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1 Introduction
Membrane filtration technologies have shown great promise as physical separation 

techniques in the field of water treatment, including for example water desalination, 

wastewater treatment and drinking water production. It offers several benefits as 

compared to conventional treatment processes: better contaminant removal, smaller 

footprint and easy process automation [1]. However, the major drawback of a 

membrane filtration process remains membrane fouling which results over time in 

either an observable transmembrane pressure (TMP) increase under constant flux 

conditions or a dramatic drop in the permeate flux under constant pressure conditions 

[2].

Physical membrane cleaning at periodic intervals is one possible means for controlling 

and reducing fouling. Physical cleaning is a process that eliminates the reversible 

fouling from the membrane surface and pores. Commonly, it is carried out either by 

relaxation or backwash, or by a combination of both [3, 4]. Even though physical 

cleaning cannot eliminate long-term irreversible fouling phenomena, in the optimized 

conditions it can slow down the build-up of irreversible fouling, resulting in less frequent 

chemical cleaning, improvement in water productivity and reduction in the operating 

costs.

Membrane backwash is the reversal of flux back through the membrane. The 

effectiveness of such backwash in removing reversible fouling from the membrane 

surface and pores has been well studied [5, 6]. Since the permeate itself is used as 

the medium for flushing the membrane, frequent backwashing will cause net 
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production loss. However, infrequent backwashing increases the build-up rate of the 

internal fouling. The key factors for the optimization of the backwash operation are its 

flow rate, pressure, duration and frequency, along with the ratio between these two last 

parameters [7, 8]. In practice, due to the complexity of the membrane filtration system 

these parameters are fixed according to the recommendations of the membrane 

manufactures or chosen according to the operator’s experience [3]. This leads to sub-

optimal process performances, thereby wasting permeate and energy.

Several efforts to optimize the filtration and backwash periods have been made. In 

earlier work, Paul Chen et al. [9] presented a statistical approach using an overlay of 

surface response plots to optimize the filtration time between two backwash cycles. 

They effectively improved the system's production compared to the strategy suggested 

by the membrane supplier. However, it was recognized by the authors that further 

efforts are required to design more practical and cost-effective optimal operating 

strategies. In others papers, system performance optimization was obtained by 

developing an automatic control system for deciding on the cleaning action based on 

a comparison of the value of the controlled variable to a set-point value. For example, 

Smith et al. [10] developed a control system that monitors the TMP evolution over time 

and triggers a membrane backwash whenever the TMP exceeds a given set-point. 

Thus, backwash duration was automatically adjusted and the water required in 

membrane backwashing was reduced by 40% [10]. Similarly, the automatic control 

system presented in the work of Villarroel et al. [8] monitored the TMP to adjust the 

duration of relaxation and backwash. The results showed that the automatic control of 

membrane cleaning permitted an increase in filtration time and, thus, overall system 

productivity. On the other hand, Vargas et al. [11] used the permeate flux as the 

controlled variable to automatically control the membrane backwash in a submerged 

membrane bioreactor. Backwash frequency was increased if the permeate flux 

dropped to the minimum allowable set-point.

Mathematical modeling is an effective tool for developing control strategies designed 

to control fouling and, thus, to optimize membrane filtration process performance. 

Drews et al. [12] presented a model-based control strategy that gathered flux data and 

identified the current state of membrane fouling in order to take the appropriate 

response (aeration, relaxation or backwash). With respect to knowledge-based control 

of membrane filtration, Robles et al. [13, 14] developed a controller that aimed at 
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reducing energy consumption and system downtime due to membrane backwash. 

Recently, Cogan et al. [15, 16], using a simple specific model of 

ultrafiltration/microfiltration processes, adopted an analytical approach applying 

Pontryagin's Maximum Principle to predict the optimal instants of switching between 

backwash and filtration periods that maximize the overall water production in a given 

time frame. However, Cogan et al.'s optimal control analysis is questionable because 

the transversality condition of the Pontryagin Maximum Principle was not verified. In 

addition, the solution proposed was only applicable to very specific initial conditions, 

assuming a completely clean membrane.

In a previous work [17], we solved the problem of optimizing the total production of a 

membrane filtration process operating at constant TMP and including periodic 

relaxation between filtration cycles. The analytical solution to this optimization problem 

was given. The resulting optimal control strategy was able to improve the total volume 

filtrated by about 76% compared to the classic operating strategy.

As in [17], the present work is devoted to the study of an analogous optimal control 

problem. However, membrane unclogging is performed here by periodic cycles of 

backwash instead of membrane relaxation. The main goal of this paper is thus to 

determine the optimal switching between filtration and backwash that mitigates fouling 

while maximizing over a given period of time the net water production per membrane 

area of a membrane filtration process operating at constant TMP.

The paper is organized as follows: in the first section, the optimal solution to the 

optimization problem is given for two case studies: (i) when the backwash flux is 

constant; and (ii) when the backwash flux depends on the degree of fouling. We will 

show that in both cases, the general pattern of the analytical solution is the same: it 

does not depend on any specific mathematical model. To demonstrate the 

effectiveness of the proposed control strategy, we consider a specific case for which a 

mathematical model is calibrated on the basis of published experimental data. Only 

the results of model validation and parameter identification are shown insofar as the 

main purpose of this work is to present the optimal control strategy for a membrane 

filtration system. Because the optimal solution appears to be unfeasible in practice, we 

propose an approximation approach to adapt it to the real constraints of a membrane 

filtration process. Finally, we study the robustness of the optimal control strategy with 
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respect to various disturbances that are actually present when dealing with any pilot- 

or industrial-scale membrane separation process.

2 Optimal operation strategy

2.1 Statement of the optimal control problem
In this section, we introduce the optimal control problem for a membrane filtration 

process running at a constant TMP. The process works by alternating two functional 

modes: filtration and physical backwash. An optimal control problem consists in 

searching for a control signal such that an objective function is minimized or 

maximized, given a mathematical model representing the dynamics of the process 

involved and possible constraints. Here, the objective is the mitigation of membrane 

fouling in order to maximize the total filtered water obtained over a given period of time 

. In order to derive generic solutions to the problem, rather than considering a specific 𝑇

mathematical model, we use a class of filtration models defined only by their qualitative 

behaviors.

Depending on the assumption made about the backwash flux, two different cases are 

studied below: (i) when the backwash flux is considered constant and equal to an 

average value; and (ii) when it varies depending on the extent of fouling.

When a membrane operates in filtration, the resistance to flow increases according to 

the mass of the cake layer formed on the membrane surface, termed m, which 

subsequently decreases the permeate flux. Thus, we assume that the rate at which 

the mass of material adheres to the membrane surface during filtration is a positive 

decreasing function such that the dynamics of mass attachment is given by equation 

(1):
𝑚 =  𝑓1(𝑚) > 0 (1)

On the other hand, when starting membrane backwash, the cake layer is decomposed 

and the membrane's permeability increases again. So, the dynamics of the cake 

detachment can be described by an increasing negative function given by:
𝑚 = ‒ 𝑓2 (𝑚) ≤ 0 (2)
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We can write a hybrid model that combines these two dynamics into a single equation 

through the control variable  taking, by convention, the value 1 during filtration 𝑢(𝑡)

mode and -1 during membrane backwash:

𝑚 =
1 + 𝑢(𝑡)

2   𝑓1(𝑚) ‒
1 ‒ 𝑢(𝑡)

2  𝑓2(𝑚) (3)

At constant TMP, the permeate flux decreases as the extent of fouling gradually 

increases. Therefore, the variation of the permeate flux, , can be described by a 𝐽

decreasing positive function of the mass of the fouling layer:

𝐽(𝑚) > 0 (4)

In the next section, the optimization method used to determine the optimal operating 

strategy of a membrane filtration system is described briefly, the main results are 

summarized and details are given in the Appendices A and B.

2.2 Optimization criteria
In case #1, we consider that membrane backwash is performed with a constant flux 

and that backwash pressure varies depending on the extent of fouling. In case #2, we 

assume that during backwash the pressure is constant and the backwash flux 

increases as soon as the membrane has been regenerated. The key difference 

between these two cases lies in the objective function to be maximized. In both cases, 

Pontryagin Maximum Principle (PMP) [18] is the mathematical tool applied to 

determine the analytical solution of the optimal control problem.

 Case #1: Operating with constant backwash flux 

The criterion to be optimized is given by Eq.(5) below. In fact, the net water production 

per membrane area of the process during an overall time interval  is the total [0,𝑇]

permeate volume produced during filtration per membrane area minus the total 

permeate volume used during backwash periods per membrane area.

𝐿𝑇,1 = ∫𝑇

0
( 

1 + 𝑢(𝑡)
2  𝐽(𝑚(𝑡)) ‒

1 ‒ 𝑢(𝑡)
2  𝐽𝐵𝑊) 𝑑𝑡 (5)

where  and   are respectively the permeate flux and the backwash flux.𝐽(𝑚(𝑡)) 𝐽𝐵𝑊
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 Case #2: Operating with variable backwash flux 

If during membrane backwash, the backwash flux varies depending on the amount of 

fouling removed, then the functional cost of the optimal control problem is given by:

𝐿𝑇,2 = ∫T

0
𝑢(𝑡) 𝐽(𝑚(𝑡)) 𝑑𝑡 (6)

where is the forward or backward permeate flux such that  increases during 𝐽(𝑚(𝑡)) 𝐿𝑇,2

filtration but decreases during backwash.

2.3 The optimal solution
The mathematical analysis shows (cf. Appendices A and B) that the optimal solution is 

similar in both cases: the optimal control depends on the state of membrane fouling 

 which is given by:𝑚(𝑡)

𝑢 ∗ (𝑡,𝑚) = { 1,  𝑖𝑓 𝑚 < 𝑚 𝑜𝑟 𝑡 ≥ 𝑇
𝑢,   𝑖𝑓 𝑚 = 𝑚 𝑎𝑛𝑑 𝑡 < 𝑇

‒ 1,   𝑖𝑓 𝑚 > 𝑚 � (7)

where the control parameters,  and , are computed using the PMP. In other 𝑚,  𝑢  𝑇

words, in both cases and over a given period of time [0,T] the optimal strategy can be 

summarized as follows: in a first phase, [0, ], if the initial mass attached to the 𝑡𝑒

membrane, , is less than a given value , the process operates in filtration (i.e. 𝑚(0) 𝑚

) until  reaches . Otherwise, if the membrane is already significantly fouled 𝑢 = 1 𝑚 𝑚

(i.e. ), a backwash is necessary to regenerate the membrane until the state 𝑚(0) > 𝑚

 equals . Then, in a second phase, [ , ], a constant control , given a value 𝑚 𝑚 𝑡𝑒 𝑇 𝑢

between -1 and 1, is applied to maintain the mass of the cake layer around until the 𝑚 

switching time  is reached. Finally, when the operating time attains , it is optimal to 𝑇 𝑇

finish the process run cycle with filtration ( ) until the final time, . 𝑢 = 1 𝑇

As shown, mass accumulation on the membrane surface cannot be avoided. However, 

the proposed optimal control strategy keeps  around a "threshold" value  and thus 𝑚 𝑚

permits the mitigation of fouling effects on process performance. It is almost like the 

critical flux concept introduced by Field et al. [19]. The critical flux is defined as the flux 

below which the process can continue to operate over long time periods with negligible 

membrane fouling.
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Remark 1: Note that the control parameters ,  and  depend only on the parameters 𝑚 𝑇 𝑢

of the fouling dynamics in the model. In other words, they can be computed once and 

the optimal control (i.e. Eq.(7)) can be applied whatever the initial condition.

Remark 2: All values of the control parameters ,  and  will be stated later for a 𝑚 𝑇 𝑢 

specific filtration model identified from real data. The key strength of the approach 

presented here is that it provides a generic solution based solely on the qualitative 

properties of membrane fouling dynamics. Thus, the general pattern presented in 

Eq.(7) depends exclusively on the general assumptions made for expressions (1) to 

(4).

Remark 3: The value is called a "singular control" (cf. Appendices A and B). Since 𝑢  

the control involves  which takes a value between -1 (i.e. backwash) and 1 (i.e. 𝑢 

filtration), the analytical solution of the optimization problem presented here cannot be 

applied in practice; it has no physical meaning. In section 5, this problem is addressed 

and an approximation approach is provided to adapt the analytical solution to the 

practical considerations. Basically, the singular control  is approximated by a periodic 𝑢 

switching of filtration ( ) and membrane regeneration ( ), such that the fouling 𝑢 = 1 𝑢 =‒ 1

mass  remains close to  during the time interval in which it is optimal to apply  .𝑚(𝑡) 𝑚 𝑢 

Remark 4: It should also be noted that the total operating time of the process, , only 𝑇

affects . Consequently, if we solve the problem for a large  the values of the control 𝑇 𝑇

parameters , ,  and  remain unchanged as for a short . However, the last 𝑚 𝑢 𝑚𝑇 𝑡𝑒 𝑇

moment for switching to filtration, , occurs later because the duration of the first and 𝑇

last filtration cycle does not change.

3 Materials and methods

3.1 Mathematical filtration model
In the previous section, we presented the optimal operating strategy that maximizes 

the net water production per membrane area of a membrane filtration process over a 

given time .𝑇

At this point, in order to evaluate its effectiveness, the proposed solution is applied in 

a simulation case-study described by a specific mathematical model. Care has been 
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taken to consider a simple model in order to ensure that the control parameters can be 

expressed analytically. 

The filtration model considered assumes that membrane fouling is due only to cake 

layer formation. Moreover, it takes into account the effects of backwash cleaning by 

reversing the permeate flux through the membrane. Many studies have shown that 

models of cake blocking appear most suited to predicting flux decline (or TMP 

increase), especially during ultrafiltration or when using high suspended-solids 

concentrations [20-23].

The model considered here establishes that the cake layer mass, , grows in 𝑚

proportion to the concentration of foulants in the feed, , and to the permeate flow 𝐶𝑡𝑜𝑡

passing through the membrane, . 𝑄𝑃

𝑚 =  𝑓1(𝑚) = 𝑄𝑃 𝐶𝑡𝑜𝑡 (8)

The variation in permeate flux is expressed based on the resistance-in-series concept. 

In fact, the evolution over time of the permeate flux depends on the total filtration 

resistance , which is the sum of the membrane's intrinsic resistance  and the 𝑅𝑡𝑜𝑡 𝑅0 

cake layer resistance . The cake layer resistance is proportional to the mass   𝑅𝑐 𝑚

accumulated on the membrane surface as given by the equation (9):

𝑅𝑐 =
𝛼
𝐴 𝑚 (9)

where  is the specific resistance of the cake layer ( ) and  is the membrane  𝛼 𝑚.𝑘𝑔 ‒ 1 𝐴

surface ( ). By replacing the equation Eq. (9) in the Darcy law,  appears in the flux 𝑚2 𝑚

variation , such that: 𝐽(𝑚)

𝐽(𝑚) =
𝑄𝑝

𝐴 =
𝑇𝑀𝑃

µ (𝑅0 +
𝛼
𝐴 𝑚)

(10)

Henceforward, the model equations will be presented in a simplified form as functions 

of the parameters , , ,  and . The physical significance of these parameters in 𝑏 𝑑 𝑒 𝑎1 𝑎2

relation to the corresponding functions is shown in Table 1. Therefore, Eq.(8) and (10) 

can be written as:
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𝑚 =  𝑓1(𝑚) =
𝑏

𝑒 + 𝑚
(11)

𝐽(m) =
𝑑

𝑒 + 𝑚
(12)

When we assume that the backwash flux is constant (i.e. case #1), the mass detaches 

from the membrane surface as a function of the constant backwash flux, 𝐽𝐵𝑊 (m3.m ‒ 2.

, and the detachment resistance of foulants, , such that:h ‒ 1) 𝜔𝐵𝑊(𝑚 ‒ 1)

𝑚 = ‒ 𝑓2(𝑚) =‒ 𝜔𝐵𝑊  𝐽𝐵𝑊 𝑚 =  ‒ 𝑎1 𝑚 (13)

For the other case (i.e. case #2), when the backwash flux depends on the current 

membrane fouling, the removal of solids from the membrane surface is described by:

𝑚 = ‒ 𝑓2(𝑚) =‒ 𝜔𝐵𝑊 𝐽(𝑚) 𝑚 =  ‒ 𝑎2 
𝑑

𝑒 + 𝑚 𝑚 (14)

This mathematical model is used as an application to demonstrate the effectiveness of 

our generic optimal control solution in optimizing the production of a membrane 

filtration process. In addition, it should be noticed that any other model can be used, 

provided that it meets the general assumptions made in section 2.1.

In the next section, we will estimate the model parameters from published data in order 

to evaluate the parameters of the optimal control solution (i.e. , , ) for a specific 𝑚 𝑇 𝑢 

application.

3.2 Parameter estimation
To estimate the parameters of the simplified model, we extracted data from previous 

experiments published in the work of Xia et al. [1]. In this work, the authors investigated 

the use of ultrafiltration hollow fiber membranes to treat polluted reservoir water in 

China for drinking water production. To this end, specific tests were conducted to 

evaluate the variation of the permeate flux as a function of different operating 

parameters such as backwash strategy. The authors showed that performing a 

backwash cycle for 40 s after a filtration cycle of 60 min can restore permeate flux to 

initial levels. The permeated water was used to backwashing the membrane and then 

the used water was discharged from the recirculation loop.
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The net water production per membrane area of a membrane filtration process using 

Xia et al.'s [1] strategy will be compared to ours. Henceforward, we refer to the Xia et 

al.'s strategy as the "classic" strategy.

Data were extracted using free software, WebPlotDigitizer, from a plot describing 

permeate flux variation published in [1]. WebPlotDigitizer is a simple tool used to 

identify and extract the coordinates of each point  from an uploaded image of the graph. 

The extraction of the data points comes after calibrating the axis by assigning four 

points of known values on the axis.  Obviously, the extracted numerical data may be a 

little biased by this procedure, but what is most important is that the model is able to 

describe their global dynamics very well. In each case, these data will be used to find 

the optimal set of model parameters that best reproduce them.

The optimization of the model's parameters was done using the optimization function 

FminSearch of MATLAB in such a way that the simulated data best matched the 

extracted data when minimizing a least-square criterion. Since the only difference 

between the two case studies was the backwash dynamics, the parameters of the 

filtration dynamics were the same in both cases.

The values of the optimized model parameters of case #1 and #2 (i.e. , , , , ) 𝑏 𝑒 𝑑 𝑎1 𝑎2

are reported in Table 2. Henceforward, these sets of parameters are used for all the 

numerical simulations of the optimal control solution. The fittings between the 

experimental and the simulated permeate fluxes in each case are represented in Fig.1. 

Despite its simplicity, the model reproduces in a satisfactory way the experimental 

data. In order to evaluate the fitting efficiency, the coefficients of the determination  𝑅2

have been calculated and are shown in Fig.1. The  value in case #2 is slightly smaller 𝑅2

than that obtained in case #1. However, in both cases,  is greater than 88%.𝑅2

4 Optimization results
For each case, the appropriate mathematical model with the parameters identified 

were used to calculate the optimal control parameters. Simulations were performed 

using MATLAB for a time period T of 7 hours which was the same as in the study from 

which experimental data were extracted. In case #1, the backwash flux is twice the 
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initial permeate flux. For both cases, the values of the optimal control parameters are 

given in Table 3.

Considering the model as a "virtual process", we can now choose any initial condition, 

for instance , and apply the theoretical control to the model dynamics given 𝑚(0) = 0

by Eq.11-14 for both cases. Figs. 2 and 3 show the theoretical optimal control solutions 

respectively, for case #1 when the backwash flux is considered constant and for case 

#2 when the backwash flux is a function of the detached mass. In both cases, since 

we began with a clean membrane (i.e. m(0)=0), the process was allowed to operate in 

filtration for about 11 min in case #1 and 6 min in case #2 before the amount of fouling 

reached . The first filtration cycle lasted longer in case #1 than in case #2 because, 𝑚

as shown in Table 3, the value of  was bigger in case #1 than in case #2. Then,  𝑚 𝑢

was set equal to 0.9 in case #1 and 0.87 in case #2. In both cases, was positive 𝑢 =  𝑢  

and close to 1. When the singular control  was applied, the mass of the cake layer 𝑢 

was kept constant at  . The final filtration cycle lasted 7 min for case #1 and 8 min for 𝑚

case #2. We note that the length of the first and the final filtration cycles are short 

compared to the time spent on the singular arc defined by . Consequently, to 𝑚(𝑡) = 𝑚

reduce membrane fouling it is important that the state  reaches  as quickly as 𝑚 𝑚

possible and remains there as long as possible.

When applying the Xia et al.'s strategy, the net water production per membrane area 

over 7 hours was . As expected, our optimal strategy significantly 918.32  𝐿.𝑚 ‒ 2

enhanced the maximum net production per membrane area of the membrane filtration 

process, as shown in Fig.4. When the backwash flux is constant, the optimal solution 

improves the maximum net production per membrane area of the process by 18.5%, 

compared to the "classic" strategy published in [1]. When the backwash flux depends 

on the extent of fouling, the optimal solution leads to an even greater improvement of 

33% when compared to the strategy in [1].

5 Practical implementation
Since a control  different to 1 or -1 has no physical meaning, the question now is to 𝑢

approximate  by only filtration and backwash cycles, such that  remains close to 𝑢 𝑚(𝑡)

 during the time interval corresponding to the singular arc. This approach is known 𝑚

in the literature as a chattering control [24, 25]. Notice that applying such an 
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approximation strategy will necessarily degrade the control performances since, by 

definition, any control signal will be less effective than the optimal one.

Although various strategies can be proposed, in a first approach we considered that  𝑢 

is the percentage of an operating cycle time spent in filtration, such that:

𝑇𝑓

𝑇𝑝
=

1 + 𝑢
2 (15)

𝑇𝑝 =
𝑇𝑆𝐴

𝑁 = 𝑇𝑓 + 𝑇𝐵𝑊
(16)

where  and  are the filtration and the backwash times during an operating cycle, 𝑇𝑓 𝑇𝐵𝑊

 is the time of an operating cycle,  denotes the total time for which it is optimal to 𝑇𝑝 𝑇𝑆𝐴

apply the constant control  and  is the number of cycles over the time-period . 𝑢 𝑁  𝑇𝑆𝐴

Carried to the extreme, the latter expression means that if , then all the cycle time 𝑢 = 1

will be spent in filtration ( ). At the other extreme, if , then all the cycle 𝑇𝑓 = 𝑇𝑝 𝑢 = ‒ 1

time will be spent in backwash ( ). 𝑇𝑓 = 0

Figs.5 and 6 show what happens when we approximate the singular control by applying 

 cycles. In both cases, the mean accumulated mass on the membrane surface 𝑁 = 20

is relatively close to  and the maximum net volume per membrane area produced 𝑚

approaches the level of optimal production. 

Here, a possible question may arise: what would be the impact of increasing the 

switching frequency on control performance while keeping the average of filtration time 

over an operating cycle (i.e. ) constant? To answer this question, we varied the 𝑢

number of cycles  between 2 and 100 and plotted the maximum net production per 𝑁

membrane area of the process over  as a function of  (see Fig.7). As the number of 𝑇 𝑁

switches  increased, the mass of the cake layer tended towards  and process 𝑁 𝑚

production over  hours was significantly improved: when , it reached a 𝑇 = 7 𝑁 = 100

value close to the optimal theoretical production. In other terms, the closer the fouling 

mass to  on the singular arc, the better the performance. It should be noted that even 𝑚

with a small  ( ) the mean accumulated mass on the membrane surface 𝑁 5 < 𝑁 < 10

was not too far from  (c.f. Fig.7). Moreover, further increases  does not yield any 𝑚 𝑁

significant gain: 98% of the optimal production is reached for N=30 cycles of 13 min in 

case #1 and N=40 cycles of 10 min in case #2 (c.f. Fig.7). In fact, if the frequency of 
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switching becomes too great, the risk of wear to the permeation pumps increases. It is 

thus self-evident that the optimal control when applied in practice is a compromise 

between the number of switches and the practical constraints related to using the 

pumps. An open question for the future is to establish whether or not there exists a 

better approximation strategy, for example utilizing less energy while maintaining a 

high performance.

6 Robustness analysis
This section studies the behavior of the proposed optimal control solution with respect 

to uncertainty in model parameters. Robustness refers to the ability of the optimal 

control to maintain any solution close to the optimum in the presence of disturbances 

and/or uncertainty about model parameters. It is obvious that modeling errors as well 

as disturbances in real membrane filtration processes are unavoidable. They may lead 

to increasing divergence between the real and the simulated-state variables. In fact, 

modeling membrane separation systems entails certain difficulties because of the 

unmeasurable nature of the process state such that the kinetics of membrane fouling 

make it difficult to properly identify model parameters. For example, disturbances in a 

real membrane filtration process may be attributed to variations in feed quality, feed 

pressure or membrane properties, all of which can affect a model in real time.

As a consequence, it is important to evaluate the performance of a control that has 

been designed with specific model parameters when it is actually applied to a process 

with slightly different dynamics. To do so, the following approach has been considered: 

we start by introducing random biases of  in the model's parameters in order to ±  20%

generate a set of disturbed systems. Then the optimal solution, computed using the 

parameters of the nominal system, is applied to the disturbed process. To measure 

robustness, the deviation of the maximum net production per membrane area from the 

optimum is calculated for each model, according to the following index:

𝛾 (%) =
(𝐿𝑝 ‒ 𝐿𝑜𝑝𝑡)

𝐿𝑜𝑝𝑡
∗ 100 

(17)

where  is the percentage of deviation from the optimal net water production per 𝛾

membrane area , while  is the net water production per membrane area of the 𝐿𝑜𝑝𝑡 𝐿𝑝

disturbed system. 



15

Out of 1000 iterations, the results given in Table 4 make clear that, in both cases, if the 

disturbances are added to parameters , , and , the deviation in the net water 𝑎1 𝑎2 𝑏

production per membrane area never exceeds 5% in absolute value. However, when 

the disturbances occur in parameters  and , which are directly dependent on the 𝑑 𝑒

permeate flux equation, the divergences between the production of the nominal and 

the disturbed systems become greater. The highest mean deviation, approximately  

22.5 % (in absolute value), is observed in both cases when parameter  is disturbed. 𝑑

Similarly, if the disturbance is introduced in parameter , the divergence of the 𝑒

production from the optimum ranges from -13.6% to 17.06% in case #1 and from -

14.65% to 20.76% in case #2. Thus, in the worst cases for the example we have 

presented, the deviation from the optimal can be of the order of the gain observed 

when applying the optimal strategy (cf. section 4). This means that great care must be 

taken at the identification stage and that efforts are needed in identifying good models.

7 Discussions

In real MF/UF processes, membrane fouling mechanisms are multiple and complex. 

The contribution of each mechanism in the filtration process performances decline 

depends on the membrane-particles and particles-particles interactions, which in turn 

are related to the membrane properties (membrane material, pore size, pore size 

distribution, membrane hydrophobicity), the effluent characteristics (type: biofoulants, 

organic and inorganic foulants; particles size and concentration), the operating 

conditions (flow rate, temperature, pressure, pH) [26, 27] and the filtration mode (dead-

end filtration, cross-flow filtration). The novelty of the present work is that the 

determined optimal solution is generic and it can easily be adapted to deal with the 

specificity of the filtration process in question. This is done by considering the 

appropriate fouling mechanism that best describes the system provided that the 

qualitative assumptions made on the fouling dynamics during filtration and 

backwashing phases hold.

Obviously, the proposed approach relies on the use of a model that correctly captures 

filtration and backwash dynamics under specific operation conditions. If these 

conditions change, the model has to be adjusted and the control re-synthesized. Then, 

it is essential to identify and validate the defined model based on real data acquired on 

the process under conditions of interest. 
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If the dynamics of the considered model can be captured using the simple model 

assumptions introduced in this work, then the proposed optimal solution can be 

computed and applied.

Another important point to note that we actually do not need to measure  neither for 𝑚

identifying the model of the system nor for applying the optimal control. Regarding the 

identification of the models, we simply need to characterize filtration and backwash 

dynamics (functions ,  and ) which can be done using only the measurement of 𝑓1 𝑓2 𝐽

the permeate flux. Concerning the control, there are many ways of applying the control 

on a real process. To obtain the best results, the control should be implemented in 

closed loop (c.f. Fig.8). However, as such, it requires the measurement of  which is 𝑚

not feasible in practice. Whatever the initial state of the membrane, this limit could be 

overcome by the online measurement of the permeate flux which allows the 

determination of the instantaneous value of  using the permeate flux function  𝑚   𝐽(𝑚)

presented in Eq.10. 

Another possibility is to apply the control in open loop (c.f. Fig.8), without any feedback 

(i.e. the online knowledge of ). In this case, we only need to determine the initial value 𝑚

of . If the membrane is clean at the beginning of the experiment, the user must rely 𝑚

on the model identified to know exactly how long he must apply  to reach 𝑢 = 1 𝑚 = 𝑚  

and then run the alternation of filtration and backwash periods. If the membrane is not 

clean and  the operator has to initiate a backwash cycle until the calculated 𝑚0 > 𝑚 ,

time  is reached and then he applies a determined number of switches between 𝑡𝑒 

filtration and backwash cycles. Finally, under the assumption that  is close to , we 𝑚 𝑚

can simply alternate filtration and backwash periods with the optimal ratio computed 

from the knowledge of . Notice also that if the control is applied in open loop, it is not 𝑢

possible to take into account the effect of unexpected disturbances that can decrease 

the control efficiency.

8 Conclusions
This study shows the benefits of the application of the Pontryagin Maximum principal 

in optimizing the net water production per membrane area of a membrane filtration 

system operating at constant TMP. The main advantage of the optimal solution 

proposed here is that it has been designed for a very large class of models. In other 
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words, its general pattern remains similar as long as very general assumptions on 

process dynamics, defined as the qualitative properties of a fouling model, hold. The 

solution has been given for two different cases, depending on whether the backwash 

flux is constant or variable. The application in simulation of the optimal strategy to a 

specific case study significantly improves the net production per membrane area 

compared to a classic strategy. Moreover, we show that is possible to adapt the 

analytical solution for practical application by increasing the frequency of switching on 

the singular arc. The cost related to the amount of switching between filtration and 

backwash modes is not taken into account here but will be the subject of our future 

work. The perspectives of this work also include the evaluation of the optimal solution 

on laboratory-scale membranes and the extension of the approach developed here to 

tackle the problem of minimizing the process's energy consumption when run with 

constant flux. It is important also to evaluate the proposed optimal solution on 

laboratory-scale membranes in order to conclude about the performances and the 

robustness of the controller in practice. 

The synthesis of the optimal solution in the present work was based on a mathematical 

framework that consider the predominance of only one fouling mechanism. In the 

future, we plan to consider combined models that take into account the presence of 

different fouling mechanisms (such as cake formation and pores clogging). Moreover, 

as in practice membrane flux recovery is often not performed only by backwash, but 

rather by the combination of backwash and relaxation periods (with or without 

aeration), the detachment effect of the relaxation with backwashing will be considered 

and the same approach will be applied to determine the optimal solution for such class 

of MF/UF processes. 
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Nomenclature 
𝐴 Membrane surface ( )𝑚2

𝐶𝑡𝑜𝑡 Total suspended solids concentration ( )𝑔. 𝐿 ‒ 1

𝐽 Permeate flux ( )𝐿.ℎ ‒ 1.𝑚 ‒ 2

𝐽𝐵𝑊 Backwash flux ( )𝐿.ℎ ‒ 1.𝑚 ‒ 2

𝐿𝑜𝑝𝑡 Optimal net water production per membrane area ( )𝐿.𝑚 ‒ 2

𝐿𝑝 Net  water production per membrane area of the disturbed system 

( )𝐿.𝑚 ‒ 2

𝐿𝑇 Net water production per membrane area ( )𝐿.𝑚 ‒ 2

𝑚 value of the fouling mass on the singular arc ( )𝑔
𝑚𝑇 Fouling mass at the final time ( )𝑔
𝑁 Number of cycles over the time-period 𝑇𝑆𝐴
𝑄𝑃 Permeate flow (  )𝐿.ℎ ‒ 1

𝑅0 Membrane's intrinsic resistance ( )𝑚 ‒ 1

 𝑅𝑐 Cake layer resistance ( )𝑚 ‒ 1

𝑇 Total operating time of the process ( )ℎ
𝑇𝑀𝑃 Trans-Membrane Pressure ( )𝑃𝑎
𝑇𝐵𝑊 Backwash time during an operating cycle ( )ℎ

𝑡𝑒 First switching time ( )ℎ
𝑇𝑓 Filtration time during an operating cycle ( )ℎ
𝑇𝑝 Time of an operating cycle ( )ℎ

𝑇𝑆𝐴 Total time of the singular arc ( )ℎ
𝑇 Final switching time ( )ℎ
𝑢 Control variable

𝑢 ∗ Optimal control 
𝑢 Singular control

𝜔𝐵𝑊 Detachment resistance of foulants (𝑚 ‒ 1)
𝛼 Specific resistance of the cake layer ( )𝑚.𝑘𝑔 ‒ 1

µ Permeate viscosity ( )𝑃𝑎.𝑠
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Appendix A. Case #1: Operating with constant backwash flux

The objective is to determine the optimal control  that maximizes the net water 𝑢(.)

production per membrane area of the membrane filtration process, , over a given 𝐿𝑇  

period of time . The total water production per membrane area of the process is [0,𝑇]

expressed as:

𝐿𝑇 = ∫𝑇

0(1 + 𝑢(𝑡)
2  𝐽(𝑚(𝑡)) ‒

1 ‒ 𝑢(𝑡)
2  𝐽𝐵𝑊 )𝑑𝑡 (A.1)

The total production per membrane area  is subject to the dynamics of the  𝐿𝑇 

membrane fouling given by:

𝑚 =
1 + 𝑢(𝑡)

2  𝑓1(𝑚) ‒
1 ‒ 𝑢(𝑡)

2  𝑓2(𝑚) (A.2)

where  is the velocity of mass accumulation during filtration and  is the 𝑓1(𝑚) 𝑓2(𝑚)

velocity of mass detachment during backwash. In order to provide a generic solution, 

we define the model functions only by their qualitative properties, such that:

i.  and  are positive decreasing functions with 𝑓1 𝐽 lim
𝑚→∞

𝐽(𝑚) = 0

ii.  is a positive increasing function with 𝑓2 𝑓2(0) = 0
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For convenience, we define:

 ;  ;  ; 𝐽 +  (𝑚) =
𝐽(𝑚) +  𝐽𝐵𝑊

2  𝐽 ‒ (𝑚) =
𝐽(𝑚) ‒  𝐽𝐵𝑊

2 𝑓 + (𝑚) =
𝑓1(𝑚) +  𝑓2(𝑚)

2 𝑓 ‒ (𝑚) =
𝑓1(𝑚) ‒  𝑓2(𝑚)

2

The Hamiltonian associated to the cost function (Eq.(A.1)) and the filtration model 

(Eq.(A.2)) is given by:

𝐻(𝑚,𝜆,𝑢) = 𝜆 𝑓 ‒  (𝑚) + 𝐽 ‒  (𝑚) +  𝑢 [𝐽 +  (𝑚) + 𝜆𝑓 +  (𝑚) ] (A.3)

where the term multiplied by the control variable u is called the "switching function"  𝜑

(Eq. A.4)). Roughly speaking, the switching function determines when the control must 

be switched between the different possible values of the control variable (i.e. for 

instance, filtration or backwash but also, possibly, from one of these modes and a 

singular arc):

𝜑(𝑚, 𝜆) =  𝐽 +  (𝑚) + 𝜆 𝑓 +  (𝑚) (A.4)

According to the PMP, the optimal solution  that maximizes the objective 𝑢𝑜𝑝𝑡(𝑡)

function of the optimization problem has to maximize the Hamiltonian, such that: 

𝑢𝑜𝑝𝑡(𝑚,𝜆) =  { 1  𝑤ℎ𝑒𝑛 𝜑(𝑚, 𝜆) > 0 
‒ 1  𝑤ℎ𝑒𝑛 𝜑(𝑚, 𝜆) < 0� (A.5)

In the Hamiltonian expression (Eq.(A.3)),  is the adjoint variable that satisfies the 𝜆

terminal condition, and the following differential equation: λ(T) = 0, 

𝜆 =‒
∂𝐻
∂𝑚 =‒ [𝜆 𝑓 '

‒  (𝑚) + 𝐽 '
‒  (𝑚) +  𝑢 [𝐽 '

+  (𝑚) + 𝜆 𝑓 '
+  (𝑚) ] ] (A.6)

At the terminal time , we obtain . By continuity, the 𝑇 𝜑(𝑚(𝑇),𝜆(𝑇)) = 𝐽 + (𝑚(𝑇)) > 0

function  is positive on a time interval  with . Thus it is optimal to operate in 𝜑 [𝑡,𝑇] 𝑡 < 𝑇

filtration mode  on this time interval.(𝑢 = 1)

Now, we check the existence of a singular arc in the time interval before the instant . 𝑡

On a singular arc, one has  and . Let us write the derivative of the switching 𝜑 = 0 𝜑 = 0

function :
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𝜑 =  (𝐽 '
+ + 𝜆 𝑓 '

+  )(𝑢 𝑓 + + 𝑓 ‒ ) + 𝑓 + [ ‒ 𝜆 𝑓 '
‒ ‒ 𝐽 '

‒ ‒  𝑢 (𝐽 '
+ + 𝜆 𝑓 '

+  )]
=  𝐽 '

+ 𝑓 ‒ ‒ 𝐽 '
‒ 𝑓

+
+  𝜆 (𝑓 '

+ 𝑓 ‒ ‒  𝑓 + 𝑓 '
‒ ) 

(A.7)

From the equation Eq.(A.4) we get . Replacing  with its expression in 𝜆 =
𝜑 ‒ 𝐽 +

𝑓 +
 𝜆

Eq.(A.7), we obtain:

𝜑

= 𝐽 '
+ 𝑓 ‒ ‒ 𝐽 '

‒ 𝑓
+

+
𝐽 +  (𝑓 + 𝑓 '

‒ ‒  𝑓 '
+ 𝑓 ‒ )

𝑓 +
+

𝜑(𝑓 '
+ 𝑓 ‒ ‒  𝑓 + 𝑓 '

‒ )

𝑓 +
=

𝜓
𝑓 +

 

+
𝜑 ( 𝑓 '

+  𝑓 ‒ ‒  𝑓 +  𝑓 '
‒ )

𝑓 +
 

(A.8)

with

𝜓 = 𝐽 '
+  𝑓 ‒  𝑓 + ‒ 𝐽 '

‒  𝑓 +
2 + 𝐽 +  (𝑓 +   𝑓

'
‒ ‒  𝑓 '

+  𝑓 ‒ ) (A.9)

Then, from the previous equation (Eq.(A.8)) we conclude that a necessary condition 

for having a singular arc on a time interval  is to have . Now, let us make [𝑡1,𝑡2] 𝜓(𝑚) = 0

the following assumption:

H1. The function  admits a unique positive root  and one has𝜓 𝑚

 for any 𝜓(𝑚)(𝑚 ‒ 𝑚) > 0 𝑚 ≠  𝑚

Under this condition,  is thus the unique possible singular arc.𝑚 = 𝑚

On the singular arc, the constant control  to be applied is derived from Eq.(A.2) for 𝑢 𝑚

 when := 0 𝑚 = 𝑚

𝑢 =‒
𝑓 ‒  (𝑚)

𝑓 + (𝑚)     ;   𝑢 ∈ [ ‒ 1,1] (A.10)

As previously, it is optimal to finish with a filtration cycle ( ). Therefore, the optimal 𝑢 = 1

trajectory has to leave the singular arc ( ) with  at a certain switching time . 𝑚 𝑢 = 1 𝑇 < 𝑇

The switching time  can be obtained by integrating backwards the filtration dynamic 𝑇

 between the final time  and the instant , which amounts to writing:𝑓1 𝑇 𝑇

𝑇 = 𝑇 ‒  ∫𝑚(𝑇)

𝑚

𝑑𝑚
𝑓1(𝑚)

 
(A.11)
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where  can be determined from Eq. (A.12) below. On the singular arc, the switching 𝑚𝑇

function  is equal to zero. Consequently, we have . Moreover, 𝜑 𝐻 = 𝜆 𝑓 ‒ (𝑚) + 𝐽 ‒ (𝑚) 

since the optimal trajectory has to leave the singular arc with  at a certain 𝑢 = 1

switching time , and at the final time  we have , the Hamiltonian at time 𝑇 < 𝑇 𝑇 𝜆(𝑇) = 0

 is thus given by . Then, the final state  is the solution of:𝑇 𝐻 = 𝐽(𝑚(𝑇)) 𝑚𝑇 = 𝑚(𝑇)

𝐽(𝑚𝑇) = 𝜆 𝑓 ‒ (𝑚) + 𝐽 ‒ (𝑚) = ‒
𝐽 + (𝑚)𝑓 ‒ (𝑚)

𝑓 + (𝑚)  + 𝐽 ‒ (𝑚) (A.12)

Now, let us check the behavior of the optimal trajectory before it reaches the singular 

arc. As we made the assumption that  admits a single positive root  then one can 𝜓 ,

straightforwardly check that:

{𝜓(𝑚) > 0 𝑤ℎ𝑒𝑛 𝑚 > 𝑚
𝜓(𝑚) < 0 𝑤ℎ𝑒𝑛 𝑚 < 𝑚 � (A.13)

Then the optimal solution is such that:

 if we have  with , then . This implies that  can change its 𝜑 = 0 𝑚 < 𝑚 𝜑 < 0 𝜑

sign only when decreasing. Therefore, only a control  (filtration) can be 𝑢 = 1

optimal in the domain { }; 𝑚 < 𝑚

 if we have  with , then . This implies that  can change its 𝜑 = 0 𝑚 > 𝑚 𝜑 > 0 𝜑

sign only when increasing. Therefore, only a control  (backwash) can be 𝑢 =‒ 1

optimal in the domain { }. 𝑚 > 𝑚

Remark: Indeed, it can been shown that when the proposed feedback does not allow 

to reach  before the time , this optimal feedback is not always optimal: one may 𝑚 = 𝑚 𝑇

have to anticipate the switching and to switch to full filtration along a “switching curve”. 

Nevertheless, these situations occur only when the initial quantity of attached mass is 

too high, which never occurs in practice. Therefore we do not consider these situations 

in this work: we restrict our attention to initial conditions such that the time necessary 

for attaining  using either filtration or backwash is less than .𝑚(𝑡) = 𝑚 𝑇

As an application, we consider the following filtration model:

 Mass accumulation dynamics: 𝑓1(𝑚) =
𝑏

𝑒 + 𝑚

 Mass detachment dynamics: 𝑓2(𝑚) = 𝑎1 𝑚

 Variation dynamics of permeate flux: 𝐽(𝑚) =
𝑑

𝑒 + 𝑚
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By replacing the different functions by their expressions in the equation Eq.(A.9), we 

can calculate its roots and then check the existence of a singular arc. A straightforward 

computation of the function  gives:𝜓

𝜓(𝑚) =‒
1
4 

𝑎1 ( ‒ 𝑎1 𝑑 𝑚2 + 𝐽𝐵𝑊 𝑏 𝑒 + 2 𝐽𝐵𝑊 𝑏 𝑚 + 𝑏 𝑑)
(𝑒 + 𝑚)2

(A.14)

Therefore, the function  vanishes at two different points:𝜓

     and    𝑚1 =
𝐽𝐵𝑊 𝑏 + 𝐽 2

𝐵𝑊 𝑏
2

+ 𝑎1 𝑏 𝑑2 + 𝐽𝐵𝑊 𝑎1 𝑏 𝑑 𝑒

𝑎1 𝑑 𝑚2 =
𝐽𝐵𝑊 𝑏 ‒ 𝐽 2

𝐵𝑊 𝑏
2

+ 𝑎1 𝑏 𝑑2 + 𝐽𝐵𝑊 𝑎1 𝑏 𝑑 𝑒

𝑎1 𝑑

 is positive.  is negative when  which is always the case. 𝑚1 𝑚2 𝑎1 𝑏 𝑑2 + 𝐽𝐵𝑊 𝑎1 𝑏 𝑑 𝑒 > 0 

A further computation of the derivative enables us to conclude that is a positive   𝜓(𝑚) 

increasing function as . Therefore, assumption H1 is fulfilled and  is the 𝑚 ≥ 𝑚 𝑚1

unique singular arc.

On the singular arc, the constant control  to be applied is: 𝑢

𝑢 =
𝑎1 𝑒 𝑚 + 𝑎1 𝑚2 ‒ 𝑏

𝑎1 𝑒 𝑚 + 𝑎1 𝑚2 + 𝑏
(A.15)

and the final switching time to filtration is given by:

𝑇 = 𝑇 ‒  [𝑒 (𝑚𝑇 ‒ 𝑚) + 0.5 (𝑚𝑇 ‒ 𝑚)2

𝑏 ] (A.16)

Appendix B. Case #2: Operating with variable backwash flux

In this case, the net water production per membrane area to be maximized can be 

written as:

𝐿𝑇 = ∫𝑇

0
𝑢(𝑡) 𝐽(𝑚(𝑡)) 𝑑𝑡 (B.1)

where is the forward or backward permeate flux. The constraint of the problem 𝐽(𝑚) 

and the assumptions made on the model functions are the same as in case #1. The 

Hamiltonian  and the switching function  for this case can be written as follows: 𝐻 𝜑
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𝐻(𝑚,𝜆,𝑢) = 𝜆 𝑓 ‒ (𝑚) + 𝑢 [ 𝐽(𝑚) + 𝜆𝑓 + ] (B.2)

𝜑(𝑚, 𝜆) =  𝐽(𝑚) + 𝜆 𝑓 + (𝑚) (B.3)

Proceeding in the same way as in case #1, we found that the optimal solution for case 

#2 has the same general structure as in case #1 (i.e. Eq. (A.5)) but with some 

noticeable differences in the expressions of the control parameters. In fact, the control 

parameters ,  are defined similarly to case #1 by the Eq. (A.10-11). However,  in 𝑢 𝑇 𝑚

this case is the only positive root of the function:

𝜓 = 𝐽'𝑓 ‒ 𝑓 + + 𝐽 (𝑓 + 𝑓 '
‒ ‒  𝑓 '

+ 𝑓 ‒ ) (B.4)

and the final state  is the solution of:𝑚𝑇 = 𝑚(𝑇)

𝐽(𝑚𝑇) = 𝜆 𝑓 ‒ (𝑚) = ‒
𝐽 + (𝑚) 𝑓 ‒ (𝑚)

𝑓 + (𝑚)  (B.5)

Now, we consider the following model as an application of case #2:

 Mass accumulation dynamics: 𝑓1(𝑚) =
𝑏

𝑒 + 𝑚

 Mass detachment dynamics: 𝑓2(𝑚) = 𝑎2 
𝑑

𝑒 + 𝑚 𝑚

 Variation dynamics of permeate flux: 𝐽(𝑚) =
𝑑

𝑒 + 𝑚

A straightforward computation of the function  gives:𝜓 

𝜓(𝑚) =
1
4 

𝑑(𝑎2 2 𝑑2 𝑚2 ‒ 2 𝑎2 𝑏 𝑑 𝑒 ‒ 2 𝑎2 𝑏 𝑑 𝑚 ‒ 𝑏2)
(𝑒 + 𝑚)4

(B.6)

The function  admits of two possible roots:𝜓

 and  𝑚1 =
 𝑏 + 2𝑏2 + 2 𝑎2 𝑏 𝑑 𝑒

𝑎2 𝑑    𝑚2 =
 𝑏 ‒ 2𝑏2 + 2 𝑎2 𝑏 𝑑 𝑒

𝑎2 𝑑
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 is negative when  which is always true because , b, d and e are 𝑚2 𝑏2 + 2 𝑎2 𝑏 𝑑 𝑒 > 0 𝑎2

positive variables. Thus, assumption H1 is fulfilled and we conclude that  is the 𝑚1

unique singular arc.

In this case, the constant control to be applied on the singular arc has the following 

analytical form:

𝑢 =  2  
𝑏 (𝑎2 𝑑 𝑒 + 𝑏)

2𝑏 +  2  𝑏 (𝑎2 𝑑 𝑒 + 𝑏)
(B.7)

and the final switching time, , is expressed as in the Eq.(A.16). 𝑇
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𝑡𝑒 = 0.18 𝑇 = 6.87

1: Model fitting with experimental data obtained from the literature and represented by 

blue stars in case #1(constant backwash flux) (A) and in case #2 (B) (variable backwash 

flux)
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Figure 2: Case #1(constant backwash flux) (A) The theoretical optimal operating strategy 
over T; (B) The corresponding mass accumulated on the membrane surface over T; (C) 
The corresponding volume produced over T
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𝑡𝑒 = 0.11 𝑇 = 6.86

𝑚𝑇 = 5.76 = 6.87
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Figure 3: Case #2 (variable backwash flux) (A) The theoretical optimal operating strategy 
over T; (B) The corresponding mass accumulated on the membrane surface over T; (C) 
The corresponding volume produced over T
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Figure 4: Comparison of the net volume produced per membrane area over time of the 
published strategy (solid green line); the optimal strategy in case #1 (constant backwash 
flux) (dashed red line); and in case #2 (variable backwash flux) (dash-dot blue line). 
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Figure 5: Case #1(constant backwash flux)  Example of the adapted strategy for a 
number of cycles N=20 to be carried in the singular arc. The dashed red line corresponds 
to the theoretical optimal strategy, the solid green line corresponds to the adapted 
strategy that approximates the optimal control solution. (A) The control sequence over T; 
(B) The cake layer mass on the membrane surface over T; (C) The net volume produced 
per membrane area over T.
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Figure 6: Case #2 (variable backwash flux) Example of the adapted strategy for a number 
of cycles N=20 to be carried in the singular arc. The dashed red line corresponds to the 
theoretical optimal strategy, the solid green line corresponds to the adapted strategy that 
approximates the optimal control solution. (A) The control sequence over T; (B) The cake 
layer mass on the membrane surface over T; (C) The net volume produced per membrane 
area over T.
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Figure 7: (A) The evolution of the mean mass accumulated on the membrane surface as 

a function of N over a 7-hours operating period with respect to the number of backwash 

cycles N applied on the singular arc; (B) The evolution of the net production per 

membrane area of a membrane filtration process over a 7-hour operating period with 

respect to the number of backwashing cycles N applied to the singular arc.
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Figure 8: Closed-loop and open-loop controller
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Table 1: Physical significance of the model parameters in cases #1(constant backwash 

flux) and #2 (variable backwash flux)

Model parameter Expression Unit

𝑏
 𝑇𝑀𝑃.𝐴2.𝐶𝑡𝑜𝑡

𝜇.𝛼
𝑔2.ℎ ‒ 1

e
 𝑅0𝐴

𝛼
𝑔

d 𝑇𝑀𝑃.
𝐴

𝜇 .𝛼 𝑔.𝑚.ℎ ‒ 1

𝑎1 𝜔𝐵𝑊 𝐽𝐵𝑊 ℎ ‒ 1

𝑎2 𝜔𝐵𝑊 𝑚 ‒ 1

*µ is the permeate viscosity (Pa.s)

Table 2: Parameter values used in this study that best reproduce the permeate flux 

dynamic published in [1] 

Model parameter Value Unit

𝑏 490.07 𝑔2.ℎ ‒ 1

𝑒 18.06 𝑔

𝑑 4125.6 𝑔.𝑚.ℎ ‒ 1

𝑎1 91.7 ℎ ‒ 1

𝑎2 0.64 𝑚 ‒ 1



Table 3: Control parameters computed using the identified model 

Control Parameter Case #1 Case #2 Units

𝑚 4.39 2.79 𝑔

𝑢 0.9 0.87 -

𝑚𝑇 6.96 5.76 𝑔

𝑡𝑒 0.18 0.11 ℎ

𝑇 6.87 6.86 ℎ

Table 4: Robustness study. Mean minimum and maximum deviations ( ) of the process 𝜸
production per membrane area from the optimum based on 1000 iterations for different 
biased values of the model's parameters.

Minimum  (%)𝛾 Maximum  (%)𝛾
Biased model parameters

Case #1 Case #2 Case #1 Case #2

𝑏 ± 20% 𝑏 -3.52 -2.61 3.97 2.8

𝑒 ± 20% 𝑒 -13.6 -14.65 17.06 20.76

𝑎𝑘 ± 20% 𝑎𝑘 -4.02 -3.09 3.05 2.19

𝑑 ± 20% 𝑑 -22.5 -22.47 22.5 22.6

*  denotes (i.e. ) in case #1(constant backwash flux) and  (i.e. ) in case 𝑎𝑘 𝑎1 𝑘 = 1 𝑎2 𝑘 = 2
#2 (variable backwash flux)




