < π.

The function a(φ) hast two local maxima a1 = a(φ1) and a3 = a(φ3), and
one local minimum a2 = a(φ2). To simplify notations to come, we assume in
addition that a1 < a3. See Figure 2.

0 πφ1 φ2 φ3

a′ > 0

a′ < 0 a′ > 0 a′ < 0

a1

a2

a3

Figure 2: The shape of a(φ).

Remark 4.1. The case, presented in the introduction (Section 1), of a uniform
external magnetic field He = ez corresponds to a = u2/2.

In that setting, the functions H and ∗F are also axially symmetric: they
depend only on φ , and are given by

H =
a′

ργ
, (∗F )′ = a

γ

ρ
.

By uniqueness (up to a possible additive constant), the solution of the ob-
stacle problem (9) is also rotationally symmetric: it holds V = v(φ). Since
V ∈ C1(M), the function v should satisfy

v ∈ C1([0, π]), v′(0) = v′(π) = 0.

Moreover, the free boundary problem (11) becomes
|v| ≤ β/2 in [0, π],(

ργ−1v′ − a
)′

= 0 in {|u| < β/2},
a′ ≥ 0 in {v = −β/2},
a′ ≤ 0 in {v = β/2}.

(39)

We investigate, for β < βc, the changes in the shape of the superconducting
set SCβ = {|v| < β/2}. The critical values at which that shape changes depend
on the values of integrals

∫
a γρ−1dφ on some intervals related to the level sets

of a(φ). That is why we start by fixing some notations concerning the level sets
of a(φ). There are three different cases, depicted in Figure 3:
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• For α ∈ (0, a2), {a = α} = {φ− < φ+}.
• For α ∈ (a2, a1), {a = α} = {φ− < ψ+ < ψ− < φ+}.
• For α ∈ (a1, a3), {a = α} = {ψ− < φ+}.

The functions φ±(α), ψ±(α) are continuous on their intervals of definition.
For α ∈ (a2, a1), we define

I−(α) =

∫ ψ+

φ−

(a− α)
γ

ρ
dφ, I+(α) =

∫ φ+

ψ−

(a− α)
γ

ρ
dφ,

J(α) = −
∫ ψ−

ψ+

(a− α)
γ

ρ
dφ.

(40)

Those integrals corresponds to “weighted” areas of the regions depicted in
Figure 4, with respect to the measure γρ−1dφ. Note that both the integrands
and the intervals of integration depend on α.

We identify a critical value of α with respect to these integrals.

Lemma 4.1. There exists α∗ ∈ (a2, a1) such that:

• for a2 < α < α∗, J < min(I±).

• for α∗ < α < a1, min(I±) < J .

Proof. It follows from the obvious facts that J is increasing, I± are decreasing,
J(a2) = 0, I−(a1) = 0, and the functions are continuous.

φ− φ+

(a) α ∈ (0, a2)

φ− ψ+ ψ− φ+

(b) α ∈ (a2, a1)

ψ− φ+

(c) α ∈ (a1, a3)

Figure 3: Level sets {a = α}

Now we may give the precise version of Proposition 1.2.
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φ− ψ+ ψ− φ+

I−

J

I+
α

Figure 4: The integrals I± and J .

Proposition 4.2. Let βc > β∗1 ≥ β∗2 > 0 be defined by

β∗1 := max(I±(α∗)), β∗2 := min(I±(α∗)).

Then the conclusion of Propostion 1.2 holds:

• For βc > β > β∗1 , SCβ is an interval.

• For β∗1 > β > β∗2 , SCβ is the union of two disjoint intervals, one of them
independent of β.

• For β∗2 > β > 0, SCβ is the union of three disjoint intervals.

Remark 4.2. It may happen that I−(α∗) = I+(α∗). In that case, β∗1 = β∗2 and
the second regime predicted by Proposition 4.2 never happens.

Proof of Proposition 4.2: By uniqueness (see Remark 2.1), it suffices to exhibit,
for each regime listed in Proposition 4.2, a solution of (39) satisfying the desired
properties.

Case 1: β ∈ (β∗1 , βc). The function

I(α) :=

∫ φ+

φ−

(a− α)
γ

ρ
dφ, α ∈ (0, a1),

is continuous, decreasing and satisfies I(0) = βc and I(α∗) = β∗1 . Therefore
there exists a unique α ∈ (0, α∗) such that I(α) = β. We define

v(φ) =


−β/2 for φ ∈ (0, φ−),

−β/2 +
∫ φ
φ−

(a− α)γρ dφ̃ for φ ∈ (φ−, φ+),

β/2 for φ ∈ (φ+, π).

The shape of the function v is sketched in Figure 5.
The function v is clearly continuous since β has been chosen accordingly.

Moreover, it holds

v′(φ+) = (a(φ+)− α)
γ

ρ
= v′(φ−) = 0,
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α∗
a

−β/2

β/2

u

φ− φ+
ψ+ ψ−

Figure 5: The shape of v for β ∈ (β∗1 , βc)

since by definition a(φ+) = a(φ−) = α. Hence v is in fact C1 in [0, π]. Also by
definition, a′ ≥ 0 in (0, φ−) and a′ ≤ 0 in (φ+, π). In addition, we clearly have
(ργ−1v′ − a)′ = 0 in (φ−, φ+). To prove that v solves (39), it only remains to
show that |v| < β/2 in (φ+, φ−). We consider two different cases, depending on
whether α ∈ (0, a2] or α ∈ (a2, α

∗).
If α ∈ (0, a2), then (see Figure 3a)

v′ = (a− α)
γ

ρ
> 0 in (φ−, φ+),

so that v is increasing on (φ−, φ+) and it clearly holds |v| < β/2. For α = a2

the derivative v′ only vanishes at one point and the same conclusion is valid.
If, on the other hand α ∈ (a2, α

∗), then (see Figure 5)

v′ = (a− α)
γ

ρ


> 0 in (φ−, ψ+),

< 0 in (ψ+, ψ−),

> 0 in (ψ−, φ+).

Therefore it suffices to check that v(ψ+) < β/2 and v(ψ−) > −β/2. We have,
since I(α) = β and by definition of I± and J (see Figure 4),

v(ψ+)− β/2 = I−(α)− β = I−(α)− I(α) = J(α)− I+(α),

v(ψ−) + β/2 = I−(α)− J(α).

Since α < α∗ we find indeed (by definition of α∗) that v(ψ+) < β/2 and v(ψ−) >
−β/2, and in that case also we conclude that v solves the free boundary problem
(39).

Case 2: β ∈ (β∗2 , β
∗
1). We treat the case where min(I±(α∗)) = I−(α∗).

Thus β∗1 = I+(α∗) and β∗2 = I−(α∗). The other case can be dealt with similarly.
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The function I+(α) is continuous and decreasing on (a2, a3) and satisfies
I+(α∗) = β∗1 and I+(a3) = 0 < β∗2 (see Figure 4). Therefore there exists
α > α∗ such that I+(β) = α. We denote by ψ− and φ+ the two points of
{a = α} ∩ (φ2, π), and by φ∗− < ψ∗+ < ψ∗− the three points of {a = α∗} ∩ (0, φ3)
(as in Figure 6 below). Note that, since α > α∗, ψ∗− < ψ−. Next we define

v(φ) =



−β/2 for φ ∈ (0, φ∗−),

−β/2 +
∫ φ
φ∗−

(a− α∗)γρ dφ̃ for φ ∈ (φ∗−, ψ
∗
−),

−β/2 for φ ∈ (ψ∗−, ψ−),

−β/2 +
∫ φ
ψ−

(a− α)γρ dφ̃ for φ ∈ (ψ−, φ+),

β/2 for φ ∈ (φ+, π).

The shape of the function v is sketched in Figure 6.

α∗

β/2

−β/2

φ∗− ψ∗
− ψ− φ+

a

u

ψ∗
+

α

Figure 6: The shape of v for β ∈ (β∗2 , β
∗
1)

Continuity of v at ψ∗− is ensured by the fact that I−(α∗) = J(α∗). Con-
tinuity at φ+ by I+(α) = β. The function v is C1 because the facts that
a(φ∗−) = a(ψ∗−) = α∗ and a(ψ−) = a(φ+) = α guarantee that v′(φ∗−) = v′(ψ∗−) =
v′(ψ−) = v′(φ+) = 0. The sign of a′ is positive in (0, φ∗−) and (ψ∗−, ψ−) and
negative in (φ+, π). In the two intervals (φ∗−, ψ

∗
−) and (ψ−, φ+), the equation

(ργ−1v′ − a)′ = 0 is obviously satisfied, and it remains to check that |v| < β/2
in those intervals.

Since v′ = (a−α)γρ−1 > 0 in (ψ−, φ+), it clearly holds |v| < β/2 in (ψ−, φ+).
In the interval (φ∗−, ψ

∗
−), the sign of v′ shows that v attains its minimum at

the boundary and its maximum at ψ∗+, and it holds

v(ψ∗+)− β/2 = −β + I−(α∗) = −β + β∗2 < 0.

We conclude that v solves the free boundary problem (39). Moreover, the
interval (φ∗−, ψ

∗
−) clearly does not depend on β.

22



Case 3: β ∈ (0, β∗2). Since I− is continuous and decreasing, I−(α∗) > β∗2
and I−(a1) = 0, there exists α1 > α∗ such that I−(α1) = β. Similarly, there
exist α2 < α∗ and α3 > α∗ such that J(α2) = I+(α3) = β. We denote by

0 < φ1
− < ψ1

+ < ψ2
+ < ψ2

− < ψ3
− < φ3

+ < π

the points such that (see Figure 7)

{a = α1} ∩ (0, φ2) = {φ1
−, ψ

1
+},

{a = α2} ∩ (φ1, φ3) = {ψ2
+, ψ

2
−},

{a = α3} ∩ (φ2, π) = {ψ3
−, φ

3
+}.

α∗

β/2

−β/2

a

φ1− ψ1
+ ψ2

+ ψ2
− ψ3

− φ3+

u

Figure 7: The shape of v for β ∈ (0, β∗2)

Then we define

v(φ) =



−β/2 for φ ∈ (0, φ1
−) or φ ∈ (ψ2

−, ψ
3
−)

−β/2 +
∫ φ
φ1
−

(a− α1)γρ dφ̃ for φ ∈ (φ1
−, ψ

1
+),

β/2 for φ ∈ (ψ1
+, ψ

2
+) or φ ∈ (φ3

+, π),

β/2 +
∫ φ
ψ2

+
(a− α2)γρ dφ̃ for φ ∈ (ψ2

+, ψ
2
−)

−β/2 +
∫ φ
ψ3
−

(a− α3)γρ dφ̃ for φ ∈ (ψ3
−, φ

3
+).

The shape of the function v is sketched in Figure 7.
As above the C1 regularity of v follows from the definitions of α1, α2 and α3.

The sign of a′ is positive in (0, φ1
−)∪(ψ2

−, ψ
3
−) and negative in (ψ1

+, ψ
2
+)∪(φ3

+, π).
The equation (ργ−1v′ − a)′ = 0 is satisfied in the three intervals (φ1

−, ψ
1
+),

(ψ2
+, ψ

2
−) and (ψ3

−, φ
3
+). Moreover in those intervals, the function v is monotone,

hence |v| < β/2. Therefore v solves the free boundary problem (39).
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4.2 ‘Freezing’ of the free boundary

Proposition 4.3. Assume that, for some β0 ∈ (0, βc), one connected component
ω of the superconductivity set SCβ0

is such that Vβ0
takes the same value on

each connected component of ∂ω. Then there exists δ > 0 such that

SCβ ∩ ω = SCβ0
∩ ω = ω, (41)

for all β ∈ (β0 − δ, β0].

In Figure 8 we show a situation corresponding to Proposition 4.3, with V =
−β/2 on every connected component of ∂ω.

H < 0

H > 0

H < 0

H > 0

ω

−β/2

−β/2

+β/2

Figure 8: An example of the situation of Proposition 4.3

Remark 4.3. The assumption on β0 in Proposition 4.3 corresponds exactly to
what happens in the symmetric case (Proposition 4.2) in the regime β∗1 > β >
β∗2 , where u(φ∗−) = u(ψ∗−) = −β/2 (Figure 6).

Proof of Proposition 4.3: We present the proof in the case where V = −β0/2
on every connected component of ∂ω. The case V = β0/2 on ∂ω can be dealt
with similarly.

Since V < β0/2 in ω and V = −β0/2 on ∂ω, it holds

m := max
ω

V < β0/2,

and we define

δ :=
1

2
β0 −m > 0.

Let β ∈ (β0 − δ, β0], and define

Ṽ0 := Vβ0 +
1

2
(β0 − β). (42)
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The definitions of m and δ ensure that it holds

− β/2 ≤ Ṽ0 ≤
1

2
β0 − δ +

1

2
(β0 − β) < β/2 in ω. (43)

We claim that
Vβ = Ṽ0 in ω, (44)

which obviously implies (41).
Note that the proof of Proposition 2.4 implies that it always holds

Vβ ≤ Ṽ0 in M. (45)

Let ωβ = SCβ ∩ ω, and

U := Ṽ0 − Vβ ≥ 0. (46)

Note that U ∈ C1,α(ω), and U = 0 on ∂ω (since, by definition of ω, Ṽ0 = 0 on
∂ω).

Let ω′ := ω ∩ SCβ . It holds

∆U = H1ω\ω′ in ω. (47)

From (43) and (45) it follows that

Vβ < β/2 in ω.

Therefore, recalling the free boundary formulation (11), we have H ≥ 0 in ω\ω′.
In particular (47) implies that

∆U ≥ 0 in ω.

Let ε > 0 and consider

ϕ := max(U − ε, 0) ∈ H1(ω).

Recalling that U ∈ C(ω) and U = 0 on ∂ω, we know that ϕ has compact support
inside ω. Thus we may integrate by part (without knowing anything about the
regularity of ∂ω) to obtain∫

ω

|∇ϕ|2 =

∫
ω

∇ϕ · ∇U = −
∫
ω

ϕ∆U ≤ 0,

and we deduce that ϕ ≡ 0 in ω, which implies that U ≤ ε in ω. Letting ε→ 0, we
conclude that U ≤ 0 in ω, which, together with (46), shows that (44) holds.

A The mean field approximation

Recall we assume M ⊂ R3 is a closed compact surface homeomorphic to a
sphere, A a 1-form on M such that A = d∗F = ∗d ∗ F for some smooth non
constant 2-form F , and GM,κ the Ginzburg-Landau energy

GM,κ(ψ) =

∫
M
|(∇− ihA)ψ|2 +

κ2

2

∫
M

(|ψ|2 − 1)2.
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The parameter κ > 0 is going to tend to +∞, as is the strength of the applied
field h(κ) > 0.

If ψ is a critical point of GM,κ, written locally as ψ = ρeiϕ, then it holds

d(ρ2(dϕ− hd∗F )) = 0.

We deduce that there exists a function V such that

∗dV = ρ2(hd∗F − dϕ).

The function V is uniquely defined up to an additive constant, which we may
fix by imposing

∫
M V = 0. The function

µ = −∆(V − h ∗ F ) = −∆V +H

is the vortex density.
In this paper we appeal to a mean field approximation result proved by

Sandier and Serfaty in [14]. In our case we also have to handle positive and
negative measures µ+, µ− with total zero mass µ+(M) − µ−(M) = 0. In this
appendix we verify that under the additional constraints present in our context,
we still have such a reduction. For an intensity h(κ) comparable to lnκ, the
mean field approximation consists in approximating the problem of minimizing
GM,κ by a limiting problem on the vorticity measure. The result also relates
the

Proposition A.1. Assume that β := limκ→∞
lnκ
h(κ) ≥ 0 and h(κ) = o(κ2). Let

ψκ be a minimizer of GM,κ, and the corresponding Vκ be defined as above. Then,
up to a subsequence, as κ→∞,

Vκ
h(κ)

converges to W∗,

weakly in H1 (and strongly in W 1,q for q < 2) where W∗ minimizes the energy

Eβ(W ) =
1

2

∫
M
|∇W |2 dH2 +

β

2
‖ −∆W +H‖TV ,

over the set of all W ∈ H1(M) such that (−∆W + H) is a Radon measure.
Here ‖µ‖TV = |µ|(M) denotes the total variation norm of the Radon measure
µ.

Moreover, it holds GM,κ(ψκ) = h(κ)2Eβ(W∗) + o(h(κ)2).

We impose the normalization conditions
∫
MW dH2 =

∫
M ∗F dH2 = 0.

Then with some slight abuse of notation Eβ(W ) can be expressed in terms
of µ = −∆W +H, as

Eβ(W ) = Eβ(µ) =
β

2
‖µ‖TV +

1

2

∫
M
G(x, y)d(µ−H)(x)d(µ−H)(y),

26



where G(x, y) is the Green’s function satisfying

−∆MG(·, y) = δy −
1

H2(M)
.

Here µ has to be a Radon measure of zero average since it comes from µ =
−∆(W − ∗F ), hence

∫
M dµ = 0.

Note that Eβ(µ) may not be well-defined for every measure µ, but at the
end we will only need it to be well-defined for the particular µ∗ associated to
W∗ solving the obstacle problem (9), and this follows from the regularity theory
for the obstacle problem (see Lemma 2.3 and Appendix B).

Sketch of the proof of the upper bound in Proposition A.1

The proof of the lower bound and compactness for minimizers follows directly
from Theorems 7.1 and 7.2 in [14]. We note that a by product of the analysis

in [14] is that
2π

∑
i∈I diδai
h converges to −∆

(
Vκ
h − ∗F

)
in the sense of measures

and in W 1,p, for p < 2.
The upper bound on the other hand is a little more delicate to adapt. Next

we provide the details. The main tool to derive the upper bound in [14] is
a construction of measures µκ which approximate the measure µ∗ minimizing
Iβ , and which are concentrated in balls of size κ−1 each carrying a weight 2π.
Before stating the precise result, we introduce the functional J = Jβ

J(µ) := β‖µ‖TV +

∫
M×M

G(x, y)dµ(x)dµ(y). (48)

The following result then corresponds to Proposition 2.2 in [14].

Proposition A.2. Let µ = µ+ − µ− be the minimizer of Iβ. Then, for κ large
enough, there exist points aκj,±, 1 ≤ j ≤ n±(κ), such that

n±(κ) ∼ h(κ)µ±(M)

2π
, d(aκj,±, a

κ
`,±) > 4κ−1,

and, letting µj,±κ be the uniform measure on ∂B(aj,±, κ
−1) of mass 2π, the

measure

µκ :=
1

h(κ)

n+(κ)∑
j=1

µj,+κ − 1

h(κ)

n−(κ)∑
j=1

µj,−κ converges to µ,

in the sense of measures as κ→ +∞. Moreover it holds
∫
M dµκ = 0, and

lim sup
κ→∞

∫
M×M

G(x, y)dµκ(x)dµκ(y) ≤ J(µ), (49)

where J = Jβ is defined in (48).
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Above, d denotes geodesic distance and ∂B denotes a geodesic circle accord-
ingly.The zero average property

∫
dµκ = 0 is needed later to solve−∆(V −∗F ) =

µκ. It actually amounts to asking n+(κ) = n−(κ). The upper bound (49) is
crucial to estimate the energy of the testing configuration constructed with help
of the measures µκ, and requires great care in the way the points aκj are dis-
tributed.

In [14], the authors consider non-negative measures defined on a domain in
the plane, with no average constraint. Here we are dealing with measures on
a surface having positive and negative parts, and, more importantly, satisfying
the zero average constraint.

Next we state a lemma that can be directly adapted from [14, Proposi-
tion 2.2], which deals only with positive measures with support inside a coor-
dinate neighborhood. Then we will explain how to use this lemma to obtain
Proposition A.2 above.

Lemma A.1. [14, Proposition 2.2] Assume that µ is a non-negative Radon
measure onM, absolutely continuous with respect to the 2-dimensional measure
onM, and with support contained inside a coordinate neighborhood. Then, there
exist points aκj , 1 ≤ j ≤ n(κ), with

n(κ) ∼ h(κ)µ(M)

2π
and d(aκj , a

κ
` ) > 4κ−1,

such that, with µjκ the uniform measure of mass 2π on ∂B(aκj , κ
−1), it holds

µκ =
1

h(κ)

n(κ)∑
j=1

µjκ converges to µ,

and the upper bound (49) is satisfied.

The proof of Lemma A.1 is just a straightforward adaptation of [14, Propo-
sition 2.2], using the coordinate chart to transport their construction from the
plane to our surface and general properties of the Green’s function of the Lapla-
cian on a compact surface.

Next we explain how to deal with non-negative measures whose support does
not lie inside a coordinate neighborhood.

Lemma A.2. Assume that µ is a non-negative Radon measure on M, abso-
lutely continuous with respect to the 2-dimensional measure on M. Then the
conclusion of Lemma A.1 holds.

Proof. Step 1: We reduce to the case where the support of µ is a finite disjoint
union of compact coordinate neighborhoods. Assume indeed that the conclusion
of Lemma A.2 holds for such measures. It is possible to construct a sequence
µn of such measures, such that 0 ≤ µn ≤ µ and µn converges to µ. Indeed,
just define µn = 1Knµ, where Kn is a finite disjoint union of compact subsets
of coordinate neighborhoods, and µ(M\Kn) → 0. Such a sequence Kn exists
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because M is compact and the measure µ is inner regular. For each µn we
obtain a sequence µκn tending to µn with the good properties. After a diagonal
process, we obtain a sequence µκ converging to µ, such that

lim sup
κ→∞

∫
M×M

G(x, y)dµκ(x)dµκ(y) ≤ lim inf J(µn).

It remains to show that the right-hand side is less than J(µ), which follows from
0 ≤ µn ≤ µ and G ≥ 0.

Step 2: We prove Lemma A.2 for µ that can be decomposed in the form

µ = µ1 + · · ·+ µN ,

where the supports of the µj are inside disjoint compact coordinate neighbor-
hoods, and each µj is non-negative and absolutely continuous with respect to
H2
M. Then one can apply Lemma A.1 to each µj to obtain sequences µj,κ with

the good properties. Then, defining µκ = µ1,κ + · · ·+ µN,κ, one obtains

lim sup

∫
G(x, y)dµκ(x)dµκ(y) ≤

∑
j

J(µj)+lim sup
∑
j 6=`

∫
G(x, y)dµj,κ(x)dµ`,κ(y).

Since the supports of distinct µj are disjoint and G(x, y) is continuous outside
the diagonal {x = y}, it holds∫

G(x, y)dµj,κ(x)dµ`,κ(y)→
∫
G(x, y)dµj(x)dµ`(y) for j 6= `,

and we conclude that

lim sup

∫
G(x, y)dµκ(x)dµκ(y) ≤

∑
j

J(µj)+
∑
j 6=`

∫
G(x, y)dµj(x)dµ`(y) = J(µ).

The proof is complete.

Finally we deal with measures having positive and negative parts, and sat-
isfying the zero average constraint.

Lemma A.3. Let µ be a zero-average Radon measure on M, absolutely con-
tinuous with respect to H2

M. Then the conclusions of Proposition A.2 hold.

Proof. Step 1: It suffices to construct measures µκ satisfying all the conclusions
of Proposition A.2, except for the zero average constraint. Assume indeed that
we have such a sequence. Since µ satisfies the zero average constraint, it holds
µ+(M) = µ−(M) and we deduce that n+(κ)− n−(κ) = o(h(κ)). Up to consid-
ering a subsequence, we may assume that either n+(κ) ≥ n−(κ) for every κ (or
the opposite, but this is completely symmetric). We fix a compact K such that
µ+(K) > 0 and K is disjoint from the support of µ−. Since µ+

κ (K) converges
to µ+(K), the number of points aκj,+ that are contained in K for large κ is
larger than c · h(κ) for c > 0. In particular it is larger that n+ − n−, and we
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may define a measure µ̃+
κ obtained from µ+

κ by removing (n+− n−) points aκj,+
that lie inside K. The measure µ̃κ = µ̃+

κ − µ−κ now satisfies the zero average
condition, and since n+ − n− = o(h) the convergence µ̃κ → µ still holds. It
remains to prove that the upper bound (49) is satisfied also by µ̃κ. Since G ≥ 0
and 0 ≤ µ̃+

κ ≤ µ+
κ , it holds∫

G(x, y)dµ̃κ(x)dµ̃κ(y) ≤
∫
G(x, y)dµκ(x)dµκ(y)

+ 2

∫
G(x, y)d(µ+

κ − µ̃+
κ )(x)dµ−κ (y).

The last term converges to zero since G is continuous outside the diagonal and
µ+
κ − µ̃+

κ converges to zero and has support inside K which is disjoint from the
support of µ−. Hence we conclude that (49) holds.

Step 2: As in Step 1 of Lemma A.2, we reduce to the case of a mea-
sure µ such that µ+ and µ− have disjoint compact supports. Assume indeed
that Lemma A.3 holds for such measures, and consider, by truncating, mono-
tone approximations µ±n of µ±, with disjoints compact supports and such that
0 ≤ µ±n ≤ µ±. For each n there exist measures µnκ with the good properties,
converging to µn := µ+

n − µ−n . After a diagonal process, one obtains a sequence
µκ such that

lim sup
κ→∞

∫
M×M

G(x, y)dµκ(x)dµκ(y) ≤ lim inf J(µn).

Since G ≥ 0, by monotone convergence (or dominated convergence) terms of
the form

∫
Gdµ±n dµ

±
n converge to

∫
Gdµ±dµ±, so that∫

G(x, y)dµn(x)dµn(y) −→
∫
G(x, y)dµ(x)dµ(y),

and we also have ‖µn‖ → ‖µ‖, so that J(µn)→ J(µ) and we conclude that (49)
holds.

Step 3: We assume now that µ+ and µ− have disjoint compact supports.
Applying Lemma A.2 to each of these non-negative measures, we can proceed
exactly as in Step 2 of Lemma A.2 to obtain the conclusion.

With Lemma A.3 at hand, the proof of Proposition A.2 simply follows from
the regularity theory for the obstacle problem (see Lemma 2.3 and Appendix B),
which ensures in particular that the minimizing measure µ∗ is absolutely con-
tinuous with respect to H2

M.
Then the upper bound is obtained by constructing test configurations with

vortices at the aκj,± as in the proof of [14, Proposition 2.1]. Those test config-
urations are obtained by solving −∆(Vκ − h ∗ F ) = hµκ and constructing the
corresponding ψκ which has modulus 1 outside the balls B(aκj,±, 2κ

−1)’s, and
phase given by dϕκ = hd∗F − ∗dVκ.
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B Proof of Lemma 2.3

Proof of Lemma 2.3: Assume first that V solves (10). Then V ∈ W 2,p(M) for
any 1 < p <∞. This can be proven exactly as in [10, Section 1.3], by remarking
first that V minimizes the functional

F̃(V ) =

∫
M

(
|∇V |2 + 2HV 1|V |≤β/2

)
,

over the whole space H1(M), then approximating F̃ by a regularized version F̃ε
of it, where the function Φ(t) = t1|t|<β/2 is approximated by smooth functions
Φε. Applying the Calderon-Zygmund estimates to the minimizers Vε of the
regularized functionals, one obtains a uniform bound ‖Vε‖W 2,p ≤ C which allows
to conclude, letting ε→ 0, that V ∈W 2,p.

Let µ := −∆V +H. For any smooth ϕ ≥ 0 with support inside {V > −β/2},
we may apply (10) with W = V − εϕ for small ε. We deduce that µ ≤ 0 in
{V > −β/2}. Similarly, we show that µ ≥ 0 in {V < β/2}. It follows that (11)
holds.

For the converse, assume that (11) holds. It implies in particular that

∆V = H1|V |<β/2.

Let W ∈ H1(M) with |W | ≤ β/2, and define ϕ = W − V , so that

ϕ ≥ 0 in {V = −β/2}, and ϕ ≤ 0 in {V = β/2}.

Integrating by parts, we obtain∫
M

(∇V · ∇ϕ+Hϕ) =

∫
M
Hϕ(1− 1|V |<β/2)

=

∫
{V=−β/2}

Hϕ+

∫
{V=β/2}

Hϕ

≥ 0,

where the last inequality comes from the inequalities satisfied by H and ϕ in
{V = ±β/2}. This shows that (10) is satisfied.
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