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Abstract

Uncertainties are present in the modeling of dynamical systems and they must be taken
into account to improve the prediction of the models. It is very important to understand
how they propagate and how random systems behave. This study aims at pointing out
the somehow complex behavior of the structural response of stochastic dynamical sys-
tems and consequently the difficulty to represent this behavior using spectral approaches.
The main objective is to find numerically the probability density function (PDF) of the
response of a random linear mechanical systems. Since it is found that difficulties can
occur even for a single-degree-of-freedom system when only the stiffness is random, this
work focuses on this application to test several methods. Polynomial Chaos performance
is first investigated for the propagation of uncertainties in several situations of stiffness
variances for a damped single-degree-of-freedom system. For some specific conditions
of damping and stiffness variances, it is found that numerical difficulties occur for the
standard polynomial bases near the resonant frequency, where it is generally observed
that the shape of the system response PDFs presents multimodality. Strategies to build
enhanced bases are then proposed and investigated with varying degrees of success.
Finally a multi-element approach is used in order to gain robustness.
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Introduction

This work focuses on distributions of the frequency responses of dynamical systems which
have potentially large uncertainties. Common methods for solving stochastic structural
dynamics problems are the direct Monte Carlo Simulation (MCS) and the sensitivity-
based analysis, such as Neumann or improved perturbation methods. These methods
have several drawbacks: MCS is expensive in computing resources for large or com-
plex problems or problems relying on several random variables. Perturbation methods,
based on Taylor series expansion, have limited radius of convergence while they do not
lead easily to statistical distributions. Hence, efforts are constantly made to explore
the suitability of spectral methods, such as the Polynomial Chaos (PC) representation
and the Stochastic Reduced Basis Method (SRBM), in order to characterize stochastic
mechanical responses. Both of them are non-statistical approaches to represent random-
ness. Polynomial Chaos representation is based on the “Homogeneous Chaos” theory of
Wiener [1], while SRBM is based on the subspace spanned by the considered application
[2].

In its original formulation, Wiener defined Homogeneous Chaos theory as the span
of Hermite polynomial functionals of Gaussian processes. Next, to model uncertainty
in physical applications, the continuous integral form of the Hermite-Chaos has been
written in the discrete form of infinite summation which is further truncated for compu-
tational purpose. This leads to an approximation technique using PC expansion, where
square integrable random variables or processes are represented using an Hilbertian ba-
sis consisting of Hermite polynomials of independent standard normal variables. The
PC representation provides a complete probabilistic description of the solution. Refer-
ences [3, 4] introduce the moment-based Hermite model for nonlinear random vibration
processes and fatigue damage. In these works, the polynomial representation is also gen-
eralized to arbitrary polynomials through a procedure analogous to the Gram-Schmidt
method. This enables a choice for the representation basis. For instance, Laguerre poly-
nomials have been proposed for positive random processes, associated to chi-square-2
variables. Then, reference [5] combined the Hermite-Chaos representation with the finite
element method to model uncertainties encountered in various problems of mechanics.
A spectral stochastic finite element method is proposed by using PC representations as
trial functions in a Galerkin framework. Next, reference [6] extended this strategy by
the introduction of the so-called “generalized Polynomial Chaos” (gPC) that includes
a broad family of hypergeometric polynomials, the Askey-scheme [7]. Convergence to
any L2 functional in the L2 sense of Askey-scheme based PC representation is shown
in reference [8]. In contrast, the SRBM chooses a problem-dependent basis. This basis
is issued from the vectors which span the stochastic Krylov subspace of the problem.
It enables to solve random algebraic systems of equations having non-singular random
matrix, such as some of those obtained in structural mechanics.

Hence, in both cases (PC representation and SRBM), exact stochastic solutions are
ensured to lie in the – untruncated – subspace generated by the projection basis. But
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both these approaches will be computationally ineffective if a large number of vectors
is necessary for the representation. This arises for series of slow convergence which
implies a high degree of non-linearity in the PC representation. Hence, the accuracy and
effectiveness of the polynomial approximation depend upon the terms that are involved
in the representation. Some theoretical results of convergence exist. For any arbitrary
random process with finite second-order moments, it is found that the Hermite-Chaos
representation converges with an optimal convergence rate for Gaussian processes, since
the weighting function of Hermite polynomials is the same as the Probability Density
Function (PDF) of the Gaussian random variables. But for non-Gaussian processes, the
convergence rate may be substantially lower with Hermite polynomials. Similar results
occur when considering the Legendre-Chaos for uniform random variables. Convergence
rate of gPC representation is studied numerically in references [6, 9], where numerical
solutions of stochastic ordinary differential equations with different Wiener-Askey chaos
expansions are presented. In these works, the choice of the particular Wiener-Askey
chaos is based on the distribution of the input random variable.

More specifically, references [9, 10] address the first two moments of second-order ODE
associated to a linear oscillator subject to both random parametric and external forcing
excitations having three independent random Gaussian variables using Hermite-Chaos.
Ten percent is chosen for the coefficient of variation of the input random variables while
the nominal system has five percent of damping ratio. It is shown in [9] that an expansion
order up to 14 is required for a specified error in the standard deviation of the response,
while the decay rate for the variance is found lower than for the mean. In fact, it is
frequent with ODE to observe that the absolute error may increase gradually in time
and become unacceptably large for long-term integration [11]. In addition, stochastic
regularity of the solution is of the first importance for an efficient approximation using
gPC. For discontinuous dependence of the solution on the input random data, gPC may
converge slowly or fail to converge even in short-time integration [12].

These phenomenons may indicate that the chosen basis for the representation of random
variables is not appropriate. To maintain a spectral polynomial representation basis, [12,
13] introduce a decomposition of the space of random inputs into small elements where
gPC is applied, called multi-element gPC method (MEgPC). However, this appears to
be not completely sufficient for time dynamical problems, as it demonstrated in reference
[11] since the probability density distribution (PDF) of the solution evolves as a function
of time. To address this issue, an adaptive gPC method in time is used in [11], where the
representation basis evolves in respect to the random solution computed at a previous,
known, time step. In reference [14], another way is adopted, based on an understanding
of the physics of the system under consideration, when observing the behavior of a
two degrees-of-freedom system having a Gaussian stiffness in one spring in order to
highlight the main ideas. Some judiciously non-smooth chosen functions, referred as the
enrichment functions, are added to the initial Hermite polynomial basis. They are the
absolute function, the unit step function and the inverse function.

In [2], it is argued that the convergence of the series is intimately related to the over-
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lapping of the probability density functions of the eigenvalues of the stochastic operator
for the considered problem. Hence, the practical basis suggested for SRBM in [2] comes
from a preconditioned stochastic Krylov subspace, performed from the nominal problem.
Numerical studies on frequency response analysis of stochastic structural systems is ad-
dressed where 40 Gaussian variables are chosen for the member stiffnesses and masses
of a frame structure. In such a situation, the basis is formed by complex vectors. Only
the first two moments are studied in this work, showing a degradation in results for
large variations of the random variables. However, it is noticed in [15], section 7.1.3.2,
that preconditioning from the nominal problem can be a non-optimal choice. Two re-
cent developments are noticeable in SRBM. The first one, proposed in [16], is a hybrid
formulation combining SRBM with PC representations to easily tackle problems that ne-
cessitate a large number of basis vectors. The second one is a multi-element formulation
of SRBM, proposed in [17].

From our experiments in stochastic frequency responses functions for mechanical sys-
tems [18, 19, 20, 21, 22], we have found that difficulties can arise with standard PC
representation in some situations, while there is no difficulty for others. Difficulties
have been observed for several stiffness distributions (namely the Gaussian, uniform and
gamma distributions) in single and multiple degrees-of-freedom systems, having or not
other random variables (such as random damping for example). Focusing on the single
degree-of-freedom (SDOF) system with only one random variable – the spring stiffness
– helps to investigate precisely and understand what is happening and under which
conditions. Reference [20] conducts numerical investigations for the representation of
the SDOF response modulus when Gaussian distribution is considered for the stiffness
random variable. Analytical and numerical investigations showed that difficulties with
PC representation is intimately related with the potential multimodality that can occur
in a specific frequency range, located around the resonant frequency, for some conditions
on the variation coefficient of the stiffness when it is compared to the damping ratio.

This study focuses on the stochastic frequency response function of a SDOF linear
oscillator whose stiffness is a random variable. To reduce the size of this paper, only
Gaussian and uniform distributions are considered. Despite the physical character or
not of these distributions, these cases are easier to understand and help to focus on the
main ideas. From reference [20], the present work is not only a substantial expansion of
it. Indeed:

• The considered problem is now changed for the polynomial chaos representation
of the system response, instead of representing only the system response modulus.
From our experience, it appears that this situation is more difficult to handle. But
such an analysis is essential if we plan to use results of this study for frequency
response of general multiple degree-of-freedom systems (see ref. [23]).

• An error indicator based on the Wasserstein metric is proposed here to assess for
the quality of polynomial chaos representation for complex random variables, since
the considered response has now a real and imaginary part.
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• The significant case of a uniform distribution is now considered in addition to the
Gaussian distribution for the spring stiffness random variable.

• New combinations are proposed here to form mixed bases and a novel strategy,
based on the output variable, is proposed to form an effective PC representation
basis.

As a consequence, all results of this study are new. It is organized as follows: Sec. 2
provides first brief recalls over the PC methodology, its alternatives and its numerical
implementation. Then, an error indicator is defined over the inverse CDF, which takes
into account that a frequency response is not a real variable but a complex quantity.
Experiments with PC representation come next. First Hermite-Chaos is tested for the
Gaussian stiffness case while Legendre-Chaos is tested for the uniform stiffness case
(Sec. 3.1); results are analyzed quantitatively in terms of the error defined over the
inverse CDF and qualitatively in terms of CDF and PDF shapes. Then, several other
bases are proposed and tested (Sec. 3.2), including the MEgPC approach.

During the revision of this paper came to our attention another nonintrusive approach 
for making PCE for non-smooth and frequency-dependent system responses, like FRF. 
The method is very clever and give good results for the computation of FRF in the two 
cases discussed in [24].

1. Description of the single-degree-of-freedom system

In this section, the stochastic SDOF system is defined and the difficulties associated
to its stochastic study when some conditions are met are emphasized using analytical
expressions.

1.1. Deterministic system

We consider the following SDOF linear oscillator subject to an external harmonic forcing
q (ω) = 1 in the frequency domain [25]:(

k − ω2 + jcω
)
u (ω) = 1 (1)

where ω = 2πf is the circular frequency associated to the frequency f . In this equation,
the mass is normalized to unity and k and c are the stiffness and damping parameters of
the system. Despite the simplicity, studying such an SDOF system is of interest since it
occurs in a similar form when expressing the response of a multiple degrees of freedom
system in the modal space. It is sketched in Figure 1.

Since a unit external forcing is considered, the system response u (ω) is the frequency
response function given by:

u (ω) =
1

k − ω2 + jcω
(2)
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Figure 1: SDOF system

which is a complex quantity such that:{
Real [u (ω)] =

(
k − ω2

)
|u (ω)|2

Imag [u (ω)] = −ωc |u (ω)|2
(3)

where Real [•] and Imag [•] denote the real and imaginary part, respectively, while |u (ω)|
is the response amplitude given by:

|u (ω)| = 1√
(k − ω2)

2
+ (ωc)

2
(4)

The response amplitude |u (ω)| has a maximum at the resonant frequency which is close
to the natural frequency of the SDOF system given by:

f0 =
1

2π

√
k (5)

Hence, the frequency range close to f0 is often of major interest when a system is
designed.

1.2. Stochastic system

Let us consider now a probability space (Ω, S, Prob) with Ω the event space, S the
σ-algebra on Ω, and Prob a probability measure. The SDOF system becomes stochastic
if at least one of its parameters is random. Let us consider the situation when only
the stiffness k is random. Random variables will be denoted by the capital letter which
matches the deterministic variable, hence K in this case. It is such that K ($) : Ω −→ R
where $ ∈ Ω. But since the capital letter notation is adopted, the $ dependency can
now be dropped in the sequel. Let PK (k) = Prob [K ≤ k] be the Cumulative Distribution
Function (CDF) and pK (k) = dPK

dk denote the PDF of K having µK as the mean and
σK as the standard deviation. The domain of K is considered to be an interval having
the boundaries kinf and ksup that may or may not belong to the interval depending
on the chosen distribution for K. For instance, when the Gaussian random variable is
considered, k ∈ ]kinf, ksup[ with kinf = −∞, ksup = +∞, and the interval is open, the
boundaries do not belong to the interval. But when the uniform random variable is
considered, k ∈ [kinf, ksup] with kinf = µK −

√
3σK, ksup = µK +

√
3σK and the interval

is closed. In this study, the chosen distributions for the random variable K are:

1. the Gaussian, or normal law, which has PDF: pK(k) =
1

σK

√
2π

exp
(
− (k−µK)2

2σ2
K

)
;

or
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2. the uniform law with the PDF: pK(k) =
1

ksup − kinf
= 1

2
√
3σK

.

For both of these cases, the natural frequency of the SDOF system becomes a random
variable, given by F0 = 1

2π

√
K.

Interest arises now in the random system response process U(ω) which is the frequency
response of the system. It is a complex process which depends on the circular frequency
ω ≥ 0, given by: (

K − ω2 + jcω
)
U(ω) = 1 (6)

that we can compactly rewrite as:

U(ω) = g(K; ω) (7)

for:
g(K; ω) =

1

K − ω2 + jcω
(8)

where g is a non-linear function of its variables. Then, the system response is such that:

U(ω) = Real [U(ω)] + jImag [U(ω)] (9)

where the real and imaginary parts are random processes:{
Real [U(ω)] =

(
K − ω2

)
|U(ω)|2

Imag [U(ω)] = −ωc |U(ω)|2
(10)

and the amplitude is:

|U(ω)| = 1√
(K − ω2)

2
+ (ωc)

2
(11)

For the uniform stiffness case, it is obvious that Real [U(ω)] and Imag [U(ω)] have finite
bounds. For the Gaussian stiffness case, same conclusions arise for ω > 0 since |U(ω)| ∈]
0, 1

cω

[
. Moreover, we have also to notice that Imag [U(ω)] is negative in all cases.

Unlike the static case, the PDF of the amplitude of the SDOF system response can
have a complex shape for ω > 0, even if a strictly positive damping is considered. Our
experience suggests that the complexity is intimately related to the number of statistical
modes of the distribution and its potential asymmetry which, in turns, depends on the
system parameters and the frequency range of interest. Analytical analyses of p|U | (u, ω)

for uniform and Gaussian stiffness cases are investigated in references [26, 27, 19]. This
reveals that a major parameter is the “normalized coefficient of variation” defined by
the ratio σK

ηµK
where η = c

2
√
µK

. In fact, when this ratio exceeds a specific value, which
depends on the stiffness distribution, several statistical modes may exist for the PDF of
the amplitude response over a given frequency range.

Figures 2 and 3 show PDFs of the real and the imaginary parts of the responses of SDOF
systems for various normalized coefficient of variation when considering a Gaussian dis-
tribution for the stiffness K and a fixed frequency ω =

√
µK. For a low normalized
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coefficient of variation, the PDF of the real part has a bell shape. The PDF of the imag-
inary part has a comma shape from the supremum bound to the infimum one. Both
of them have thus only one statistical mode, center over 0 for the real part and at the
infimum bound for the imaginary part. Then, as the normalized coefficient of variation
increases, two narrow peaks emerge on either side of the bell shape for the real part,
leading to three statistical modes. For a medium normalized coefficient of variation, the
bell shape at the middle of the distribution disappears completely while the two narrow
peaks amplify, leading to a U shape for the real part. In these conditions, the imaginary
part have two statistical modes. For a high normalized coefficient of variation, there is
an emergence of two supplementary peaks between the two previous ones for the PDF of
the real part of the response. Finally, for a very large normalized coefficient of variation,
only the last two peaks subsist in this shape for the real part, while only a narrow peak
subsists for the imaginary part.

Figures 4 and 5 show PDFs of the real and the imaginary parts of the responses of
SDOF systems for various normalized coefficient of variation when considering a uniform
distribution for the stiffness K and a fixed frequency ω =

√
µK. For a low normalized

coefficient of variation, the PDF of the real part has a U shape, having two statistical
modes at either bound. But when the normalized coefficient of variation increases, there
is an emergence of two supplementary peaks between the two previous ones. Finally, for
a very large normalized coefficient of variation, only the last two peaks subsist in this
shape for the real part. On another hand, the imaginary parts are quite similar to the
ones described for the Gaussian stiffness case.

The shape of the response over all frequencies for an SDOF system can then be quite
simple or not, depending on the system parameter values. For a moderately damped
system having a non negligible uncertainty, the PDFs of the response can evolve sig-
nificantly from a simple shape at low frequencies to a complex one near the resonant
frequency, while it becomes very simple when reaching high frequencies. This means
that the link between the input random variable (the stiffness) and the output random
variable (the displacement) can become very non linear. Hence, it can be asserted that
a Polynomial Chaos representation of this response may be inefficient near the resonant
frequency. In addition, coming back to the results reported in the literature [28, 9, 10],
this can explain the bad estimation of the second moment observed in this range of
frequencies for a system having these parameters.

In the following, since the stochastic process of interest does not belong to the class of
differential stochastic processes, we can focus directly on fixed values for ω. Then, in
the sequel, we will not consider the random process U(ω) but several distinct random
variables Uω.

2. Propagation of uncertainty using a Polynomial Chaos representation

The principle of Polynomial Chaos representation is briefly recalled here for a one di-
mensional stochastic space, that is when only one generic random variable X is used
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Figure 2: PDFs of the real part of the responses of 6 SDOF systems having the same Gaussian stiffness
and different normalized coefficient of variation: from the left most hand, up, to the right most hand,
down, they are: 0.33, 0.76, 2.3, 5.7, 11 and 57. The natural frequency of the nominal system is
considered.

Figure 3: PDFs of the imaginary part of the responses of 6 SDOF systems having the same Gaussian
stiffness and different normalized coefficient of variation: from the left most hand, up, to the right most
hand, down, they are: 0.33, 0.76, 2.3, 5.7, 11 and 57. The natural frequency of the nominal system is
considered.
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Figure 4: PDFs of the real part of the responses of 6 SDOF systems having the same uniform stiffness and
different normalized coefficient of variation: from the left most hand, up, to the right most hand, down,
they are: 0.33, 0.76, 2.3, 5.7, 11 and 57. The natural frequency of the nominal system is considered.

Figure 5: PDFs of the imaginary part of the responses of 6 SDOF systems having the same uniform
stiffness and different normalized coefficient of variation: from the left most hand, up, to the right most
hand, down, they are: 0.33, 0.76, 2.3, 5.7, 11 and 57. The natural frequency of the nominal system is
considered.
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to introduce randomness in the system. For a complete presentation of PC method,
the reader is invited to refer to the references cited in the introduction. In addition,
we introduce in this section the chosen error indicator. Such an indicator is necessary
to ensure that a sufficient quality of the PC representations is reached for numerical
applications and provides a mean to compare the different methods.

2.1. Principle of Polynomial Chaos representation

Considering a generic model M and the generic second-order random variable Z =

M (X) such that E
[
Z2
]
< ∞, the PC representation proposes to express Z as a poly-

nomial series using a set of nZ orthogonal polynomials denoted ψr:

Z =

nZ−1∑
r=0

zrψr(X) (12)

the order nZ being theoretically infinite for general situations. In this work, three bases
are considered: the Hermite basis, the Legendre basis and the Chebyshev of 1-st kind
basis. To anticipate numerical conditioning problems arising with higher orders poly-
nomials, their normalized counterparts are selected. The first five polynomials of these
bases are presented in Table 1. The deterministic coefficients zr now used to represent
Z can be evaluated in two ways: using a non-intrusive method or an intrusive one.

The non-intrusive method is based on regression or projection of the sampled model out-
put. By using the orthonormality of the polynomials with respect to the inner product
< •, • > in the Hilbert space determined by the support of X, the coefficients zr given
by projection are:

zr =
< Z,ψr >

< ψr, ψr >
=< Z,ψr > (13)

for:
〈•, ?〉 = E [•?] =

∫
x∈D
•(x) ?(x) pX(x) dx (14)

such that the orthonormality property reads:∫
x∈D

ψr(x)ψq(x) pX(x) dx =

{
0 if r 6= q

1 if r = q
(15)

where pX is the weight function or PDF of the input variable X and D is its support.
They are given in Table 2.

Thus, when a PC representation is needed for the stiffness K, the best choice is to select
the Hermite basis for the Gaussian stiffness case while the choice is the Legendre basis for
the uniform stiffness case. Indeed, both of them are obtained by a linear transformation
TK of the input variable1. This leads obviously to an order 1 for the PC representation

1For instance, if we consider the Gaussian stiffness case and a normal centered reduced variable X,
we have: K = µK + σKX = TK (X). It is: K = µK +

√
3σKX = TK (X) for the uniform stiffness case

and a uniform variable X defined on [−1, 1].
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Order p Hermite polynomials Legendre polynomials Chebyshev of 1-st kind

0 1 1 1
1 x

√
3x 1√

2
x

2 1√
2

(
x2 − 1

) √
5
2
(3x2 − 1) 1√

2

(
2x2 − 1

)
3 1√

6

(
x3 − 3x

) √
7

2
(5x3 − 3x) 1√

2

(
4x3 − 3x

)
4 1

2
√
6

(
x4 − 6x2 + 3

) √
9

8
(35x4 − 30x2 + 3) 1√

2

(
8x4 − 8x2 + 1

)
Table 1: First five polynomials of the three considered bases

Hermite Legendre Chebyshev of 1-st kind

pX
1
√
2π

e−
1
2
x2 1

2

1

π
√
1− x2

D R [−1, 1] [−1, 1]

Table 2: PDFs associated to the polynomial bases for their orthogonality property

of K. It is K =

1∑
r=0

krψr(X) in both the stiffness cases with:

kr = E [ψr(X)K] =

∫
x∈D

ψr(x) T K(x) pX(x)dx =

{
µK for r = 0

σK for r = 1
(16)

But to find the PC representation in more complex, non-linear situations, as for the
stiffness K when considering non-optimal bases, or as for the system response Uω for
a given circular frequency ω with any bases, readily expressions are not available. For

instance, let us consider the PC representation of Uω such that Uω =

nU−1∑
q=0

uqψq(X)

where:
uq = E [ψqUω] =

∫
x∈D

ψq(x) g(x; ω) pX(x) dx (17)

and:
g(x; ω) =

1

TK(x)− ω2 + jcω
, for : TK(x) = P−1K (PX(x)) . (18)

Evaluating the expectation – or inner product – of Eq. (17) necessitates a numerical
method. Gauss quadrature formulas can be used for this:∫

x∈D
ψq(x) g(x; ω) pX(x) dx =

nG∑
i=1

wiψq(xi)g(xi; ω) (19)

where nG is the number of xi evaluation points for the numerical quadrature and wi are
their weights. The isoprobabilistic transformation is then evaluated for a given value xi.

The intrusive method follows a Galerkin approach: expression (12) is introduced in the
model governing Z and the result is projected onto the set of orthogonal polynomials ψr.
Then, for the studied mechanical system, it is necessary to consider Eq. (6) to define
the error R (X) as:

R(X) =
(
K − ω2 + jcω

)
Uω(X)− 1 (20)
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where the output variable Uω is represented as:

Uω =

nU−1∑
q=0

uqψq(X) = Ψ (X) u (21)

with the complex coefficients uq for a basis Ψ = {ψ0, ψ1, . . . , ψnU−1} composed of
polynomials up to degree nU−1. Then, the vector u of unknown coefficients is obtained
by projecting the error onto the trial basis:

〈R (X) , ψq(X)〉 =

∫
x∈D

R (x)ψq(x)pX (x) dx = 0, q = 1, 2, · · · , nU (22)

This leads to the following set of nU equations for the estimation of u:(
E [ΨTKΨ] +

(
jcω − ω2

)
E [ΨTΨ]

)
u = E [ΨT] (23)

where E [ΨTΨ] = I for normalized polynomials. It is a linear deterministic system which
can be developed as:

nU−1∑
q=0

(
E [ψiKψq] +

(
jcω − ω2

)
I
)
uq = E [ψi] i = 0, . . . , nU − 1 (24)

or, more compactly: (
K +

(
jcω − ω2

)
I
)
u = f (25)

where:

K =


E [ψ0Kψ0] E [ψ0Kψ1] · · ·
E [ψ0Kψ1] E [ψ1Kψ1]

...
. . .

 u =


u0

u1
...

 f =


E [ψ0]

E [ψ1]
...

 (26)

A further step, optional, consists in using in the previous expressions a polynomial
representation of K when using the polynomial basis Φ = {φ0, φ1, . . . , φnU−1}, such

that K =

nK−1∑
r=0

krφr (Y ) where Y is the random variable associated to polynomials

φr. Then, Y = TY (X) for the isoprobabilistic transformation TY defined by TY(x) =

P−1Y (PX(x)) where PX denotes the CDF of X and PY the CDF of Y . This leads to:(nK−1∑
r=0

krE [ΨTφrΨ] +
(
jcω − ω2

)
I

)
u = E [ΨT] (27)

where:
kr = E [φrK] =

∫
x∈D

φr(TY(x)) T K(x) pX(x) dx

This strategy corresponds to the one proposed in [5, 6] if the output variable Uω is
expanded onto the same basis than the variable K, i.e. if φr and ψr are chosen identical.
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In this situation, Eq. (23) becomes:(nK−1∑
r=0

krE [ΨTψrΨ] +
(
jcω − ω2

)
I

)
u = E [ΨT] (28)

Hence, in the sequel, we referred the equations system (27) as a “two bases intrusive
formulation”, while the equations system (28) corresponds to the “standard intrusive
formulation”.

Thus, the main difference between both methods is that the intrusive methods provide
a set of coupled algebraic equations and often require a special implementation while
the non-intrusive approach determines the set of coefficients zr one after the other in
an independent manner and reuses existing codes to evaluate Z values needed for the
quadrature. Moreover, it has to be noticed that a limited expansion where higher orders
are truncated leads generally to an approximation. Then, a major remark concerns the
interpretation of the coefficients uq: while the mean of the real part and the mean of
the imaginary part of Uω are both given by the real part and the imaginary part of the
complex coefficient u0, the mean of |Uω| as well as higher order moments of |Uω| are
expressed as a combination of all the coefficients uq. Hence, a non appropriate order of
truncation or a misevaluation of the coefficients of the representation leads implacably
to a drift in these moments. As a consequence, fidelity in the PC representation of the
PDFs of the real and imaginary parts of Uω is necessary to correctly estimate mean and
variance of the amplitude in a post-processing phase.

2.2. Error indicator

It is necessary to define an error indicator ε for the evaluation of the quality of the
PC representation. We choose to base it on the L2 Wasserstein metric which is a
distance function defined between two probability measures Prob1 and Prob2. Indeed,
L2 Wasserstein metric can be defined by:

W (Prob1,Prob2) = inf

{√
E
[
(Z1 − Z2)

2
]
;L(Z1) = Prob1,L(Z2) = Prob2

}
(29)

where L [Z] denotes the law associated to real random variable Z. For a practical
evaluation, it can be rewritten as [29]:

W2 (Prob1,Prob2) =

1∫
0

(
P−1Z1

(z)− P−1Z2
(z)
)2

dz (30)

and a normalized version is obtained when dividing it by the variance of Z1 [29]. Since,
the Wasserstein metric is a natural way to compare the probability distributions of two
real variables Z1 and Z2, it can be used as an error indicator if one of them is a reference
random variable. To handle complex random variables, we propose to use the following
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error expression in this study:

ε2 = 1
σ2
R

1∫
0

(
P−1Real[Z1]

(z)− P−1Real[Z2]
(z)
)2

dz

+ 1
σ2
I

1∫
0

(
P−1Imag[Z1]

(z)− P−1Imag[Z2]
(z)
)2

dz

(31)

where σ2
R is the variance of the real part of Z1 and σ2

I is the variance of its imaginary
part.

In this work, this error indicator is used to compare a reference random variable Z1 to
its representation Z2 given by the PC, where the reference random variable Z1 is given
either analytically or from MCS. Numerically, we have required that ε must be less or
equal to 5.10−4 to ensure an extreme high fidelity in the representation of the random
variable Z2. In industrial applications, the reference variable would not be known and
the PC representation is used to approximate it, while it is desirable to limit the amount
of computations. In such cases, we assess that the proposed indicator can be used to
test the convergence of the representation, by comparing two random variables Z1 and
Z2 given by PC representations truncated at different orders.

3. Application to SDOF system response

As mentioned previously, the SDOF system response distribution strongly depends on
the ratio between the stiffness dispersion (measured by σK/µK ratio) and the damping
(i.e. c); or, alternatively, it depends on the ratio σK/µK and the damping ratio (i.e. η).
Hence, several configurations must be investigated numerically to test the effectiveness
of PC representations. Then, for experimentations, it is possible to fix the damping and
vary the coefficient of variation or vice versa. Considered numerical values are arbitrarily
chosen such that: µK = 3500 N/m and ηm ∈ {0.35, 0.05, 0.02} for both Gaussian and
uniform stiffness cases. However, σK = 400 N/m is chosen for the Gaussian stiffness
case while it is σK = 700 N/m for the uniform stiffness case. This leads to normalized
coefficients of variation σK

ηmµK
' {0.33, 2.3, 5.7} for the Gaussian stiffness case while it

is σK
ηmµK

' {0.57, 4, 10} for the uniform stiffness case.

3.1. Standard PC representation of the response

Let us first consider the standard PC representation for the SDOF system, where stan-
dard stands for the polynomial basis chosen accordingly with the one for the stiffness
variable: To represent the random response, Hermite polynomial basis is considered for
the Gaussian stiffness, while Legendre polynomial basis is considered for the uniform
stiffness. This choice follows the recommendations given in [6]. The reason comes from
the fact that K admits an exact representation with two terms in both of these cases.
An intrusive approach is adopted in what follows; using Eq. (23) or Eq. (27) for the
evaluation of polynomial coefficients will obviously lead to the same results.
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(a) (b)

(c) (d)

Figure 6: Displacement results obtained at null frequency (i.e. the static case) for different repre-
sentation orders; empirical CDF (a) and PDF (b) for Hermite-Chaos for the Gaussian stiffness case;
empiricals CDF (c) and PDF (d) for Legendre-Chaos for the uniform stiffness case.
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The first numerical investigation with PC representation concerns the static case. This
situation is the most common in the literature. Not surprisingly, Figure 6 shows that
satisfactory results can be achieved at the 3-rd or the 4-th order. Moreover, regarding
the convergence of the series, it is observed that the CDFs and PDFs approach better
and better the reference curve from an order of expansion to the next one. This behavior
for the CDF approximation is in accordance with theoretical results of PC representa-
tion. Moreover, from this figure, one can suppose that acceptable shapes for the PDF
are obtained even when the convergence is not fully achieved. However, from the re-
sults reported in the following of this study, we can state that this behavior is only a
consequence of the low order nU required to get an accurate result.

Next, numerical investigations with PC representation concern the dynamic case. Then,
the error ε defined in Eq. (31) helps to quantify the representation quality for each
frequency of the range of interest and the three considered normalized coefficients of
variation. Empirical inverse CDFs of the distributions obtained from the PC expansion
are compared to the empirical inverse CDFs and the empirical variances of the refer-
ence produced by Monte Carlo simulations with 106 sample size. It is stated that a
satisfactory representation is achieved when ε is less than or equal to 5 · 10−4 , meaning
that the reference PDFs of the response Uω agree well with the ones given by a PC
representation. For this test, we limit arbitrarily the order of the expansion to the 70-th
order. Considering the PC representation for the Legendre-uniform stiffness case, Figure
7 shows the empirical PDFs of real and imaginary parts of Uω at the 65-th and 70-th
orders for the natural frequency. Discrepancies are more visible for the real part: small
fluctuations around reference PDF observed at the 65-th order disappear at the 70-th
order. Errors are ε ' 1 · 10−3 for the 65-th order and ε = 5 · 10−4 for the 70-th order.
So, the chosen ε criterion limit implies accurate results for the PDFs.

Figure 8 shows the order of truncation required to achieve a satisfactory representation
of the PDFs using the above criterion for the two considered distributions for K. Re-
sults for the three cases of SDOFs systems studied are represented over the normalized
frequencies. Normalized frequency is defined by the ratio between the true frequency f
and the eigenfrequency f0 of the nominal SDOF system. First, we can note that the
PC representation performs globally better for the uniform stiffness case than the one
for the Gaussian stiffness case. As it is expected, very satisfactory results are obtained
at high frequency (saying the normalized frequency equals two in the current example)
with an expansion truncated at the 4-th order, whatever the chosen damping level is.
For the Gaussian stiffness case, looking at the PDFs of the real and the imaginary parts
of Uω on logarithmic scale shows that the last two coefficients of the Hermite represen-
tation help only to well adjust the tails of the distributions. For the high damping case
η1, it is found that an order expansion less than ten suffices for a good representation
over the complete frequency range and especially around the resonant frequency of the
nominal system in both stiffness distributions cases. For the medium damping case η2
and around the resonant frequency of the nominal system, the PC representation:
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(a) (b)

(c) (d)

Figure 7: Comparison of empirical PDFs obtained for Uω using a Legendre basis representation at the
natural frequency of the nominal system for η3 in the uniform stiffness case; thick green curves are for
the reference, light black curves are for the PC representation; (a) real part at 65-th order; (b) real part
at 70-th order; (c) imaginary part at 65-th order; and (d) imaginary part at 70-th order.
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(a) (b)

Figure 8: Order of polynomial required versus normalized frequencies to satisfy ε ≤ 5 · 10−4 for the
representation of the SDOF response when considering the three damping ratios ηm, m ∈ {1, 2, 3};
Subfigure (a) concerns the Hermite-Chaos for the Gaussian stiffness case while subfigure (b) concerns
the Legendre-Chaos for the uniform stiffness case.

• does not lead to convergence for the Gaussian stiffness case when the polynomial
order is limited to the 70-th order,

• requires a 29-th order for the uniform stiffness case.

For the low damping η3, results are worse in both cases, the uniform stiffness case
requires up to a 70-th order to get accurate results in a region around the resonant
frequency on the graph. This can be explained by a very poor convergence of the
expansion for the SDOF response at these frequencies for such a normalized coefficient
of variation. This phenomenon has also been observed and analyzed in [30]; the same
authors later proposed a scheme to accelerate the convergence of the first two moments
in [31]; however, in these works, no attention is paid to the PDFs.

To gain insight into such a failure of the PC representation for the Hermite-Gaussian
stiffness case, Figure 9 shows the empirical CDFs and PDFs of real and imaginary parts
obtained for Uω at the 70-th order, considering the unitary normalized frequency. In this
situation, ε ' 0.1. It is observed that both obtained CDFs fluctuate around references
CDFs, with many oscillations and inflections points. They are easily revealed by the
observation of both PDFs. This observation differs from the one made for the static
case where it has been observed that the PDFs of a non converged expansion is anyhow
closed to the reference curve. This is a consequence of using very high orders: There
are many spurious peaks, and they do not reflect the real ones, since they do not occur
systematically at the correct location. Another comment concerns boundaries of these
functions. Discrepancies occur if we look at their extrema. This is even a major problem
for the distribution of the imaginary part since it has a tail fragment into the positive
values region of the displacements.
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(a) (b)

(c) (d)

Figure 9: Comparison of empirical CDFs of (a) real and (c) imaginary parts and PDFs of (b) real and
(d) imaginary parts obtained for Uω with a 70-th order representation using an Hermite basis at the
natural frequency of the nominal system for η3 in the Gaussian stiffness case; thick green curves are for
the reference, light black curves are for the PC representation.
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3.2. PC representations onto other bases

3.2.1. Using standard PC bases representation

To cope with a satisfactory representation of the response when a high normalized coef-
ficient of variation characterizes the system of interest, the simplest idea is to try other
polynomial bases. Since it is a continuous distribution, Legendre, Laguerre and Cheby-
shev polynomials are first candidates. Thus, focusing on results when considering η3
at the unitary reduced frequency, we can find some situations where other polynomial
bases lead to better results.

For instance, when considering η3 and the unitary reduced frequency, better results are
obtained by a non intrusive approach (Eq. (13) for Z = Uω and zr = ur) using:

• the Legendre basis truncated at the nU =31-st order for the Gaussian stiffness
case, and

• the Chebyshev of 1-st kind basis truncated at the nU =47-th order for the uniform
stiffness case.

To be complete, isoprobabilistic transformations TK(x) = P−1K (PX(x)) are used in both
these situations. According to Table 2, the input variable X is chosen uniform when
using the orthonormal Legendre basis. In such a situation, the Gaussian stiffness is given
by:

K = µK + σK

√
2erf−1 (X) . (32)

But when using the orthonormal Chebyshev of 1-st kind basis, pX = 1
π
√
1−x2

(see Table
2). In this situation, the Gaussian stiffness is expressed by:

K = µK + σK

2
√

3

π
arcsin (X) . (33)

That said, an intrusive approach is desirable since our mechanical problem is linear.
First attempts consist in using the standard intrusive method introduced above, Eq.
(28), in conjunction with a Legendre polynomial basis for the Gaussian stiffness case
and in conjunction with a Chebyshev of 1-st kind basis for the uniform stiffness case.
Unfortunately, this does not lead to any good results if we keep the order nK lower
or equal to nU. Explanation comes from the fact that choosing the same polynomial
basis for the representation of K and for the representation of Uω is not an adequate
choice. Indeed, the random variable K is not efficiently represented in both the above
considered cases, as it is shown in Figure 10 where the PC representation of K is plotted
for the order nK = nU. In both cases, even if the CDFs of K seem good enough at
the order chosen, one can see that the PDFs exhibit a ripple phenomena, indicating
that convergence is not truly achieved. Then, a simple remedy would be to increase
the number of terms for the representation of K in this situation. For instance, when
considering the Gaussian stiffness case, numerical experiences suggest to select nK = 43

and nU = 37 when using the Legendre basis, according to the ε criterion.
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For an intrusive approach, it is clear that the two bases intrusive method proposed
above, Eq. (27), performs better than the standard intrusive method for the considered
situations. Hence, by using:

• the Legendre basis truncated at the nU =31-st order for ψq, and the Hermite basis
truncated at the nK = 1-st order for φr in the Gaussian stiffness case2;

• the Chebyshev of 1-st kind basis truncated at the nU =47-th order for ψq, and the
Legendre basis truncated at the nK = 1-st order for φr in the uniform stiffness
case3;

results of the intrusive method are recovered for the situations investigated. By using
two different bases in the same appropriate formulation, one to represent the random
variable K and another one to represent the output variable Uω, it becomes possible to
keep the two truncature orders as low as possible. Notice however that such a way leads
to a higher numerical cost than the classical – one single basis – non-intrusive approach
since the quadrature formula necessitates more integration points while more non-zeros
terms stay within matrices. But, in this way, results of the non intrusive approach are
recovered with the intrusive one. Same results are also obtained with Eq. (23).

However, for the current problem, although this two bases approach leads now to a
satisfactory result, in contrast to the classical one with the standard bases, requiring such
a high order is not a very efficient PC representation. More problematic is the fact that
the alternate bases are found to be even less effective for expanding Uω for low or high
frequencies or for a lower normalized coefficient of variation, requiring truncature orders
greater than 70th. In practice, it would not be desirable to change the representation
basis to cover all the frequency range of interest, since it becomes very difficult to manage
it when a multi degrees of freedom system will be concerned. Hence, a compound basis
would be a preferable solution, at the expense of an increase of the number of terms in
the representation chosen, since it is more important to cover all the range of frequencies.
It is the subject of the next subsection.

2To be more precise for this situation, orthonormal Legendre polynomials are chosen for the basis
Ψ (X), so the input variable X is chosen uniform, and an isoprobabilistic transformation TY(x) =
P−1

Y (PX(x)) is introduced to evaluate the Hermite polynomial basis Φ (TY(X)), such that:

TY(x) =
√
2erf−1 (x)

3To be more precise for this situation, Chebyshev of 1-st kind polynomials are chosen for the basis
Ψ (X), so pX = 1

π
√

1−x2
, and an isoprobabilistic transformation TY(x) = P−1

Y (PX(x)) is introduced

to evaluate the Legendre polynomial basis Φ (TY(X)), such that:

TY(x) =
2
√
3

π
arcsin (x)
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(a) (b)

(c) (d)

Figure 10: Comparison of empirical (a) CDF and (b) PDF obtained for Gaussian stiffness K with a
31-st order representation using a Legendre basis; (c) CDF and (d) PDF obtained for uniform stiffness
K with a 47-th order representation using a Chebyshev of 1-st kind basis; thick green curves are for the
reference, thin black curves are for the PC representation.
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3.2.2. Using a mixed PC basis representation

From the previous results, it is desirable to find a way for enhancing the polynomial
basis chosen for the representation of the random response. Enrichment basis strategy
of reference [14] seems an attractive way, since it is complementary to the current for-
mulation. Unfortunately, when using the same enrichment than that are proposed in
reference [14] for our SDOF application, slightly improved results can be found but they
are not tremendous: the orders required to satisfy the criterion are lower than, at most,
four.

From the results of the previous subsection, our proposal is to have a compound repre-
sentation basis made from the mix of two bases that has been found to be effective in all
the range of frequencies for the random variable. Hybrid formulation is not new since
it is found in literature for SRBM based on stochastic Krylov subspace (see reference
[16]). But the strict application of SRBM does not help for the application concerning
a SDOF system. Indeed, the complete basis of Krylov subspace has a fixed dimension
given by the number m of degrees of freedom of the mechanical system. It is m = 1

in our SDOF system. Without conditioning, the first vector of the Krylov subspace is
made from the force vector which is q = 1 here. Thus, for the SDOF application, our
proposal is rather to use a compound basis, made from the two bases which have been
found effective previously. Since two bases are involved to represent a single random
variable in this strategy, we call it a mixed PC basis representation. This is different
from the two bases strategy of the previous subsection, since only one basis is used for
both random variables.

From a mathematical point of view, it is obvious that compounding two bases forms
a spanning set. In practice, it can be made by forming the product of all polynomials
pertaining to both bases. With such a strategy, a curse of dimensionality arises rapidly,
which forces us to have very low truncation orders for the underlying bases. Our numer-
ical experience shows that this does not lead to satisfying results for the SDOF response
problem. Concatenating simply the two initial bases is another possibility of interest.
This leads to represent Uω as usually in PC methods with Uω = Ψu but for:

Ψ =
{

1, Ψ
(A)
1 , · · · , Ψ(A)

nA
, Ψ

(B)
1 , · · · , Ψ(B)

nB

}
. (34)

if we denote now Ψ
(A)
i and Ψ

(B)
j the polynomials of two bases (A) and (B), such as

Hermite and Legendre polynomials, or Legendre and Chebyshev of 1-st kind polyno-
mials, for example. Orders of truncature are nA and nB for the bases (A) and (B),
respectively. This corresponds to a drastic selection of the terms which are produced
in the previous strategy, but it enables to keep higher orders terms of both bases for
numerical investigations. A consequence of such a simple strategy is the non uniqueness
of the basis coefficients for one given representation. Moreover, the sparsity of the ma-
trix K involved in Eq. (25) is deteriorated. Both of these consequences are due to an
uninvolved orthogonality strategy for the spanning set construction. This can increase
the necessary amount of memory and this can induce a difficulty if we want to have an
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Figure 11: Polynomial order (index in the set defined in Eq. (35)) versus normalized frequencies for the
representation onto a mixed, Hermite-Legendre polynomial basis of the SDOF response when considering
the three damping ratios ηm, m ∈ {1, 2, 3} .

optimized, reduced set, with a minimal truncature order in the end. But our objective
is mainly to test if a successful PC representation of Uω can be achieved through this
strategy.

For numerical investigations we focus on the Gaussian stiffness case since it is the more
critical case. From the observations of the previous subsection, the mixed basis is chosen
to be composed of Hermite and Legendre polynomials. When considering the η2 damping
ratio, satisfying results are achieved by choosing either nA = 50 and nB = 20 or nA = 35

and nB = 35, illustrating the non uniqueness of PC representations for Uω by this
strategy. To assess the global efficiency of this strategy over all the range of frequencies
for the three damping ratios, we have set nA = 70 and nB = 70 and reordered the
polynomial set terms such that:

Ψ =
{

1, Ψ
(A)
1 , Ψ

(B)
1 , · · · , Ψ

(A)
70 , Ψ

(B)
70

}
. (35)

This enables us to report the order of truncation necessary to respect the defined cri-
terion; the “order” here denotes the index in the set. This is given in Figure 11. By
comparing this figure with Figure 8(a), one can see that an improvement is achieved
around the resonant frequency for the medium and the high damping situations. But it
is also found that this strategy is not completely satisfying since it again exists a range
of frequencies for which no satisfying results are obtained for the high damping situation
-corresponding to the blue curve for both of these figures- between the low frequencies
and the resonant frequency. Difficulties persist to represent the imaginary part of the
response in this frequencies range where a very narrow spread of the PDF with very
small values is exhibited.

3.2.3. Using an output variable based basis

From the previous experiments and analytical results given in [18, 19, 21], we can assume
that the set of orthogonal polynomials would be different along frequencies. But for the
SDOF system, we have found that standard polynomial bases are adequate for the

25



null frequency response. Then, when progressing in a frequency sweep and approaching
resonant frequencies, these polynomials appear less and less adequate, and one can think
that they should be replaced by new, more adequate bases. Thus, in a frequency sweep,
as the PC representation for the response at previous frequencies has been obtained, this
known response can be an optimal candidate for a judicious random variable in PC. For
instance, when the output variable Uωk

becomes of interest while the representation of
the output variable Uωk−1

is already determined, one can generate a new polynomial basis
from the zero-mean random variable X = Uωk−1

− E
[
Uωk−1

]
. In this work, the proper

basis is constructed numerically by using a Gram-Schmidt orthogonalization procedure,
followed by a normalization step as described in Algorithm 1 (see also appendix A of
reference [3] dedicated to orthogonal expansions for random process). This leads to
satisfy ψ0(x) = 1 and:∫

x∈D
ψ∗r (x)ψq(x) pX(x)dx =

{
0 if r 6= q

1 if r = q
(36)

where •∗ stands for complex conjugate and where MCS is involved to evaluate these
integrals. Hence, updating the polynomial basis along the frequency sweep enables
to reduce the non-linearity degree of the representation problem at the investigated
frequency by transforming it to a new random variable given at the previous frequency.

Data: Uωk−1
, output variable for ωk−1 circular frequency;

1 ψ0 ← 1;
2 X ← Uωk−1

− E[Uωk−1
];

3 for r ← 1 to nU do
4 ψr ← Xr− < ψr−1, X

r > ψr−1;
5 ψr ← 1√

<ψ?
r ,ψr>

ψr;

6 end
Algorithm 1: Procedure for building the output variable based basis Ψ when an 
output variable Uωk−1 is known.

Several strategies can be thought to decide when it becomes necessary to update the
polynomial basis. For extremely simple problems, one of them can be given by the
condition:

max
q>1

(|uq|) ≥ α |u1| (37)

where values given to q are linked to a chosen maximum polynomial order for the rep-
resentation and where α is a predefined threshold value (typically 10−5). For exam-
ple, if a third order truncation is desired, we have to update the polynomial basis if
max (|uq|) ≥ α |u1| for q > 3. For more complex problems, a more robust strategy to
update the polynomial basis may be needed if the necessary order exceeds the predefined
order, when ensuring convergence of the PC representation through the use of the error
indicator proposed in subsection 2.2.

In order to made comparable all results of this work, we chose here another strategy
to update the polynomial basis. It consists in updating the polynomial basis at each
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(a) (b)

Figure 12: Order of “output variable based” polynomial required versus normalized frequencies to satisfy
ε ≤ 5 · 10−4 for the representation of the SDOF response when considering the three damping ratios
ηm, m ∈ {1, 2, 3}; Subfigure (a) concerns the Gaussian stiffness case while subfigure (b) concerns the
uniform stiffness case.

new frequency ωk+1 based on the response at the previous frequency ωk. However, if
a representation order greater to 8 appears to be necessary, the frequency increment
is reduced, dividing it by a factor 2. Results are shown in figure 12 where the initial
basis at null frequency is constituted by Hermite polynomials for the Gaussian stiffness
distribution, while Legendre polynomials are chosen for the uniform distribution. It can
be observed that order 8 becomes now sufficient for η1 and η2 by using such “output
variable based” bases. However, for η3, it is necessary to reduce the frequency increment
near the resonant frequency in order to not exceed the 8-th order for the truncation
of the bases. As a consequence, for this damping, the number of studied frequencies
increases by 85% for the Gaussian stiffness case while it is 40% for the uniform stiffness
case.

One can conclude here that the output variable based polynomial representation can be a
practical solution to address pitfalls in the polynomial chaos representation of frequency
response of random SDOF mechanical systems, by updating the PC basis through fre-
quencies, when an adequate basis can be found to start the frequency sweep. Although
this strategy is inspired from the reference [3], it can also be seen as the frequency
counterpart of the strategy involved for temporal problems addressed in reference [11].

3.2.4. Using a multi-element basis

A last test is performed which uses a piecewise expansion with low degree rather than a
“one piece” expansion with high polynomial degree. As mentioned in the introduction,
the idea was introduced a few years ago by [12, 13] and successfully applied to several
mechanical problems [32, 33]. We will later denote this method by MEgPC for Multi-
Element generalized Polynomial Chaos.

When considering a normal random variable to describe the random input K, an iso-
probabilistic transformation is used to work with a uniform random variable ζ which
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has a bounded range of values I = [−1, 1]:

K = µK + σKT (ζ), T (ζ) :=
√

2erf−1(ζ) (38)

When a uniform distribution is considered for K, this step is not necessary as it can be
directly expressed using ζ:

K = µK + σK

√
3ζ (39)

The range I is easy to cut into pieces, that is to be partitioned into ne non-overlapping
elements denoted In = (ζ

(n−1)
b , ζ

(n)
b ). Over each element, a polynomial expansion in a

local ζn random variable is performed using a low degree – either in an intrusive or a
non intrusive way. Local variables ζn follow a uniform law over [−1, 1] and are linked to
ζ via affine transformations ζn = Tn(ζ) with:

Tn(ζ) =
2

ζ
(n)
b − ζ(n−1)b

(
ζ −

ζ
(n−1)
b + ζ

(n)
b

2

)
, ζ ∈ In (40)

Legendre polynomials in ζn are used to perform the expansion of Uω over each In
element; this local expansion is denoted Uω,n(ζn) and is such that:

Prob[Uω,n ≤ x] = Prob[Uω ≤ x | ζ ∈ In] (41)

Expansion coefficients are denoted uq,n where q refers to the polynomial degree and n
to the element index:

Uω,n(ζn) =

nU−1∑
q=0

uq,nψq(ζn) (42)

Uω probability can finally be evaluated as follows:

Prob[Uω ≤ x] =

ne∑
n=1

Prob[Uω ≤ x ∩ ζ ∈ In]

=

ne∑
n=1

Prob[Uω ≤ x|ζ ∈ In] Prob[ζ ∈ In]

=

ne∑
n=1

Prob[Uω,n ≤ x]
ζ
(n)
b −ζ(n−1)

b

2

(43)

An important question is the choice of In elements. Adaptive strategies can be imple-
mented to recursively refine the partition based on a given criterion [12, 34, 35]. Here,
the partition will be set a priori and the quality of the global expansion will be mea-
sured by ε. The obvious partition consists in ne elements with same size 2/ne. This
type of partition is used in the uniform stiffness case. However, this gives no good result
in the Gaussian stiffness case: due to the isoprobabilistic transformation, side elements
[−1,−1+2/ne] and [1−2/ne, 1] account for “large” – indeed infinite – elements in the im-
age space T (ζ). Hence, the Gaussian tails are poorly represented. The chosen partitions
are then built arbitrarily as follows:
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(a) (b)

Figure 13: Illustration of the partitions obtained when using ne = 6 elements In with a constant size
(a) or with boundaries defined by Eq. (44) (b). ξ

(n)
b = T (ζ(n)b ) denote elements boundaries in the

Gaussian variable space.

In = [ζ
(n−1)
b ; ζ

(n)
b ], 1 ≤ n ≤ ne

with

ζ
(0)
b = −1, ζ

(ne)
b = +1

ζ
(n)
b = T −1(−6 + (n− 1) 12

ne−2 ), 1 ≤ n ≤ ne − 1

(44)

An illustration of such a partition compared to a constant size elements partition is
displayed in Figure 13. When using elements with equal size in ζ, most of them account
for central values for ξ (close to the mean). Using a partition defined by Eq. (44),
the size of elements in ξ (that is size(T (In))) is constant except for the first and last
elements which are of infinite size.

The global procedure used to compute the multi-element expansion of Uω in the case
of a Gaussian random input is provided in Algorithm 2. The procedure to compute the
realization value uω for a given realization k of K is described in Algorithm 3.

Figure 14 shows the minimal number of elements required to satisfy the criterion using
a degree 5 expansion over each element; a non intrusive evaluation of the coefficients
is used. As can be seen, the MEgPC method provides a mean to get an accurate
representation for all three values of η and all over the frequency range. As expected,
the Gaussian stiffness case requires generally more elements to satisfy the accuracy
criterion as the relationship between a Gaussian and a uniform distribution is very non
linear. The computational effort here is proportional to the number of elements: ne × 6

coefficients have to be evaluated (using a 5-th order expansion). Compared to a classical
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Data:
ne, number of elements;
(ψi)0≤i≤nU−1, family of nU orthogonal Legendre polynomials;
(xi)1≤i≤nG and (wi)1≤i≤nG , nodes and weights of the quadrature rule used for the
Legendre polynomials and its associated inner product.
1 for n← 0 to ne do // Partition definition
2 Compute ζ(n)b according to Eq. (44);
3 end
4 for n← 1 to ne do // Local expansion over each element
5 for i← 1 to nG do // Values at nodes
6 gi ← g(µK + σKT (T −1n (xi));ω);
7 end
8 for q ← 0 to nU − 1 do // Uω,n(ζn) expansion coefficients

9 uq,n ←
nG∑
i=1

wiψq(xi)gi;

10 end
11 end

Algorithm 2: Algorithm to compute MEgPC exapnsion in the case of a Gaussian
random input

Data:
k, value of K realization;
(ζ

(n)
b )0≤n≤ne , elements boundaries;

(ψi)0≤i≤nU−1, family of nU orthogonal Legendre polynomials;
(uq,n)0≤q≤nU,1≤n≤ne

, local expansions coefficients for Uω.
1 ξ ← (k − µK)/σK;
2 ζ ← T −1(ξ);
3 Find n such that ζ ∈ In;
4 ζn ← Tn(ζ);

5 uω ←
nU−1∑
q=0

uq,nψq(ζn);

Algorithm 3: Algorithm to evaluate uω realization given k value and Uω MEgPC
expansion

(a) (b)

Figure 14: Number of elements required versus normalized frequencies to satisfy to satisfy ε ≤ 5 · 10−4

for the MEgPC representation of the SDOF response when considering the three damping ratios ηm,
m ∈ {1, 2, 3}; Subfigure (a) concerns the Gaussian stiffness case while subfigure (b) concerns the
uniform stiffness case.
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(a) (b)

(c) (d)

Figure 15: Comparison of empirical CDFs of (a) real and (c) imaginary parts and PDFs of (b) real and
(d) imaginary parts obtained for Uω with a 5-th order MEgPC representation using 30 elements at the
natural frequency of the nominal system for η3 in the Gaussian stiffness case; thick green curves are for
the reference, light black curves are for the PC representation.

“one-piece” PC representation, it means that a collection of ne small systems have to be
solved in this case instead of a large system. In the case of a non intrusive evaluation
of the coefficients, having low degrees over each element means that fewer points are
required for the quadrature, but these values at quadrature nodes have to be evaluated
for each element. Most importantly, it preserves low degrees for the expansion and thus
prevents from bad conditioning and Gibbs phenomenon.

Figure 15 describes the CDF and PDF of real and imaginary parts of Uω at the natural
frequency of the nominal system for η3. 30 elements are required to satisfy the accuracy
criterion. As showed by the figure, the CDF and the PDF returned by the expansion
perfectly fit the reference curves.

Conclusion

While many studies focus on the handling of finite element models which have an in-
creasing complexity as well as a large number of kinematic degrees of freedom and a
large number of random variables, we focus here on the effectiveness of the stochastic
representation for the most simple, linear, system having one single degree of freedom
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with only one random variable. The stiffness is the input random variable, while the
system response is the random output of the problem. The simplicity of the chosen
situation enables the access with high fidelity to the expected results in order to gain
insight to the PC representation process. For SDOF systems, the numerical cost in-
volved by PC representation is not relevant since MCS is very efficient in this situation,
so it is not discussed in this work. The purpose of the study is rather to investigate
the effectiveness of the stochastic bases for the representation of the dynamic response,
hoping results found here will be useful for more general situations, involving multiple-
degrees-of-freedom stochastic dynamic systems.

First of all, it is shown that the frequency response distribution functions strongly depend
on a normalized coefficient of variation, being defined as the coefficient of variation
of the random stiffness variable divided by the modal damping ratio of the nominal
mechanical system. Then, for the experimentation on dynamical systems, we have chosen
to fix the stiffness coefficient of variation while damping is varied. It appears that
stochastic responses become highly non-linear when reaching the resonant frequencies
for a moderate to high normalized coefficient of variation.

To address these stochastic problems numerically from the PC representation, we have
provided brief recalls over the PC methodology with its numerical implementation in or-
der to discuss alternative strategies for this methodology. In addition, an error indicator
based on the inverse CDF is defined. It is used in this work to assess for the quality of
the representation of the random variable, but it is emphasized that this indicator also
enables to assess convergence of the PC representation.

Experiments showed that standard polynomial bases fail to represent stochastic re-
sponses around the resonant frequencies, since unreasonable truncation order becomes
necessary in practice. Hence, it appears that the optimal basis for the input variable
can be far to be the optimal one for the output variable if a high degree of non linearity
between both of them is encountered. In these conditions, the representation of the
output random variable can be very difficult when using the basis chosen for the input
variable.

Hence, a first proposed remedy to keep low the orders of expansion was the use of
two bases, one for the input variable and another one for the output variable. This
strategy is able to achieve accurate results but in an inefficient way. Hence, another
strategy involving two bases was tested: the compound bases. It combines two standard
polynomials bases to form a mixed basis. It seems to be particularly interesting since
it would be adapted to the investigated situation as it uses the optimal basis for the
input, known, random variable for the representation of the system output. From this
strategy of compounding two bases, the representation appears to be more practical at
only some frequencies ranges, namely the low, resonant and high frequencies but not
around the resonant frequency in the addressed examples.

As a consequence, the next remedy tested was the continuous adaptation of the rep-
resentation basis along the frequency sweep, when starting from standard bases. This
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appears to be an efficient remedy for the situations tested. Finally, a multi-element PC
representation was investigated. It is a robust approach in the sense that it can handle
every situation without numerical difficulties since expansion order can be kept low by
adding elements with smaller sizes. Both these last approaches are appealing to tackle
dynamic responses of SDOF systems as they were shown to be effective, at least for the
situations investigated in the current work. Advice which results from this study is then
to use one of these last two methods when considering more general dynamical systems.
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