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Out-of-equilibrium fluctuation-dissipation relations verified by the electrical

and thermoelectrical ac-conductances in a quantum dot

Adeline Crépieux
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

The electrical and heat currents flowing through a quantum dot are calculated in the presence of a
time-modulated gate voltage with the help of the out-of-equilibrium Green function technique. From
the first harmonics of the currents, we extract the electrical and thermoelectrical trans-admittances
and ac-conductances. Next, by a careful comparison of the ac-conductances with the finite-frequency
electrical and mixed electrical-heat noises, we establish the fluctuation-dissipation relations link-
ing these quantities, which are thus generalized out-of-equilibrium for a quantum system. It is
shown that the electrical ac-conductance associated to the displacement current is directly linked
to the electrical noise summed over reservoirs, whereas the relation between the thermoelectrical
ac-conductance and the mixed noise contains an additional term proportional to the energy step
that the electrons must overcome when traveling through the junction. A numerical study reveals
however that a fluctuation-dissipation relation involving a single reservoir applies for both electrical
and thermoelectrical ac-conductances when the frequency dominates over the other characteristic
energies.

I. INTRODUCTION

The fluctuation-dissipation theorem (FDT) is a rela-
tion which states that the time-correlation function of
an unperturbed system is equal to the response function
of the perturbed system1. For example, in a conductor,
the current fluctuations are directly related to the ac-
conductance. This means that the response of the system
to the action of an external force is closely connected to
the way their eigenstates can fluctuate. If they can not,
the system will not react to the perturbation. The FDT
was first evidenced in electrical conductors by Johnson2

and Nyquist3. It is often thought that the FDT applies
only at equilibrium and for linear response but in reality
its validity domain is wider.

The FDT has been discussed far and wide for over sixty
years 4–7 and continues to be a pivotal issue, notably con-
cerning its generalization to non-linear, non-equilibrium,
non-perturbative, interacting, and nano-scale systems
8–21. In some other works, this relation is used to de-
duce the electrical ac-conductance from the calculation
of noise without having to include ac-voltage in the
calculation22,23, and constitutes a useful ingredient in
the theoretical studies of electrical time-dependent trans-
port in quantum systems24–30, which are fully accessible
experimentally31–40. In the last years, these theoretical
studies have been extended to the heat and thermoelec-
trical ac-transport in quantum systems41–52 but no di-
rect connection has been established until now between
the thermoelectrical trans-admittance and the fluctua-
tions mixing the electrical and heat currents in a quan-
tum system.

In this paper, using the out-of-equilibrium Keldysh Green
function formalism, we perform a direct calculation of the
time-dependent electrical and heat currents associated
to a quantum dot (QD) submitted to an ac-gate voltage.
Next, we derive the exact expressions of the electrical and
thermoelectrical trans-admittances and ac-conductances,

and compare them to the expressions of the electrical and
mixed noises in order to establish whether the FDT is
verified.
This paper is organized as follows: the model and the
formal expression of the electrical and heat currents are
given in Sec. II. Sections III and IV present respectively
the calculation of both currents for a time-independent
and a time-dependent gate voltage. The expressions of
the trans-admittance are given in Sec. V, and those of the
ac-conductances in Sec. VI. The derivation of the FDT
is exposed in Sec. VII, and we conclude in Sec. VIII.

II. MODEL

We consider a non-interacting QD with a single energy
level, εdot(t), which can be driven in time by a gate volt-
age, connected to left (L) and right (R) reservoirs (see
Fig. 1). To describe this system, we use the Hamiltonian
H = HL +HR +Hdot +HT , with

Hα=L,R(t) =
∑

k∈α

εkc
†
k(t)ck(t) , (1)

Hdot(t) = εdot(t)d
†(t)d(t) , (2)

HT (t) =
∑

α=L,R

∑

k∈α

[
Vkc

†
k(t)d(t) + h.c.

]
, (3)

where c†k (ck) is the creation (annihilation) operator of
one electron in the reservoirs, d† (d) is the creation (an-
nihilation) operator of one electron in the QD, εk is the
band energy of the reservoir, and Vk is the transfer am-
plitude of one electron from the QD to the reservoirs and
vice-versa. We set ~ = e = 1 in all the intermediate
results, and restore these constants in the final results.
The electrical and heat current operators from the α
reservoir to the central region through the α barrier are
respectively defined as Î0α(t) = −Ṅα(t), and Î1α(t) =

−Ḣα(t)+µαṄα(t), where Nα(t) = c†k(t)ck(t), which lead
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FIG. 1: Schematic picture of the QD connected to left and
right reservoirs with a gate modulated voltage. The green
arrows indicate the convention chosen for the definition of
left and right currents.

to

Îηα(t) = i
∑

k∈α

(εk − µα)
η

×
[
Vkc

†
k(t)d(t) − V ∗

k d
†(t)ck(t)

]
, (4)

where η = 0 gives the electrical current, and η = 1 gives
the heat current. Their average values are thus given by

〈Îηα(t)〉 = 2Re
{∑

k∈α

(εk − µα)
ηVkG

<
ckd

(t, t)
}
, (5)

where G<
ckd

(t, t′) = i〈c†k(t
′)d(t)〉 is the Keldysh Green

function mixing c and d operators, which is equal to 53–56

G<
ckd

(t, t′) = V ∗
k

∫ ∞

−∞

dt1
[
Gr
dot(t, t1)g

<
k (t1, t

′)

+G<
dot(t, t1)g

a
k(t1, t

′)
]
, (6)

where G<
dot(t, t

′) = i〈d†(t′)d(t)〉 is the Keldysh Green
function associated to the QD, and Gr

dot(t, t
′), its retarded

counterpart. g<k (t, t
′) = i〈c†k(t

′)ck(t)〉0 is the Keldysh
Green function associated to the disconnected reservoir,
and gak(t, t

′), its advanced counterpart. These two latter
Green functions are given by57

g<k (t, t
′) = ifα(εk)e

iεk(t
′−t) , (7)

gak(t, t
′) = iΘ(t′ − t)eiεk(t

′−t) , (8)

where Θ is the Heaviside function and fα, the Fermi-
Dirac distribution function of the electrons in the reser-
voir α. When we report Eqs. (6-8) in Eq. (5), we get

〈Îηα(t)〉 = −
2

h
ΓαIm

{∫ ∞

−∞

dε

2π
(ε− µα)

η

∫ ∞

−∞

dt1e
iε(t−t1)

×
[
fα(ε)G

r
dot(t, t1) + Θ(t− t1)G

<
dot(t, t1)

]}
, (9)

where Γα = 2π|V |2ρα in the wide band approximation
(energy dependency is neglected in the reservoir density
of states ρα, and in the hopping amplitude V ≡ Vk).
Thus, the knowledge of the dot Green function, Gr,<

dot ,
allows us to fully determine the time-dependent current.
We have55,56

Gr,a
dot(t, t

′) = gr,adot(t, t
′)e±(ΓL+ΓR)(t′−t)/2 , (10)

with gr,adot(t, t
′) = ∓iΘ(±t∓ t′)e−i

∫
t

t′
dt1εdot(t1), and

G<
dot(t, t

′) = i

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2G
r
dot(t, t1)G

a
dot(t2, t

′)

×
∑

α

Γα

∫ ∞

−∞

dε

2π
fα(ε)e

iε(t2−t1) . (11)

Given a time-variation of the dot energy level εdot(t), we
have all the ingredients to calculate the time-dependent
current. In the following, we first remind the expressions
of the currents in the time-independent case, and next
treat the case where the gate voltage is modulated in
time.

III. STATIONARY ELECTRICAL AND HEAT

CURRENTS

In the time-independent case, we have εdot(t) = εdc,

which leads to gr,adot(t, t
′) = ∓iΘ(±t∓ t′)e−iεdc(t−t′), thus

Gr,a
dot(t, t

′) = ∓iΘ(±t∓ t′)e[iεdc±Γ](t′−t) , (12)

with Γ = (ΓL + ΓR)/2, and

G<
dot(t, t

′) = i
∑

α

Γα

∫ ∞

−∞

dε

2π
fα(ε)e

−(iεdc+Γ)t+(iεdc−Γ)t′

×

∫ t

−∞

dt1e
(iεdc−iε+Γ)t1

∫ t′

−∞

dt2e
(−iεdc+iε+Γ)t2 , (13)

which leads after calculation to

G<
dot(t, t

′) = i
∑

α

Γα

∫ ∞

−∞

dε

2π

fα(ε)e
iε(t′−t)

(ε− εdc)2 + Γ2
. (14)

We remark that, as it should be in the time-independent
case, the Green function at times t and t′ depends of the
time difference t − t′ only. Inserting Eqs. (12) and (14)
in Eq. (9), we get the Landauer formula for the electrical
and heat currents

〈Îηα〉 =
1

h

∫ ∞

−∞

dε

2π
(ε− µα)

ηT (ε)
[
fα(ε)− fα(ε)

]
,

(15)

where α = R for α = L, and α = L for α = R.
T (ε) = ΓLΓR/[(ε − εdc)

2 + Γ2] is the transmission co-
efficient through the double barrier.

IV. TIME-MODULATED ELECTRICAL AND

HEAT CURRENTS

When a gate-voltage modulated in time is applied,
i.e., when εdot(t) = εdc + εac cos(ωt), the bare retarded
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and advanced Green functions of the QD defined as

gr,adot(t, t
′) = ∓iΘ(±t∓ t′)e−i

∫
t

t′
dt1εdot(t1) are equal to

gr,adot(t, t
′) = ∓iΘ(±t∓ t′)e−iεdc(t−t′)

× exp
(
− i(εac/ω)

[
sin(ωt)− sin(ωt′)

])
.

(16)

Using the relation eix sin(y) =
∑∞

n=−∞ Jn(x)e
iny , where

Jn is the Bessel function, we get for the retarded and
advanced bare Green functions of the QD

gr,adot(t, t
′) = ∓iΘ(±t∓ t′)eiεdc(t

′−t)

×

∞∑

n=−∞

∞∑

m=−∞

Jn

(εac
ω

)
Jm

(εac
ω

)
einωt′−imωt ,

(17)

and for the retarded and advanced Green functions of the
QD

Gr,a
dot(t, t

′) = ∓iΘ(±t∓ t′)e(iεdc±Γ)(t′−t)

×
∞∑

n=−∞

∞∑

m=−∞

Jn

(εac
ω

)
Jm

(εac
ω

)
einωt′−imωt .

(18)

We calculate now the QD Keldysh Green function start-
ing from Eq. (11), we insert the expressions of the re-
tarded and advanced Green functions of Eq. (18), and
we perform the double integration over time. We obtain

G<
dot(t, t

′) = i
∑

α

Γα

×
∑

n,m,p,q

Jn

(εac
ω

)
Jm

(εac
ω

)
Jp

(εac
ω

)
Jq

(εac
ω

)

×

∫ ∞

−∞

dε

2π

fα(ε)e
(−iε+i(n−m)ω)te(iε+i(p−q)ω)t′

(iεdc + Γ− iε+ inω)(−iεdc + Γ+ iε− iqω)
.

(19)

We now calculate the currents, given by Eq. (9), by re-
porting the expressions of the retarded Green function
given by Eq. (18) and of the Keldysh Green function
given by Eq. (19), and performing the integration over
time, we get

〈Îηα(t)〉 =
2

h

∑

n,m

Jn

(εac
ω

)
Jm

(εac
ω

)

×Re

{
ei(n−m)ωt

∫ ∞

−∞

dε

2π
(ε− µα)

ηfα(ε)τ(ε − nω)

}

−
2

h

∑

n,m,p,q

Jn

(εac
ω

)
Jm

(εac
ω

)
Jp

(εac
ω

)
Jq

(εac
ω

)

×Re
{
ei(n−m+p−q)ωt

∫ ∞

−∞

dε

2π
(ε− µα)

ηfM (ε+ (q − p)ω)

×τ∗(ε− pω)τ(ε− (n+ p− q)ω)
}

, (20)

Notation Designation

εdc = eVdc dc-gate voltage amplitude

εac = eVac ac-gate voltage amplitude

~ω Gate voltage modulation frequency

Γ Coupling strength between the QD and the leads

µL, µR Chemical potentials of the left and right leads

eV = µL − µR Voltage gradient between the left and right leads

kBT Temperature of the leads

TABLE I: List of characteristic energies.

where fM (ε) =
∑

α=L,R fα(ε)/2 is the average distri-
bution function over the two reservoirs, and where we
have introduced the transmission amplitude defined as
τ(ε) = iΓGr

dot(ε) = iΓ/(ε − εdc + iΓ), assuming sym-
metrical barriers ΓL = ΓR = Γ. For clarity, all the
characteristic energies of the problem are summarized in
Table 1.

FIG. 2: Time-evolution of the electrical current 〈Î0L,R(t)〉 and

the heat current 〈Î1L,R(t)〉 in the left/right reservoir (pur-
ple/orange curved lines) for kBT/~ω = 0.1, Γ/~ω = 0.1,
eV/~ω = 1, εac/~ω = 0.2 when the time-independent poten-
tial profile through the junction is symmetrical (εdc/~ω = 0.5)
and non-symmetrical (εdc/~ω = 1). The black curve lines

correspond to the displacement currents 〈Îηd (t)〉 = 〈ÎηL(t)〉 +

〈ÎηR(t)〉. The dashed lines indicates the currents in the station-
ary case, i.e. when εac = 0. The right reservoir is grounded:
µR = 0.

To illustrate this result, we plot in Fig. 2 the time-
evolution of the electrical and heat currents. When the
potential profile through the junction is symmetrical, i.e.,
when εdc = (µL+µR)/2, the left and right electrical cur-
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rents oscillate in phase around their time-independent
values, given by Eq. (15) taking η = 0, which are of
opposite sign since the averaged displacement electrical
current40, 〈Î0d (t)〉, equals to the sum of left and right cur-
rents, cancels in the stationary case due to charge conser-
vation. In the presence of time-modulation, the displace-
ment current is non-zero (see black curved lines in Fig. 2).
The left and right heat currents oscillate in phase opposi-
tion around the same stationary value, given by Eq. (15)
taking η = 1, since the heat transferred from the left and
right reservoirs to the QD is the same when the potential
is symmetrical (indeed, the energy distances µL−εdc and
εdc − µR are equal as depicted in the top left corner of
Fig. 2). On the contrary, when the potential profile is
non-symmetrical, i.e., when εdc 6= (µL + µR)/2, we ob-
serve that the left and right electrical currents are out of
phase. Moreover, the stationary heat currents from the
left and right reservoirs are different in that case (dashed
orange and purple straight lines): the left stationary heat
current vanishes since the energy difference between the
left reservoir and the QD is zero, whereas the station-
ary right heat current is almost unchanged in compari-
son to the symmetrical case. We observe also that the
stationary electrical currents are half reduced due to the
face that the energy barrier between the QD and the
right reservoir is the double compared to the symmet-
rical case. For both symmetrical and non-symmetrical
profiles, the amplitude of oscillations of the displacement
heat current, 〈Î1d(t)〉, is attenuated in comparison to the
amplitude of the left and right heat currents. No such
attenuation is observed for the displacement electrical
current.

V. ELECTRICAL AND THERMOELECTRICAL

TRANS-ADMITTANCES

From the expression of 〈Îηα(t)〉 given by Eq. (20), we

deduce the trans-admittance Y η
α (ω) = dI

η(1)
α (ω)/dVac,

with Vac = εac/e, and I
η(1)
α (ω) the first harmonic of the

current defined through the relation

〈Îηα(t)〉 = Iη(0)α + 2

∞∑

N=1

Re
{
Iη(N)
α (ω)e−iNωt

}
. (21)

To identify the N th harmonic of the current, I
η(N)
α (ω),

we rewrite Eq. (20) making the change of index m =
n+N in the first contribution, and the change of index

m = n+ p− q +N in the second contribution. We get

Iη(N)
α (ω) =

1

h

∫ ∞

−∞

dε

2π
(ε− µα)

ηfα(ε)

×
∑

n

[
Jn

(εac
ω

)
Jn−N

(εac
ω

)
τ∗(ε− nω)

+Jn

(εac
ω

)
Jn+N

(εac
ω

)
τ(ε − nω)

]

−
1

h

∑

n,p,q

∫ ∞

−∞

dε

2π
(ε− µα)

ηfM (ε+ (q − p)ω)

×

[
Jn

(εac
ω

)
Jn+p−q−N

(εac
ω

)
Jp

(εac
ω

)
Jq

(εac
ω

)

×τ(ε− pω)τ∗(ε− (n+ p− q)ω)

+Jn

(εac
ω

)
Jn+p−q+N

(εac
ω

)
Jp

(εac
ω

)
Jq

(εac
ω

)

×τ∗(ε− pω)τ(ε− (n+ p− q)ω)

]
. (22)

We assume at this stage that εac → 0, and we keep only
the contributions proportional to εac/~ω, since to get the
trans-admittance we have to take the derivative of the
first harmonic of the current, I

η(1)
α (ω), according to εac.

To get these contributions, we consider the Taylor expan-
sion of the products of Bessel functions. Concerning the
product JnJn∓1, its Taylor expansion gives a contribu-
tion proportional to εac provided that one of the Bessel
function index is equal to ±1 and the other is equal to
0. Concerning the product JnJn+p−q∓1JpJq, it gives a
contribution proportional to εac/~ω provided that one of
the Bessel function index is equal to ±1 and the others
are equal to 0. Keeping only these contribution, we find
that the trans-admittance reads as

Y η
α (ω) =

1

2h~ω

∫ ∞

−∞

dε

2π
(ε− µα)

η

×

[
fα(ε)

[
τ(ε)− τ∗(ε)− τ(ε− ~ω) + τ∗(ε+ ~ω)

]

+fM (ε− ~ω)
[
T (ε− ~ω)− τ∗(ε)τ(ε − ~ω)

]

+fM (ε+ ~ω)
[
τ∗(ε+ ~ω)τ(ε)− T (ε+ ~ω)

]

+fM (ε)
[
τ∗(ε)τ(ε − ~ω)− τ∗(ε+ ~ω)τ(ε)

]]
. (23)

This is the key result of this paper which is valid for
any values of the source-drain voltage, temperature, fre-
quency and coupling strength to the reservoirs. It will be
used in the next section to deduce the ac-conductances.
Figure 3 shows the profiles of the trans-admittances
Y 0
α (ω) and Y 1

α (ω) as a function of left/right voltage eV
and dc-gate voltage εdc. The dashed blue lines indicated
the place where the left and right trans-admittances are
equal. We can see that this is the case at equilibrium,
i.e., at V = 0 (see the vertical blue line presents in each
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FIG. 3: Real part and imaginary part of the electrical trans-
admittance Y 0

L,R(ω) and the thermoelectric trans-admittance

Y 1

L,R(ω) as a function of voltage eV/~ω (horizontal axis) and
dc-gate voltage εdc/~ω (vertical axis), at kBT/~ω = 0.5 and
Γ/~ω = 0.5. The amplitudes vary from negative values
(black and purple colors) to positive values (orange and white
colors). The dashed blue lines indicated the place where
Re{Y η

L (ω)} = Re{Y η
R (ω)} or Im{Y η

L (ω)} = Im{Y η
R (ω)}, and

the red ones the place where Re{Y η

L (ω)} = −Re{Y η

R (ω)} or
Im{Y η

L (ω)} = −Im{Y η

R (ω)}. The right reservoir is set to the
ground: µR = 0.

graph) and also out-of-equilibrium. In particular, we ex-
plain in the next section why the real parts of left and
right electrical trans-admittances are equal each other
when εdc = eV/2, i.e. for symmetrical potential pro-
file. The dashed red lines indicated the place where the
left and right trans-admittances are opposite. This oc-
curs for the thermoelectric trans-admittance but never
for the electrical trans-admittance. The important point
to notice at this stage is that Y η

L (ω) and Y η
R(ω) take

distinct absolute values except in some particular situa-
tions which are: at equilibrium (as expected) and out-of-
equilibrium on the blue and red dashed curved lines.

VI. ELECTRICAL AND THERMOELECTRICAL

AC-CONDUCTANCES

The electrical ac-conductance, G0
α(ω), is given by the

real part of the trans-admittance Y 0
α (ω) associated to the

electrical current. From Eq. (23), making the change of
variable ε → ε − ~ω for terms involving the argument
ε+ ~ω, we get

G0
α(ω) =

e2

2h~ω

×

∫ ∞

−∞

dε

2π

[
fα(ε− ~ω)T (ε)− fα(ε)T (ε− ~ω)

+fM (ε− ~ω)
[
T (ε− ~ω)− 2Re

{
τ(ε)τ∗(ε− ~ω)

}]

+fM (ε)
[
2Re

{
τ(ε)τ∗(ε− ~ω)

}
− T (ε)

]]
. (24)

The thermoelectrical ac-conductance, G1
α(ω), is given by

the real part of the trans-admittance Y 1
α (ω) associated

to the heat current. From Eq. (23), making the change
of variable ε → ε− ~ω for terms involving the argument
ε+ ~ω, we get

G1
α(ω) =

e

2h~ω

∫ ∞

−∞

dε

2π

×

[
(ε− µα)

[
T (ε− ~ω)

[
fM (ε− ~ω)− fα(ε)

]

+Re
{
τ(ε)τ∗(ε− ~ω)

}[
fM (ε)− fM (ε− ~ω)

]]

+(ε− ~ω − µα)

[
T (ε)

[
fα(ε− ~ω)− fM (ε)

]

+Re
{
τ(ε)τ∗(ε− ~ω)

}[
fM (ε)− fM (ε− ~ω)

]]
]
.

(25)

From Eqs. (24) and (25), it can be checked that the
conductances G0

α(ω) and G1
α(ω) are both even function

in frequency. In order to identify the conditions to get
identical left and right ac-conductances, it is needed to
calculate the following differences using Eq. (24)

G0
L(ω)−G0

R(ω) =
e2

2h~ω

×

∫ ∞

−∞

dε

2π

[[
fR(ε)− fL(ε)

]
T (ε− ~ω)

−
[
fR(ε− ~ω)− fL(ε− ~ω)

]
T (ε)

]
, (26)

and

G1
L(ω)−G1

R(ω) =
e

2h~ω

∫ ∞

−∞

dε

2π

×
[[
(ε− ~ω − µL)fL(ε− ~ω)

−(ε− ~ω − µR)fR(ε− ~ω)
]
T (ε)

−
[
(ε− µL)fL(ε)− (ε− µR)fR(ε)

]
T (ε− ~ω)

]
.

(27)

Both differences cancel at equilibrium (small voltage V
and large temperature T ) since in that case we have
fL(ε) = fR(ε). Moreover, G0

L(ω) − G0
R(ω) cancels

also out-of-equilibrium when the profile of the poten-
tial through the junction is perfectly symmetric. In-

deed, Eq. (26) can be written alternatively using T̃ (ε) =
Γ2/(ε2 + Γ2), as

G0
L(ω)−G0

R(ω) =
e2

h~ω

∫ ∞

−∞

dε

2π
T̃ (ε)

×
[
F (ω, ε− εdc − µL)− F (ω, ε− εdc + µR)

]
,(28)

where F (ω, ε) = [1 + sinh(ε/kBT )/ sinh(~ω/kBT )]
−1.

The above difference vanishes when the electron-hole
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symmetry point is reached, here when εdc = (µL+µR)/2,
i.e, εdc = eV/2 since we take µR = 0, in full agreement
with the two first upper graphs of Fig. 3. In Fig. 4,
we plot the ac-conductances spectrum associated to the
left and right parts of the junction for several dc-gate
voltage values. We see that as expected from Fig. 3
and explained by Eq. (28), the left and right electrical
ac-conductances coincide when the potential profile is
symmetrical, whereas the left and right thermoelectrical
ac-conductances take opposite values. The physical
justification is the following: for a symmetrical potential
profile, the energy differences are the same in absolute
value but opposite in sign when the electrons flow from
the QD to the left and right reservoirs (energy gain for
one direction of propagation and energy loss for the
other).

FIG. 4: Ac-conductances spectrum for kBT/eV = 0.1,
Γ/eV = 0.1, and varying values of the dc-gate energy εdc
from 0 to eV/2. The blue and red curved lines corresponds
to a symmetrical potential profile with the value εdc = eV/2,
for which we have G0

L(ω) = G0

R(ω) (blue curved lines) and
G1

L(ω) = −G1

R(ω) (red curved lines). The right reservoir is
set to the ground: µR = 0. G0

α(ω) is in units of e2/h, the
quantum of conductance, and G1

α(ω) is in units of e2V/h.

VII. OUT-OF-EQUILIBRIUM FDT

To establish the FDT, we need to compare the
expressions of the ac-conductances to the difference
Sη1η2

αβ (−ω)−Sη2η1

βα (ω), where the finite-frequency current-

current correlator Sη1η2

αβ (ω) is defined as

Sη1η2

αβ (ω) =

∫
dteiωt〈δÎη1

α (t)δÎη2

β (0)〉 , (29)

with δÎη1

α (t) = Îη1

α (t) − 〈Îη1

α 〉. The reason for consid-
ering the difference Sη1η2

αβ (−ω) − Sη2η1

βα (ω) is double: it
allows to suppress the terms involving the product of
two functions fα shifted with energy ~ω, which are not
present in the conductances G0

α(ω) and G1
α(ω), and it

allows at the same time to be fully consistent with the
Kubo formula1. Note that the noise depends on the
reservoir indexes when the following conditions are all
filled: non-zero frequency, energy dependent transmis-
sion coefficient and asymmetry of the potential profile
across the system58. It was confirmed by two recent ex-
periments on carbon nanotube quantum dot59 and on
tunnel junction60.
We start with the comparison between the electrical
ac-conductance, G0

α(ω), and the difference S00
αβ(−ω) −

S00
βα(ω) involving the electrical noise, and continue next

with the comparison between the thermoelectrical ac-
conductance, G1

α(ω), and the difference S10
αβ(−ω) −

S01
βα(ω) involving the mixed noise, i.e., the correlator

between the electrical and heat currents.

A. Direct comparison between electrical

ac-conductance and electrical noise

The electrical noise S00
αβ(ω) was calculated in Ref. 58

for a similar system in the absence of gate-voltage mod-
ulation (i.e., for εac = 0). Considering the difference
S00
αβ(−ω)−S00

βα(ω), we get for the auto-correlator (α = β)

S00
αα(−ω)− S00

αα(ω) =
e2

h

∫ ∞

−∞

dε

2π

×

[
fα(ε− ~ω)

[
T (ε) + |τ(ε)− τ(ε− ~ω)|2

]

−fα(ε)
[
T (ε− ~ω) + |τ(ε)− τ(ε − ~ω)|2

]

+fα(ε− ~ω)T (ε− ~ω)− fα(ε)T (ε)

]
, (30)

and for the cross-correlator (α 6= β)

S00
αα(−ω)− S00

αα(ω) =
e2

h

∫ ∞

−∞

dε

2π

×
[[
fα(ε)− fα(ε− ~ω)

]
τ∗(ε)τ(ε− ~ω)

+
[
fα(ε)− fα(ε− ~ω)

]
τ(ε)τ∗(ε− ~ω)

]
. (31)

Comparing Eqs. (24) and (30), we show that the electrical
ac-conductance and auto-correlator are related together
through the exact relation

4~ωG0
α(ω) = S00

αα(−ω)− S00
αα(ω)

+
2e2

h

∫ ∞

−∞

dε

2π

[
fα(ε)− fα(ε− ~ω)

]
Re

{
τ(ε)τ∗(ε− ~ω)

}
.

(32)



7

The additional contribution appearing in the second line
of Eq. (32) is related to the cross-correlator given by
Eq. (31). Moreover, we notice that the sum of the left and
right electrical ac-conductances calculated from Eq. (24)
gives

~ω
∑

α

G0
α(ω) =

e2

h

∫ ∞

−∞

dε

2π

[
fM (ε− ~ω)− fM (ε)

]

×
∣∣τ(ε− ~ω)− τ(ε)

∣∣2 , (33)

which coincides exactly with the sum over reservoirs of
the difference S00

αβ(−ω)− S00
βα(ω) through the relation

4~ω
∑

α

G0
α(ω) =

∑

α,β

[
S00
αβ(−ω)− S00

βα(ω)
]
. (34)

This result is a generalization of the FDT to on out-of-
equilibrium situation. It is valid at any frequency, volt-
age, temperature and coupling strength between the QD
and the reservoirs. The important point to underline here
is the need to sum over reservoirs to get a simple rela-
tion between the ac-conductance and the noise. Indeed,
an additional term is present when the sum over reser-
voirs is not taken (see in Eq. (32)). The justification for
taking the sum over reservoirs is the following: since the
time-modulation is applied to the gate-voltage which acts
on the QD, i.e. on the central part of the junction, the
relevant current here is the displacement current defined
as Îηd (t) = ÎηL(t) + ÎηR(t). Thus, these are the fluctua-
tions of the total current which is formally related to the
total ac-conductance. It is important to underline that
it is the double sum over the anti-symmetrized noises,
i.e., the difference between the absorption noise and the
emission noise: S00

αβ(−ω)−S00
βα(ω), which is related to the

ac-conductance. Such a relation could not be obtained
for symmetrized noise since in that case we would have
on one hand,

∑
α,β [S

00
αβ,sym(−ω) − S00

βα,sym(ω)] = 0, and

on the other hand, 4~ω
∑

α[G
0
α(ω)−G0

α(−ω)] = 0, since
the total conductance is an even function with frequency
(see Eq. (24)). Finally, we want to underline that even if
the QD is placed in an out-of-equilibrium situation, the
left and right reservoirs stay at equilibrium, this is very
probably the reason why Eq. (34) is verified.
At this stage, it is important to understand how the equi-
librium limit (zero-voltage) can be reached from these re-
sults. In that limit, using the fact that fM (ε) = fα(ε) =
fα(ε), the auto-correlator and the cross-correlator of
Eqs. (30) and (31) simplify to

S00
αα(−ω)− S00

αα(ω) =
e2

h

∫ ∞

−∞

dε

2π

[
fM (ε− ~ω)− fM (ε)

]

×
[
T (ε) + T (ε− ~ω) + |τ(ε)− τ(ε− ~ω)|2

]
,

S00
αα(−ω)− S00

αα(ω) =
e2

h

∫ ∞

−∞

dε

2π

[
fM (ε− ~ω)− fM (ε)

]

×
[
− T (ε)− T (ε− ~ω) + |τ(ε)− τ(ε− ~ω)|2

]
, (35)

and the ac-conductance of Eq. (33) gives

2~ωG0
α(ω) =

e2

h

∫ ∞

−∞

dε

2π

[
fM (ε− ~ω)− fM (ε)

]

×
∣∣τ(ε − ~ω)− τ(ε)

∣∣2 . (36)

All these three quantities gained the particularity to be-
come independent of the reservoir index α, as expected
at equilibrium, and are related through the relation

4~ωG0
α(ω) =

∑

β

[
S00
αβ(−ω)− S00

βα(ω)
]
. (37)

At high frequency, the FDT simplifies even more since we
have S00

αα(−ω)−S00
αα(ω) ≈ 0, and the KMS relation61,62:

S00
αα(−ω) = e~ω/kBTS00

αα(ω), thus

S00
αα(ω) = 4~ωN(ω)G0

α(ω) , (38)

where N(ω) = [exp(~ω/kBT )− 1]−1 is the Bose-Einstein
distribution function. This last relation corresponds to
the standard FDT.

B. Direct comparison between thermoelectrical

ac-conductance and mixed noise

The mixed noises S01
αβ(ω) and S10

αβ(ω) were calculated
in Ref. 63 for a similar system in the absence of gate-
voltage modulation (i.e., for εac = 0). Considering the
double sum over reservoirs, its real part reads as

Re

{∑

αβ

[
S10
αβ(−ω)− S01

βα(ω)
]}

=
2e

h

∑

α

∫ ∞

−∞

dε

2π

×

[
(ε− µα)

[
fM (ε− ~ω)− fα(ε)

]

×
[
T (ε− ~ω)− Re{τ(ε)τ∗(ε− ~ω)}

]

+(ε− ~ω − µα)
[
fα(ε− ~ω)− fM (ε)

]

×
[
T (ε)− Re{τ(ε)τ∗(ε− ~ω)}

]
]
. (39)

The objective is to compare this expression to the sum
of the left and right thermoelectric ac-conductances, cal-
culated from Eq. (25), and given by

4~ω
∑

α

G1
α(ω) =

2e

h

∑

α

∫ ∞

−∞

dε

2π

×

[
(ε− µα)

[[
fM (ε− ~ω)− fα(ε)

]
T (ε− ~ω)

+
[
fM (ε)− fM (ε− ~ω)

]
Re

{
τ(ε)τ∗(ε− ~ω)

}]

+(ε− ~ω − µα)

[[
fα(ε− ~ω)− fM (ε)

]
T (ε)

+
[
fM (ε)− fM (ε− ~ω)

]
Re

{
τ(ε)τ∗(ε− ~ω)

}]
]
.

(40)
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Comparing Eqs. (39) and (40), we get

4~ω
∑

α

G1
α(ω) = Re

{∑

αβ

[
S10
αβ(−ω)− S01

βα(ω)
]}

+
e

h

∑

α

∫ ∞

−∞

dε

2π
Re{τ(ε)τ∗(ε− ~ω)}

×
[
(ε− µα)[fα(ε)− fα(ε)]

+(ε− ~ω − µα)[fα(ε− ~ω)− fα(ε− ~ω)]
]
. (41)

The additional term is proportional to the energy that
the electrons must overcome when they travel through
the double barrier. At equilibrium, since we have
fα(ε) = fα(ε), the above relation reduces to

4~ω
∑

α

G1
α(ω) = Re

{∑

αβ

[
S10
αβ(−ω)− S01

βα(ω)
]}

. (42)

Moreover, it can be shown that we have a KMS-type re-
lation between positive frequency and negative frequency
mixed noises:

∑
αβ S

10
αβ(−ω) = e~ω/kBT

∑
αβ S

01
αβ(ω),

thus

Re

{∑

αβ

S01
αβ(ω)

}
= 4~ωN(ω)

∑

α

G1
α(ω) , (43)

which corresponds to a FDT between the sum over mixed
noises to the total thermoelectrical ac-conductance. Out-
of-equilibrium, we have an additional term in the relation
connecting the mixed noise and the thermoelectrical ac-
conductance, which however vanishes at large frequency
as shown in the next section.

C. Numerical comparison between ac-conductances

and noises

We have seen in the previous subsections that the FDT
holds out-of-equilibrium for the electrical ac-conductance
provided that the sum over reservoirs is taken, but not for
the thermoelectrical ac-conductance since an additional
term is present. However, in some situations, the two
thereafter relations are notwithstanding verified

4~ωG0
α(ω) = S00

αα(−ω)− S00
αα(ω) , (44)

4~ωG1
α(ω) = Re

{
S01
αα(−ω)− S10

αα(ω)
}
. (45)

To discuss that point, we plot in Fig. 5 the ac-
conductances and the noises as a function of frequency as-
suming a symmetrical potential profile through the junc-
tion, for which we have shown in Fig. 4 that G0

L(ω) =
G0

R(ω) and G1
L(ω) = −G1

R(ω). Playing with the values
of temperature, frequency, voltage and coupling strength,
we notice that Eqs. (44) and (45) do not apply when
these energies are of the same order of magnitude (com-
pare the purple and blue curves and the green and red
curves in the graphs on the right side of Fig. 5). On the

contrary, when the frequency is the highest energy, all
the graphs of Fig. 5 show the remarkable feature that
Eqs. (44) and (45) are verified, since the purple and blue
lines coincide in the upper graphs and the green and red
lines coincide in the bottom graphs at high frequency.
This allows to conclude that the FDT involving a single
reservoir is verified for both electrical and thermoelec-
trical ac-conductances in that limit. For completeness,
we want to underline that the results presented here are
obtained in case of non-interacting QD, and could be al-
tered in the presence of electron-phonon interaction64 or
electron-electron interaction13.

FIG. 5: Comparison between ac-conductances and noises
for two distinct couple of values {kBT,Γ} at εdc = eV/2
(symmetrical potential profile). The blue curves stand for
the electrical ac-conductance G0

L(ω), and the red curves
for the thermoelectrical ac-conductance G1

L(ω). The pur-
ple and magenta curves stand for [S00

LL(−ω) − S00

LL(ω)]/4~ω,
and [S00

LR(−ω) − S00

RL(ω)]/4~ω. Note that in the upper
left graph, the purple curve is not visible since it coincides
exactly with the blue curve. The green and orange curves
stand for Re

{

S01

LL(−ω)− S10

LL(ω)
}

/4~ω, and Re
{

S01

LR(−ω)−

S10

RL(ω)
}

/4~ω. G0

L(ω) is in units of e2/h, the quantum of

conductance, and G1

L(ω) is in units of e2V/h.

VIII. CONCLUSION

The calculation of electrical and thermoelectrical ac-
conductances associated to a QD and the comparison to
finite-frequency noises have allowed to check whether the
FDT holds out-of-equilibrium. We have established a
generalized FDT for electrical ac-conductance which re-
quires a summation over reservoirs, and we have shown
that an additional term (which cancels at equilibrium)
is present in the relation linking the thermoelectrical ac-
conductance and the mixed noise. With the help of nu-
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merical calculation, we have shown that the standard
FDT, i.e. without the sum over reservoirs, is indeed
valid out-of-equilibrium for both electrical and thermo-
electrical ac-conductances provided that the frequency
is higher than the other characteristic energies of the sys-
tem.
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63 P. Eyméoud, and A. Crépieux, Phys. Rev. B 94,

205416 (2016).
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