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Abstract

In the present work, we study minimizers of the Landau-de Gennes

free energy in a bounded domain Ω ⊂ R
3. We prove that at low tempera-

ture minimizers do not vanish, even for topologically non-trivial boundary

conditions. This is in contrast with a simplified Ginzburg-Landau model

for superconductivity studied by Bethuel, Brezis and Hélein. Merging this

with an observation of Canevari we obtain, as a corollary, the occurence

of biaxial escape: the tensorial order parameter must become strongly

biaxial at some point in Ω. In particular, while it is known that minimiz-

ers cannot be purely uniaxial, we prove the much stronger and physically

relevant fact that they lie in a different homotopy class.

1 Introduction

Nematic liquid crystals are composed of rigid rod-like molecules which tend to
align in a preferred direction. As a result of this orientational order, nematics
present electromagnetic properties similar to those of crystals. A striking feature
of nematics is the appearance of particular optical textures called defects. From
the mathematical point of view, the study of these defects is carried out using a
tensorial order parameter Q (introduced by P.G. de Gennes [4]). The Q-tensor
takes values in the five-dimensional space

S =
{
Q ∈ R

3×3 : Qij = Qji, trQ = 0
}
, (1)

of symmetric traceless 3×3 matrices. As a symmetric matrix, a Q-tensor has an
orthonormal frame of eigenvectors: the eigendirections are the locally preferred
mean directions of alignment of the molecules, and the eigenvalues measure the
degrees of alignment along those directions. In this context, uniaxial states are
described by Q-tensors with two equal eigenvalues, and biaxial states correspond
to Q-tensors with three distinct eigenvalues.
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The configuration of a nematic material contained in a domain Ω ⊂ R
3 is

given by a map Q : Ω → S. At equilibrium, Q should minimize the Landau-de
Gennes free energy given by

FT (Q) =

∫

Ω

(
L

2
|∇Q|2 + fT (Q)

)
dx. (2)

Here L is an elastic constant and fT (Q) is the bulk free energy density, usually
considered to be of the form

fT (Q) =
α(T − T∗)

2
|Q|2 − b

3
tr(Q3) +

c

4
|Q|4. (3)

Above α, b and c are material-dependent positive constants, T is the absolute
temperature and T∗ a critical temperature. For T < T∗, the bulk free energy
density fT (Q) attains its minimum exactly on the vacuum manifold NT ⊂ S
composed of uniaxial Q-tensors with a certain fixed norm:

NT =

{
Q ∈ S : Q = s∗

(
n⊗ n− 1

3
I

)
, n ∈ S

2

}
,

s∗ = s∗(T ) =
b+

√
b2 − 24α(T − T∗)c

4c
.

(4)

Above, the notation n ⊗ n denotes the matrix (ninj). Note that NT is diffeo-
morphic to the projective plane RP

2. In this work we consider minimizers of
FT (Q) subject to Dirichlet boundary conditions Qb,T : ∂Ω → NT minimizing
the potential fT (Q):

Qb,T (x) = s∗

(
nb(x) ⊗ nb(x)−

1

3
I

)
, nb : ∂Ω → S

2. (5)

In the London limit L → 0, a minimizing Q-tensor must be close to an NT -
valued harmonic map Q∗, that is a minimizer of the Dirichlet energy among
maps with values in the manifold NT . This is analogous to the case of the sim-
plified Ginzburg-Landau energy with prescribed topologically nontrivial bound-
ary conditions studied in [2]; in this setting it is proved that minimizers of the
corresponding energy converge to harmonic maps with values in S

1, which are
then forced to have singularities, known in that context as vortices.

The singularities of the director field n∗ associated to the limit of minimizers
of FT (Q) correspond to the optical defects observed in experiments. In the core
of a defect, two possible behaviors are considered in the physics literature. The
notion of isotropic melting refers to aQ-tensor vanishing in the core of the defect.
This is comparable to the behaviour observed in the core of Ginzburg-Landau
vortices, and can be achieved by remaining in a uniaxial state. Alternatively,
Q-tensors may take advantage of the additional degrees of freedom offered by
biaxiality: instead of vanishing in the core of the defect, the Q-tensor order
parameter may become strongly biaxial. This last behaviour is referred to as
biaxial escape [21].
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Biaxial escape has been first proposed as a way to avoid singularities of
the director field by Lyuksyutov [11]. The corresponding mechanism has been
investigated in greater detail by Penzenstadler and Trebin [16], followed by a
number of further studies (see e.g. [21, 17, 15, 7] ). These works indicate that
biaxial escape should be energetically favorable when the bulk free energy (3)
degenerates to a Ginzburg-Landau-like potential, which occurs for instance at
low temperature.

Our main result states that, at low temperatures, isotropic melting is indeed
avoided: the minimizing configurations do not vanish.

Theorem 1.1. Let Ω ⊂ R
3 be a smooth bounded simply connected domain.

Let nb : ∂Ω → S
2 be a smooth director field and Qb,T : ∂Ω → NT the associated

boundary datum (5). Let QT be a solution of the variational problem

min
{
FT (Q) : Q ∈ H1(Ω;S), Q = Qb,T on ∂Ω

}
,

where FT is the Landau-de Gennes free energy (2). Then, there exists T0 ∈ R

(depending on Ω, L, α, b, c), such that if T < T0,

inf
Ω

|QT | > 0,

i.e. QT does not vanish in Ω.

To prove Theorem 1.1, we use the fact that any zero xT of QT must converge,
as T → −∞, to a point x0 ∈ Ω; this follows from the analysis in [13]. After this,
we take advantage of the degeneracy of the bulk potential to a Ginzburg-Landau
potential in the low temperature limit. The Ginzburg-Landau potential being
minimized by S

4-valued maps, we are able to relateQT to an S
4-valued harmonic

map. This is done through a blow-up analysis of QT at xT which in turn leads
to a local minimization problem in R

3 for a limiting map Q∞. Next, thanks to
the study in [14] based on the work of Lin and Wang [9], a blow-down analysis
of the limiting map using the minimality of Q∞ yields strong convergence to
a harmonic map with values in S

4. The conclusion follows with the help of a
regularity result for minimizing harmonic maps by Schoen and Uhlenbeck [20].

Next we explain how Theorem 1.1 is related to the phenomenon of biaxial
escape. Of course, Theorem 1.1 is more interesting when the boundary condition
nb is topologically non-trivial. In that case, a recent remark of Canevari [3,
Lemma 3.10] shows that the only way for QT to avoid isotropic melting is to
be strongly biaxial. To give a precise meaning to this statement, we recall the
definition of the biaxiality parameter for a Q-tensor,

β(Q) = 1− 6
(tr(Q3))2

|Q|6 , (6)

introduced in [6]. It holds that 0 ≤ β(Q) ≤ 1, and Q is uniaxial for β = 0,
biaxial for β > 0 and is said to be maximally biaxial for β = 1. Canevari’s
lemma implies the following corollary to our main result:
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Corollary 1.2. If the boundary datum nb : ∂Ω → S
2 is topologically non-trivial,

then for low enough temperatures T < T0, any minimizing configuration QT

must be strongly biaxial:

β(QT (x0)) = 1

for some x0 ∈ Ω.

In fact, in [3] Canevari uses the aforementioned lemma to prove a theorem
similar to Corollary 1.2, in the case of a two-dimensional domain. Our result is
a three-dimensional analog of [3, Theorem 1.1], and could probably be adapted
to provide a simpler proof of [3, Theorem 1.1].

Corollary 1.2 generalizes a recent result by Henao, Majumdar and Pisante
[12]. In [12], the authors show that for low enough temperature, minimizers
can not be purely uniaxial (that is, can not satisfy β = 0 everywhere). Note
that such a result does not exclude the existence of approximately uniaxial
minimizers, while Corollary 1.2 does. Moreover the results of the second author
in [8] indicate that the uniaxiality constraint is very rigid: non-existence of
purely uniaxial solutions may not be specific to low temperature or energy
minimization. In contrast, Corollary 1.2 is really specific to the low temperature
limit.

The article is organized as follows. In Section 2 we reformulate the problem
and recall some basic convergence properties of minimizers of FT . In Section 3
we study the blown-up problem, obtain a limiting map and derive its minimal
character. In Section 4 we conclude the proof of Theorem 1.1 with the aid of
a blow-down analysis. Finally, in Section 5 we prove Corollary 1.2 and make
some final remarks.
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2 Properties of minimizing Q-tensors

2.1 Rescaling

Introducing the reduced temperature t and rescaled maps Q̃:

t :=
−α(T − T∗)c

b2
, Q̃ :=

1

s∗

√
3

2
Q,
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we see that, for some constant K = K(α, b, c, T ) which plays no role in the
sequel,

FT (Q) =
s2∗b

2

3c

∫

Ω

(
L̃

2
|∇Q̃|2 + t

2
(|Q̃|2 − 1)2 + λ(t)h(Q̃)

)
dx +K,

where L̃ = 3cL/b2,

λ(t) =

√
24t+ 1 + 1

12
∼

t→+∞

√
t

6
, (7)

and

h(Q̃) =
1

6
− 2

√
2√
3
tr(Q̃3) +

1

2
|Q̃|4. (8)

It holds that h(Q) ≥ 0 for every Q ∈ S, and the potential h vanishes exactly at

Ñ =

{√
3

2

(
n⊗ n− 1

3
I

)
: n ∈ S

2

}
. (9)

The limit T → −∞ corresponds to t → +∞. Therefore we may reformulate
the problem: show that minimizers Qt of the energy functional

F̃t(Q) =

∫

Ω

(
L̃

2
|∇Q|2 + t

2
(|Q|2 − 1)2 + λ(t)h(Q)

)
dx (10)

subject to the boundary condition

Qt = Q̃b =

√
3

2

(
nb ⊗ nb −

1

3
I

)
on ∂Ω, (11)

do not vanish for large enough t.
We prove Theorem 1.1 by contradiction: we assume the existence of se-

quences tj → +∞ and (xj) ⊂ Ω such thatQtj minimizes (10)-(11) andQtj (xj) =

0. Note that any minimizer of F̃t is smooth thanks to standard elliptic estimates
(see e.g. [13, Proposition 13]), so that evaluation at xj makes sense. Up to ex-
tracting a subsequence, we may assume in addition that xj → x∗ ∈ Ω.

In the sequel we study the behaviour of the sequence (Qtj ) and obtain a
contradiction. To simplify the notations, we drop the subscript j: we write (Qt)
and (xt) and it is always implied that a subsequence is considered.

2.2 Convergence

Since the set H1
nb
(Ω; S2) = {n ∈ H1(Ω; S2) : n|∂Ω = nb} is not empty, we may

use an Ñ -valued comparison map and obtain the bound

F̃t(Qt) =

∫

Ω

(
L̃

2
|∇Qt|2 +

t

2
(|Qt|2 − 1)2 + λ(t)h(Qt)

)
dx ≤ C. (12)
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In particular, we see that the sequence (Qt) is bounded in H1(Ω;S). Up to
extracting a subsequence, we may therefore assume that Qt converges weakly
to a limiting map Q∗ ∈ H1(Ω;S). Moreover, since the bound (12) implies

∫

Ω

h(Qt) ≤ Cλ(t)−1 ∼ C

√
6

t
,

we deduce that h(Q∗) = 0 a.e., so that Q∗ is Ñ -valued. From this point on, we
can proceed exactly as in [13, Lemma 3]. We conclude that Qt converges to Q∗
strongly in H1, and that

Q∗ =

√
3

2

(
n∗ ⊗ n∗ −

1

3
I

)
,

where n∗ ∈ H1(Ω; S2) is a minimizing harmonic map. In particular, Q∗ is
smooth in Ω \ Σ, where Σ ⊆ Ω is a finite set of interior point singularities
[18, 19].

As in the Ginzburg-Landau case [1], the convergence of Qt towards Q∗ can
be improved away from the singularities Σ. The arguments in [1] have been
adapted to the liquid crystal case in [13]. The asymptotic regime L → 0 in
[13] corresponds to the limit t → +∞ in the present work. The arguments in
[13, Proposition 4] and [13, Proposition 6] are straightforward to adapt, and we
obtain the convergence

1

2
(|Qt|2 − 1)2 +

λ(t)

t
h(Qt) −→ 0, locally uniformly in Ω \ Σ.

Since we have in addition, thanks to the maximum principle, |Qt| ≤ 1 (cf e.g.
[13, Proposition 3] ), we deduce – using also (7) – that

|Qt| −→ 1 locally uniformly in Ω \ Σ. (13)

Recall that by assumption, Qt(xt) = 0 for a sequence xt → x∗ ∈ Ω. The
uniform convergence (13) away from Σ implies that x∗ ∈ Σ. In particular x∗
lies well inside Ω. Our next step will consist in “blowing up” around xt.

3 Blowing up

We fix δ > 0 such that B(xt, δ) ⊂ Ω for all j. We consider the blown-up maps

Qt(x) = Qt

(
xt +

x√
t

)
, x ∈ Bδ

√
t.

The map Qt minimizes the energy functional

Et(Q;Bδ
√
t) =

∫

Bδ
√

t

(
L̃

2
|∇Q|2 + 1

2
(|Q|2 − 1)2

)
dx+

λ(t)

t

∫

Bδ
√

t

h(Q) dx, (14)
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with respect to its own boundary conditions. Fix any R > 0. For large enough
t, Qt is defined in BR and solves the Euler-Lagrange equation

L̃∆Qt = 2(|Qt|2 − 1)Qt +
λ(t)

t
∇h(Qt).

The uniform bound |Qt| ≤ 1 and standard elliptic estimates thus imply

|∇Qt| ≤ CR in BR,

where CR is a constant that may depend on R but not on t. Therefore, up to ex-
tracting a subsequence, we may assume that Qt converges locally uniformly, and
weakly in H1

loc, to a map Q∞ ∈ H1
loc(R

3;S). Moreover, since the convergence
is locally uniform, Q∞ is continuous and satisfies

Q∞(0) = 0. (15)

We claim that Q∞ locally minimizes a Ginzburg-Landau energy; this is a
very important simplification.

Lemma 3.1. For all R > 0, the limiting profile Q∞ minimizes the energy
functional

E(Q;BR) =

∫

BR

(
L̃

2
|∇Q|2 + 1

2
(|Q|2 − 1)2

)
dx, (16)

with respect to its own boundary condition.

Proof. Let P ∈ H1
0 (BR;S). Since Qt is minimizing, it holds

0 ≤ Et(Qt + P ;BR)− Et(Qt;BR)

= L̃

∫

BR

∇Qt · ∇P +
L̃

2

∫

BR

|∇P |2

+
1

2

∫

BR

(|Qt + P |2 − 1)2 − 1

2

∫

BR

(|Qt|2 − 1)2

+
λ(t)

t

∫

BR

[
h(Qt + P )− h(Qt)

]
dx.

Using the weak H1 convergence of Qt (which implies also strong L6 conver-
gence), we obtain in the limit t → +∞

0 ≤ L̃

∫

BR

∇Q∞ · ∇P dx+
L̃

2

∫

BR

|∇P |2

+
1

2

∫

BR

(|Q∞ + P |2 − 1)2 − 1

2

∫

BR

(|Q∞|2 − 1)2

= E(Q∞ + P ;BR)− E(Q∞;BR).

Therefore Q∞ minimizes (16), as claimed.
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Moreover, proceeding exactly as in the proof of [12, Theorem 1.(v)], we
obtain the energy bound

E(Q∞;BR) ≤ CR. (17)

The bound (17) follows from two main ingredients: an energy monotonicity
inequality for minimizers of (14) [13, Lemma 2], and an energy bound for S

2-
valued minimizing harmonic maps near their singularities (following from the
energy monotonicity for minimizing harmonic maps, see e.g. [10, Lemma 2.2.5]).

4 Blowing down

Our last step consists in “blowing down” Q∞ around the origin, and eventually
reaching a contradiction with (15). Let B1 be the unit ball in R

3. We consider
the blown-down maps

Q
R
(x) = Q∞(Rx), x ∈ B1.

Note that (15) implies that

Q
R
(0) = 0, ∀R > 0. (18)

By definition, Q
R
∈ H1(B1) for all R > 0. We have:

Lemma 4.1. Up to a subsequence,

Q
R
−→ Q in H1(B1;S),

for some S
4-valued harmonic map Q. Moreover, |Q

R
| stays bounded away from

zero uniformly in B1.

Proof. Since Q∞ minimizes (16), the map Q
R
minimizes the energy functional

GR(Q) =

∫

B1

(
L̃

2
|∇Q|2 + R2

2
(|Q|2 − 1)2

)
dx. (19)

Moreover, the energy bound (17) implies the bound

GR(QR
) ≤ C, (20)

so that we may extract a subsequence R → +∞ (indices are implicit), such that

Q
R
−→ Q weakly in H1(B1;S). (21)

The energy bound (20) also implies that Q is S
4-valued. Now, thanks to

Lemma 3.1, we can appeal to Proposition 4.2 in [14] to conclude that the con-
vergence of Q

R
to Q can be improved to strong convergence in H1. In [14],

the proof relies on [9, Theorem C] in the case of R3-valued maps converging
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to S
2-valued maps. However, [9, Theorem C] is valid in greater generality and

applies to our case. Moreover, the analysis in [14] does not make use of the
dimension of the target space other than to provide an explicit constant in their
computations.

Next, the minimizing character of Q follows from Step 1 in [14, Corollary
4.1], which also applies to our case without modifications. From this we conclude
that Q is an S

4-valued minimizing harmonic map. As a consequence, Schoen
and Uhlenbeck’s regularity result [20, Theorem 2.7] ensures that Q is smooth
in B1.

Since the proof of [14, Proposition 4.2] also shows that the convergence of
Q

R
towards Q is actually uniform away from the singularities of Q, we obtain

in particular that

|Q
R
| −→ 1 uniformly in B1, (22)

which is the desired conclusion.

We note that (22) contradicts (18) and thus the proof of Theorem 1.1 is
complete.

5 Proof of Corollary 1.2

In [3], Canevari makes the crucial observation that if Q is almost uniaxial, i.e.

max
Ω

β(Q) < 1,

then the Q-tensor must vanish. More precisely, in our case the following result
holds.

Lemma 5.1. [3, Lemma 3.10] Let Q ∈ C1(Ω;S) with uniaxial boundary con-
dition of the form (5). If nb : ∂Ω → S

2 is topologically non trivial, and Q is
almost uniaxial, then

min
Ω

|Q| = 0.

In [3] the proof is carried out in the two-dimensional case but a careful
reading shows that the argument still holds in the three-dimensional setting,
since the result relies only on topological considerations in the target space S.
Indeed, the crucial observation leading to [3, Lemma 3.10] is the fact that, for
any C ≥ 1 and 1 > δ > 0, the set

{Q ∈ S : δ ≤ |Q| ≤ C, β(Q) ≤ 1− δ} ⊂ S

is topologically equivalent to N ≃ RP
2.

As a consequence of Theorem 1.1 we see that, in light of Lemma 5.1, QT

must be maximally biaxial at some point for sufficiently low temperature. The
proof of Corollary 1.2 is complete.
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We finish with a few remarks. Theorem 1.1 implies the existence of a point
where maximal biaxiality is achieved, however it does not provide a charac-
terization of the location of this (or these) point(s) in terms of the domain or
the boundary datum. Also the number of these points of biaxial escape cannot
be deduced from the topological conclusion in [3, Lemma 3.10]. To finish, a
more detailed description of the defect core is also an interesting matter worthy
of pursuit. In this last direction, we mention the stability study of the radial
hedgehog defect performed in [5].
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